N

HAL

open science

Counting Branches in Trees Using Games

Arnaud Carayol, Olivier Serre

» To cite this version:

Arnaud Carayol, Olivier Serre. Counting Branches in Trees Using Games. Information and Compu-

tation, 2017, 252, pp.221-242. 10.1016/j.ic.2016.11.005 . hal-01563189

HAL Id: hal-01563189
https://hal.science/hal-01563189
Submitted on 17 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01563189
https://hal.archives-ouvertes.fr

Counting Branches in Trees Using Games

Arnaud Carayol®*, Olivier SerreP!#*

“LIGM (CNRS & Université Paris Est)
YIRIF (CNRS & Université Paris Diderot — Paris 7).

Abstract

We study finite automata running over infinite binary trees. A run of such an automaton is usually said
to be accepting if all its branches are accepting. In this article, we relax the notion of accepting run by
allowing a certain quantity of rejecting branches. More precisely we study the following criteria for a run to
be accepting:

(i) it contains at most finitely (resp. countably) many rejecting branches;
(ii) it contains infinitely (resp. uncountably) many accepting branches;

(iii) the set of accepting branches is topologically “big”.

In all situations we provide a simple acceptance game that later permits to prove that the languages accepted
by automata with cardinality constraints are always w-regular. In the case (ii) where one counts accepting
branches it leads to new proofs (without appealing to logic) of a result of Beauquier and Niwinski.

Keywords: Automata on Infinite Trees, Two-Player Games, Cardinality Constraints, Topologically Large Sets

1. Introduction

There are several natural ways of describing sets of infinite trees. One is logic where, with any formula,
one associates the set of all trees for which the formula holds. Another option is using finite automata. Finite
automata on infinite trees (that extends both automata on infinite words and on finite trees) were originally
introduced by Rabin in [1] to prove the decidability of the monadic second order logic (MSOL) over the full
binary tree. Indeed, Rabin proved that for any MSOL formula, one can construct a tree automaton such that
it accepts a non empty language if and only if the original formula holds at the root of the full binary tree.
These automata were also successfully used by Rabin in [2] to solve Church’s synthesis problem [3], that asks
for constructing a circuit based on a formal specification (typically expressed in MSOL) describing the desired
input/output behaviour. His approach was to represent the set of all possible behaviours of a circuit by an
infinite tree (directions code the inputs while node labels along a branch code the outputs) and to reduce
the synthesis problem to emptiness of a tree automaton accepting all those trees coding circuits satisfying
the specification. Since then, automata on infinite trees and their variants have been intensively studied and
found many applications, in particular in logic. Connections between automata on infinite trees and logic are
discussed e.g. in the excellent surveys [4, 5].

Roughly speaking a finite automaton on infinite trees is a finite memory machine that takes as input an
infinite node-labelled binary tree and processes it in a top-down fashion as follows. It starts at the root of the
tree in its initial state, and picks (possibly nondeterministically) two successor states, one per child, according
to the current control state, the letter at the current node and the transition relation. Then the computation

*Corresponding author
**Principal corresponding author
Email addresses: Arnaud.Carayol@univ-mlv.fr (Arnaud Carayol), Olivier.Serre@cnrs.fr (Olivier Serre)
L Postal address (Olivier Serre): IRIF — Université Paris Diderot—Paris 7 — Case 7014 — 75205 PARIS Cedex 13 — France.
2 Postal address (Arnaud Carayol): LIGM — Cité Descartes, Bat Copernic — 5, bd Descartes - Champs sur Marne — 77454
Marne-la-Vallée Cedex 2 — France.

Preprint submitted to Elsevier September 16, 2016

proceeds in parallel from both children, and so on. Hence, a run of the automaton on an input tree is a
labelling of this tree by control states of the automaton, that should satisfy the local constraints imposed by
the transition relation. A branch in a run is accepting if the w-word obtained by reading the states along
the branch satisfies some acceptance condition (typically an w-regular condition such as a Biichi or a parity
condition). Finally, a tree is accepted by the automaton if there exists a run over this tree in which every
branch is accepting. An w-regular tree language is a tree language accepted by some tree automaton equipped
with a parity condition.

A fundamental result of Rabin is that w-regular tree languages form a Boolean algebra [1]. The main
technical difficulty in establishing this result is to show the closure under complementation. Since the
publication of this result in 1969, it has been a challenging problem to simplify this proof. A much simpler
one was obtained by Gurevich and Harrington in [6] making use of two-player perfect information games
for checking membership of a tree in the language accepted by the automaton®: Eloise (a.k.a. Automaton)
builds a run on the input tree while Abélard (a.k.a. Pathfinder) tries to exhibit a rejecting branch in the
run. Another fruitful connection between automata and games is for emptiness checking. In a nutshell the
emptiness problem for an automaton on infinite trees can be modelled as a game where Eloise builds an input
tree together with a run while Abélard tries to exhibit a rejecting branch in the run. Hence, the emptiness
problem for tree automata can be reduced to solving a two-player parity game played on a finite graph.
Beyond these results, the tight connection between automata and games is one of the main tools in automata
theory [4, 8, 9].

There are several levers on which one can act to define alternative families of tree automata / classes of
tree languages. A first lever is local with respect to the run: it is the condition required for a branch to be
accepting, the reasonable options here being all classical w-regular conditions (reachability, Biichi, parity...).
A second one has to do with the set of runs. The usual definition is existential: a tree is accepted if there
exists an accepting run on that tree. Other popular approaches are universality, alternation or probabilistic
transition functions. A third lever is global with respect to the run: it is the condition required for a run to
be accepting. The usual definition is that all branches must be accepting for the run to be accepting but one
could relax this condition by specifying how many branches should be accepting/rejecting. One can do this
either by counting the number of accepting branches (e.g. infinitely many, uncountably many) or by counting
the number of rejecting branches (e.g. finitely many, at most countably many): this leads to the notion of
automata with cardinality constraints [10, 11]. As these properties can be expressed in MSOL [12], the classes
of languages accepted under these various restrictions are always w-regular. However, this logical approach
does not give a tractable transformation to standard parity or Biichi automata. Another option is to use a
notion of topological “bigness” and to require for a run to be accepting that the set of accepting branches is
big [13, 14]. Yet another option considered in [15, 16, 17] is to measure (in the usual sense of measure theory)
the set of accepting branches and to put a constraint on this measure (e.g. positive, equal to one).

The idea of allowing a certain amount of rejecting branches in a run was first considered by Beauquier,
Nivat and Niwinski in [10, 11], where it was required that the number of accepting branches in a run belongs
to a specified set of cardinals I'. In particular, they proved that if I' consists of all cardinals greater than some
7, then one obtains an w-regular tree language. Their approach was based on logic (actually they proved that
a tree language defined by such an automaton can be defined by a ¥1 formula hence, can also be defined by a
Biichi tree automaton) while the one we develop here is based on designing acceptance games. There is also
work on the logical side with decidability results but that do not lead to efficient algorithms [12].

Our main contributions are to introduce (automata with cardinality constraints on the number of rejecting
branches; automata with topological bigness constraints) or revisit (automata with cardinality constraints on
the number of accepting branches) variants of tree automata where acceptance for a run allows a somehow
negligible set of rejecting branches. For each model, we provide a game counterpart by means of an equivalent
acceptance game and this permits to retrieve the classical (and fruitful) connection between automata and
game. It also permit to argue that languages defined by those classes are always w-regular. Moreover, in the
case where one counts accepting branches we show that the languages that we obtain are always accepted by
a Biichi automaton, which contrasts with the case where one counts rejecting branches where we exhibit a
counter-example for that property.

3Note that the idea of using games to prove this result was already proposed by Biichi in [7].

The paper is organised as follows. Section 2 recalls classical concepts while Section 3 introduces the main
notions studied in the paper, namely automata with cardinality constraints and automata with topological
bigness constraints. Then, Section 4 studies those languages obtained by automata with cardinality constraints
on the number of rejecting branches while Section 5 is devoted to those languages obtained by automata
with cardinality constraints on the number of accepting branches. Finally, Section 6 considers automata with
topological bigness constraints.

2. Preliminaries

2.1. Words and Trees

An alphabet A is a (possibly infinite) set of letters. In the sequel A* denotes the set of finite words
over A, and A“ the set of infinite words (or w-words) over A. The empty word is written €. The length
of a word u € A* is denoted by |u|. For any k > 0, we let A* = {u | |u| = k}, AS¥ = {u | |u| < k} and
AZF = {u | |u| = k}. We let AT = A*\{e}.

Let u be a finite word and v be a (possibly infinite) word. Then u - v (or simply uv) denotes the
concatenation of u and v; the word u is a prefix of v, denoted u E v, if there exists a word w such that
v =u-w. We denote by u = v the fact that u is a strict prefix of v (i.e. v = v and u # v). When u is a prefix
of v we let u~'v denote the unique word w such that v = uw. For some finite word « and some integer k > 0,
we denote by u* the word obtained by concatenating k copies of u (with the convention that u® = ¢).

In this paper we consider full binary node-labelled trees. Let A be an alphabet, then an A-labelled tree
t is a (total) function from {0,1}* to A. In this context, an element u € {0, 1}* is called a node, and the node
w-0 (resp. u-1) is the left child (resp. right child) of u. The node ¢ is called the root. The letter t(u) is
called the label of u in t.

A branch is an infinite word 7 € {0,1}* and a node u belongs to a branch 7 if u is a prefix of
7. For an A-labelled tree ¢ and a branch m = mom --- we define the label of 7 as the w-word t(7) =
t(é‘)t(?’ro)t(ﬂ'oﬂ'l)t(7T07T17T2) LN

2.2. Two-Player Perfect Information Turn-Based Games on Graphs

A graph is a pair G = (V, E) where V is a (possibly infinite) set of vertices and E €V x V is a set of
edges. For a vertex v, we denote by F(v) = {v' | (v,v’) € E} the set of successors of v in G. In the rest of the
paper (hence, this is implicit from now on), we only consider graphs that have no dead-end, i.e. such that
E(v) # & for all v.

An arena is a triple G = (G, Vg, Va) where G = (V, E) is a graph and V = Vg w Vj is a partition of the
vertices among two players, Eloise and Abélard.

Eloise and Abélard play in G by moving a pebble along edges. A play from an initial vertex vy proceeds
as follows: the player owning vy (i.e. Eloise if vy € Vi, Abélard otherwise) moves the pebble to a vertex
v1 € E(vp). Then the player owning v chooses a successor v € E(v;) and so on. As we assumed that there
is no dead-end, a play is an infinite word vouivg - -+ € V¥ such that for all i > 0 one has v;11 € E(v;). A
partial play is a prefix of a play, i.e., it is a finite word vgvy - - - vy € V* such that for all 0 < i < £ one has
Vi1 € E(’UZ) .

A strategy for Eloise is a function ¢ : V¥*VE — V assigning, to every partial play ending in some vertex
v € Vg, a vertex v’ € E(v). Strategies of Abélard are defined likewise, and usually denoted . In a given play
A\ = wovy - -~ we say that Eloise (resp. Abélard) respects a strategy ¢ (resp. 1) if whenever v; € Vi (resp.
v; € Va) one has viy1 = @(vo - - - v;) (resp. viy1 = Y(vo---v3)).

A winning condition is a subset Q € V¢ and a (two-player perfect information) game is a pair
G = (G,) consisting of an arena and a winning condition.

A play) is won by Eloise if and only if A € Q; otherwise A is won by Abélard. A strategy ¢ is winning
for Eloise in G from a vertex v if any play starting from vy where Eloise respects ¢ is won by her. Finally, a
vertex vy is winning for Eloise in G if she has a winning strategy ¢ from vy. Winning strategies and winning
vertices for Abélard are defined likewise.

We now define three classical winning conditions.

e A Biichi winning condition is of the form (V*F)“ for a set F' € V of final vertices, i.e. winning plays
are those that infinitely often visit vertices in F.

e A co-Biichi condition is of the form V*(V\F)“ for a set F' < V of forbidden vertices, i.e. winning
plays are those that visit only finitely often forbidden vertices.

e A parity winning condition is defined by a colouring function Col that is a mapping Col: V. — C < N
where C' is a finite set of colours. The parity winning condition associated with Col is the set

Qcor = {vovy - - - € V¥ | liminf(Col(v;))i>0 is even}
i.e. a play is winning if and only if the smallest colour infinitely often visited is even.

Finally, a Biichi (resp. co-Biichi, parity) game is one equipped with a Biichi (resp. co-Biichi, parity)
winning condition. For notation of such games we often replace the winning condition by the object that is
used to defined it (i.e. F' or Col).

2.8. Tree Automata, Regular Tree Languages and Acceptance Game

A tree automaton A is a tuple (A, Q, gini, A, Acc) where A is the input alphabet, Q is the finite set
of states, g, € Q is the initial state, A € Q x A x Q x Q is the transition relation and Acc € Q¥ is
the acceptance condition. An automaton is complete if, for all g € Q and a € A there is at least one pair
(g0, q1) € Q? such that (q,a,qo,q1) € A. In this work we always assume that the automata are complete and
this is implicit from now. Note that we will discuss the impact of this restriction in the conclusion.

Given an A-labelled tree ¢, a run of A over t is a (Q-labelled tree p such that

(i) the root is labelled by the initial state, i.e. p(€) = gini;
(ii) for all nodes u, (p(u),t(u), p(u-0),p(u-1)) € A.

A branch 7w € {0,1}* is accepting in the run p if p(7w) € Acc, otherwise it is rejecting. A run p is
accepting if all its branches are accepting. Finally, a tree ¢ is accepted if there exists an accepting run of A
over t. The set of all trees accepted by A (or the language recognised by A) is denoted L(.A).

In this work we consider the following three classical acceptance conditions:

e A Biichi condition is given by a subset F' © @ of final states by letting Acc = Buchi(F) = (Q*F)¥,
i.e. a branch is accepting if it contains infinitely many final states.

e A co-Biichi condition is given by a subset F < @ of forbidden states by letting coBuchi(F') =
Q*(Q\F)“, i.e. a branch is accepting if it contains finitely many forbidden states.

e A parity condition is given by a colouring mapping Col : Q — N by letting
Acc = Parity = {qoq1g2 - - - | liminf(Col(g;)); is even}
i.e. a branch is accepting if the smallest colour appearing infinitely often is even.

These conditions are all examples of w-regular acceptance conditions, i.e. Acc is an w-regular set of w-words
over the alphabet Q (see e.g. [18] for a reference book on languages of infinite words).

Remark 1. The parity condition is expressive enough to capture the general case of an arbitrary w-reqular
condition Acc. Indeed, it is well known that Acc, when it is w-regular, is accepted by a deterministic parity
word automaton. By taking the synchronised product of this automaton with the tree automaton, we obtain a
parity tree automaton accepting the same language (see e.g. [18]).

When it is clear from the context, we may replace, in the description of A, Acc by F for Biichi/co-Biichi
condition (resp. Col for a parity condition), and we shall refer to the automaton as a Biichi/co-Biichi (resp.
parity) tree automaton. A set L of infinite trees is an w-regular tree language if there exists a parity tree
automaton A such that L = L(A). The class of w-regular tree languages is robust, as illustrated by the
following famous statement [1].

Theorem 1. The class of w-regular tree languages is a Boolean algebra.

Figure 1: Local structure of the arena of the acceptance game G 4 ;.

(v —{zwma]

for any (q,t(u),q0,q1) € A

Fix an automaton A = (A, @, gini, A, Acc) and a tree ¢ and define an acceptance game G 4,4, i.e. a game
where Eloise wins if and only if there exists an accepting run of A on t, as follows.

Intuitively, a play in G 4+ consists in moving a pebble along a branch of ¢ in a top-down manner: to the
pebble is attached a state, and in a node u with state ¢, Eloise picks a transition (q,t(u),qo,q1) € A, and
then Abélard chooses to move down the pebble either to u -0 (and update the state to gg) or to u -1 (and
update the state to ¢1).

Formally (see Figure 1 for an illustration?), let G4; = (Vg w Va, E) with Vg = Q x {0, 1}*,

VA = {(qauv(Janl) | ue {0’ 1}* and (Q7t(u)7QO7q1) € A} = Q X {07 1}* X Q X Q

and

E = {((Q7u)’ (q,U,QO,Ch)) | (q’uaq()v(h) € VA)} Y {((q’uv qu‘h)? (u ' quﬂf)) | T e {Ov 1} and (q,U,QO,Ch) € VA)}

Then let Gt = (Gay, Vi, Va) and extend Col on Vg U Va by letting Col((q, u)) = Col((g,u, g0, ¢1)) = Col(q).
Finally define G 4, as the parity game (G4, Col).

The next theorem is well-known (see e.g. [6, 8]) and its proof is obtained by remarking that strategies for
Eloise in G 4 are in bijection with runs of A on ¢ (with the winning strategies corresponding to the accepting
runs).

Theorem 2. One has t € L(A) if and only if Eloise wins in G4 from (gini,€)-

3. Automata with Cardinality Constraints and Automata with Topological Bigness Constraints

We now introduce the main notions studied in the paper, namely automata with cardinality constraints
(studied in Section 4 and Section 5) and automata with topological bigness constraints (studied in Section 6).

3.1. Automata with Cardinality Constraints

We now relax the criterion for a run to be accepting. Recall that classically, a run is accepting if every
branch in it is accepting. For a given automaton A, we define the following four criteria (two for the case
where one counts the number of accepting branches and two for the case where one counts the number of
rejecting branches) for a run to be accepting. Note that the case where one counts accepting branches was
already considered in [10, 11].

e There are finitely many rejecting branches in the run. A tree t is in L?frj;(A) if and only if there is a run

of A on t satisfying the previous condition.

e There are at most countably many rejecting branches in the run. A tree t is in Lzecjoum(/l) if and only if
there is a run of A on ¢ satisfying the previous condition.

e There are infinitely many accepting branches in the run. A tree t is in L?CCC(A) if and only if there is a
run of A on t satisfying the previous condition.

e There are uncountably many accepting branches in the run. A tree t is in L5, (A) if and only if
there is a run of A on t satisfying the previous condition.

4In pictures, we always depict by circles (resp. squares) the vertices controlled by Eloise (resp. Abélard).

q,u,q0, 491

for any (g,t(u),q0,q1) € A

Figure 2: Local structure of Gi’efcoum

3.2. Automata with Topological Bigness Constraints

A notion of topological “bigness” and “smallness” is given by large and meager sets respectively (see [19, 20]
for a survey of the notion). The idea is to see the set of branches in a tree as a topological space by taking as
basic open sets the cones. For a node u € {0, 1}*, the cone Cone(u) is defined as {w € {0,1}* | u E 7}. A set
of branches B € {0, 1}* is nowhere dense if for all nodes u, there exists v € {0,1}* such that no branch of
B has uv as a prefix. It is meagre if it is the countable union of nowhere dense sets. Finally it is large if it
is the complement of a meagre set.

For a given automaton A, we define the following acceptance criterion: a run is accepting if and only if its
set of accepting branches is large. Note that this is equivalent to require that the set of rejecting branches is
meagre.

Finally, a tree t is in L2

Large (A) if and only if there is a run of A on ¢ satisfying the previous condition.

4. Counting Rejecting Branches

For the classes of automata where acceptance is defined by a constraint on the number of rejecting branches
we show that the associated languages are w-regular. For this, we adopt the following roadmap: first we
design an acceptance game and then we note that it can be transformed into another equivalent game that
turns out to be the (usual) acceptance game for some tree automaton.

Fix, for this section, a parity tree automaton A = (A, Q,gini, A, Coly and recall that a tree t is in
ngount (A) (resp. in Lp3(A)) if and only if there is a run of A on ¢ in which there are at most countably
(resp. finitely) many rejecting branches.

4.1. The Case of Languages L°I_ (A)

<Count
Fix a tree t and define an acceptance game for ngount (A) as follows. In this game the two players
move a pebble along a branch of ¢ in a top-down manner: to the pebble is attached a state whose colour
gives the colour of the configuration. Hence, (Eloise’s main) configurations in the game are elements of
Q x {0,1}*. See Figure 2 for the local structure of the arena. In a node u with state ¢ Eloise picks a transition

(g,t(u),q0,q1) € A, and then Abélard has two possible options:
(i) he chooses a direction 0 or 1; or

(ii) he lets Eloise choose a direction 0 or 1.

Once the direction i € {0, 1} is chosen, the pebble is moved down to u - i and the state is updated to ¢;. A
play is won by Eloise if one of the following two situations occurs: either the parity condition is satisfied or

Abélard has not let Eloise infinitely often choose the direction. Call this game Gi‘j‘iscount

The next theorem states that it is an acceptance game for the language L g‘amnt(.A).

Theorem 3. One hast € Li{gount (A) if and only if Eloise wins in Gi‘iécount from (qini, €)-

Proof. Assume that Eloise has a winning strategy ¢ in Gi?gscoum from (gin;,). With ¢ we associate a run p

of A on t as follows. We inductively associate with any node u a partial play A, where Eloise respects ¢ and
that ends in a vertex of Eloise of the form (¢, u). For this we let A. = (gini,€). Now assume that we have

defined), for some node v and let p(\,) =(q,t(u), qo,q1) be the transition Eloise plays from)\, when she
respects . Then let i be the direction Eloise would choose (again playing according to ¢) if Abélard lets
her pick the direction right after she played (g, t(u), go, ¢q1): one defines A,; as the partial play obtained by
extending \,, by Eloise choosing transition (q,t(u), qo, q1), followed by Abélard letting her choose the direction
and Eloise choosing direction i; and one defines Au(1—i) as the partial play obtained by extending A, by Eloise
choosing transition (g, t(u), g0, 1), followed by Abélard choosing direction (1 — 7). Note that for j € {0, 1},
Au; ends with the pebble on uj with the state g; attached to it, equivalently in configuration (g;, uj). We
also refer to the node ui (i.e. the node that Eloise has picked) as marked: note that any node has exactly one
child that is marked (by convention the root is marked).

The run p is defined by letting p(u) be the state attached to the pebble in the last configuration of \,. By
construction, p is a valid run of A on ¢ and moreover with any branch 7 in p one can associate a play A\ in
Gi‘?ﬂécount from (gini,) where Eloise respects ¢ (one simply considers the limit of the increasing sequence of
partial plays A, where u ranges over those nodes along branch 7).

It remains to show that the number of rejecting branches is at most countable. Now consider a rejecting
branch 7. By construction 7 is rejecting if and only if A\, does not fulfil the parity condition. As ¢ is winning
so does A hence, it means that in A, Abélard does not let Eloise choose infinitely often the direction (indeed,
this is the only way for \; to be winning as we assumed 7 is rejecting, which implies that \; does not satisfy
the parity condition). Equivalently, 7 contains finitely many marked nodes (marked nodes corresponding
precisely to those steps where Eloise chooses the direction). Hence, with any rejecting branch 7, one can
associate the last marked node u, in it. And if 7 # 7’ one has u, # u,: indeed, at the point where 7 and
7’ first differ, one of the node is marked from the property that every node has exactly one child that is
marked. Hence, the number of rejecting branches is countable as the map 7 — wu, is injective and as the
number of nodes in a tree is countable. This permits to conclude that p is an accepting run — in the sense of
LB i(A) —of Aont.)

Conversely, assume that Eloise has no winning strategy. It follows from Borel determinacy [21] that
Abélard has a winning strategy 1 in Gi?ggcoum from (gini, €). Let us prove that any run p of A on ¢ contains
uncountably many rejecting branches. For this, fix a run p of A on ¢. With any sequence o = ajay--- € {0,1}¢
we associate a strategy ¢, of Eloise in Gi’fggcoum. The strategy ¢, of Eloise consists in describing the run p
and to propose direction «; when it is the i-th time that Abélard lets her choose the direction. More formally,
when the pebble is on node u with state ¢ (we will trivially have ¢ = p(u) as an invariant) she picks the
transition (p(u), t(u), p(u0), p(ul)); moreover if Abélard lets her choose the direction, she picks a1 where i
is the number of times Abélard let her choose the direction since the beginning of the play.

As we assumed that v is winning, the (unique) play obtained when she plays ¢, and when he plays
is loosing for Eloise: such a play defines a branch 7, in p, and this branch is a rejecting one. Now, for any
a # o' one has T, # Ty indeed, at some point o and o’ differs and, as infinitely often Abélard lets Eloise
choose the directions, the branches 7, and m,s will differ as well. But as there are uncountably many different
sequences «, it leads an uncountable number of rejecting branches in p. Hence, p is rejecting. O

Consider the game Giefcount and modify it so that Eloise is now announcing in advance which direction

she would choose if Abélard let her do so. This new game is equivalent to the previous one (meaning that she
has a winning strategy in one game if and only if she also has one in the other game). As this new game
can easily be modified to obtain an equivalent acceptance game for the classical acceptance condition (as
described in Section 2.3) one concludes that the languages of the form ngoum (A) are always w-regular.
Theorem 4. Let A = (A, Q, ¢ini, A, Col) be a parity tree automaton using d colours. Then there exists a
parity tree automaton A' = (A,Q’, q.,;, A',Col’) such that Liﬁgoum(/l) = L(A’). Moreover |Q'| = O(d|Q])
and A" uses d+ 1 colours.

Proof. Define G:iijécount as the game obtained from Gi‘iécount by asking Eloise to say which direction she

would choose before Abélard possibly lets her this option. Eloise has a winning strategy in Gi‘figcount if

and only if she has a winning strategy in szjg(}ount (strategies being essentially the same in both games).

The way she indicates the direction can be encoded in the control state: just duplicate the control states
(with a classical version and a starred version of each state) and when she wants to pick a transition e.g.
(g,t(u), o, q1) and direction 1, she just moves to configuration (¢, u, go, ¢¥) in the new game. Now the winning

condition can be rephrased as either the parity condition is satisfied or finitely many configuration of the form
(¢*,u) are visited. Now this later game can be transformed into a standard acceptance game for w-regular
language (as defined in Section 2.3) by the following trick. One adds to states an integer where one stores the
smallest colour seen since the last starred state was visited (this colour is easily updated); whenever a starred
state is visited the colour is reset to the colour of the state. Now unstarred states are given an even colour
that is greater than all colour previously used (hence, it ensures that if finitely many starred states are visited
Eloise wins) and starred states are given the colour that was stored (hence, if infinitely many starred states
are visited we retrieve the previous parity condition). It should then be clear that the later game is a classical
acceptance game, showing that ngount (A) is w-regular.

The construction of A’ is immediate from the final game and the size is linear in d|Q| due to the fact that
one needs to compute the smallest colour visited between two starred states.

More formally®, we assume that A uses colours 0,1,...,d — 1 and we let A’ = {(A,Q’,q.,;, A", Col’) where:

o Q' ={¢i,qF|geQand 0 <i<d—1};
® q;ni = Gini,Col(qini)?

e for any g € Q and any 0 < i < d — 1 one lets Col'(¢gf) = i and Col(q;) = d + 1 if d + 1 is even and
Col(g;) = d otherwise; and

e A’ consists of the following tuples for every (¢, a,r,s) € A and every 0 <i < d—1

1is &y ,111111{1 Col(r)}? bm“l{’ Col(s)})

(q
(¢, @, Tmin{i,Col (1)} Stmin{i,Col(s)})>
(¢F,a, r(‘o1 () .sm)l(s)), and
(620, oty Shng)

It is then easily seen that the acceptance game G 4 4 of A’ as defined in Section 2.3 is essentially the same as

/Rej<Count
the above game G, ‘” ount, O

4.2. The Case of Languages L?ﬁi(A)
The following lemma (whose proof is straightforward) characterises finite sets of branches by noting that
for such a set there is a finite number of nodes belonging to at least two branches in the set.

Lemma 1. Let II be a set of branches. Then I1 is finite if and only if the set W = {u € {0,1}* | Img # m €
II s.t. w= 7 and uw E m} is finite. Equivalently, I1 is finite if and only if there exists some ¢ = 0 such that
for all u € {0,1}> there is at most one 7 € I such that u C .

Now, fix a tree ¢t and define an acceptance game for LRej J(A) as follows. In this game (we refer the reader
to Figure 3 for the local structure of the arena for game GReJFm) the two players move a pebble along a
branch of ¢ in a top-down manner: as in the classical case the players first select a transition and then a
direction. The colour of the current state gives the colour of the configuration. There are three modes in
this game: wait mode, path mode and check mode and the game starts in wait mode. Hence, (Eloise’s main)
configurations in the game are elements of @ x {0,1}* x {wait, path, check}.

Regardless of the mode, in a node u with state ¢ Eloise picks a transition (q,(u), qo,q1) € A, and for each
direction in i € {0, 1} she proposes the next mode m; in {wait, path, check} (we describe below what are the
possible options depending on the current mode). Then Abélard chooses a direction j € {0, 1}, the pebble is
moved down to u - j, the state is updated to ¢; and the mode changes to m;. The possible modes that Eloise
can propose depend on the current mode in the following manner.

e In wait mode she can propose any modes m; in {wait, path, check} but if one proposed mode m; is path
then the other mode mi_; must be check.

5We only give the formal construction of A’ for this statement, and will keep it more informal later in similar proofs (namely
the ones of theorems 6,8, 11 and 13).

wait mode check mode path mode

q,u, 94,45, 0

for any (g,t(u),q0,q1) € A for any (g,t(u),q0,q1) € A

0D

for any (g,t(u),q0,q1) € A

RSJFID

Figure 3: Local structure of the arena of the acceptance game G , We use superscripts to indicate which modes have been

proposed by Eloise.

e In check mode the proposed modes must be check (i.e. once the mode is check it no longer changes).
e In path mode one proposed mode must be path and the other must be check.

A play is won by Eloise if one of the two following situations occurs.

e The wait mode is eventually left and the parity condition is satisfied.

e The mode is eventually always equal to path.

In particular a play in which the mode is wait forever is lost by Eloise. Note that the latter winning
condition can easily be reformulated as a parity condition. Call this game GReij.

The next theorem states that it is an acceptance game for the language L?ﬁi(A)

GReJFm

Theorem 5. One has t € L?ilﬂ() if and only if Eloise wins in from (gini, €, wait).

Proof. Assume that Eloise has a winning strategy ¢ in GReJFm from (gini, €, wait). With ¢ we associate a
run p of A on t as follows. We inductively define for any node u € {0,1}* a partial play)\, where Eloise
respects . For this we let A, (qnm7 e, wait). Now assume that we defined), for some node u € {0,1}* and
let (q,t(u), qo,q1) be the transition Eloise plays from), when she respects ¢. Then for each i € {0,1} one
defines \,.; as the partial play obtained by extending A, by Eloise choosing transition (g, t(u), qo, q1), followed
by Abélard choosing direction i (we update the mode accordingly to the choice of Eloise when respecting ¢ in
).

The run p is defined by letting, for any u € {0,1}*, p(u) be the state attached to the pebble in the last
configuration of A\,. By construction, p is a run of 4 on t. Moreover with any branch 7 one can associate
a play A\, in GReJFm from (gini, €) where Eloise respects ¢ (one simply considers the limit of the increasing
sequence of partlal plays A\, where u ranges over nodes along branch 7).

First, note that there exists some ¢ > 0 such that, for all u € {0,1}>¢, A, ends in a vertex where the mode
is not wait. Indeed, if this was not the case, one could construct an infinite branch 7 such that, for all nodes
uw in 7, A\, ends with a vertex in mode wait (recall that the only way to be in wait mode is to be in that mode
from the very beginning) and therefore the corresponding play A, would be loosing, which contradicts the
fact that Eloise respects her winning strategy ¢ in play M. Now, consider some node u € {0,1}. If the final
vertex in \, is in mode check one easily verifies that any branch that goes through u is accepting (because
the corresponding play is winning hence, satisfies the parity condition). If the final vertex in A, is in mode

path one easily checks that among all branches that go through u, there is exactly one branch 7 such that A,
eventually stays in mode path forever (and this branch may not satisfy the parity condition) while all other
branches eventually stay in mode check forever (and satisfy the parity condition). Therefore, the number of
rejecting branches is finite.

Conversely, assume that there is a run p of A on ¢ that contains finitely many rejecting branches. Call
this set of branches II. Thanks to Lemma 1, there exists some ¢ > 0 such that for all w € {0,1}>¢ there is
at most one 7 € II such that w = «. Using p we define a strategy ¢ for Eloise in GReiFin as follows. In any
configuration (g, u) (regardless of the mode) the strategy is to play the transition (g, £(u), p(u0), p(ul)). Then

there are several cases for determining how the mode is updated.
e In some configuration (g,u) with u of length strictly smaller than ¢ the mode remains in wait.

e In some configuration (g, u) with u of length equal to ¢ the strategy proposes to update the mode to
path for direction ¢ € {0,1} such that u - ¢ = 7 for some branch 7 € II, and to check otherwise. Note
that due to the definition of ¢, there is at most one direction ¢ in which the mode becomes path.

e In some configuration (¢, u) with u of length strictly greater than ¢ if the mode is check it will remain
to check in both direction. Otherwise (i.e. the mode is path) the strategy proposes to update the mode
to path for direction i € {0, 1} such u -4 & 7 for some branch 7 € I, and to check otherwise. Note that
in the latter case, there is exactly one direction ¢ in which the mode is path.

Remark that no play where Eloise respects ¢ stays in wait mode forever. Moreover, with any A where Eloise
respects ¢ one can associate a branch in the run p and this branch is rejecting if and only if A stays eventually
in mode path forever. Hence, any play where the mode is not infinitely often path satisfies the parity condition

(because the corresponding branch in p does so). Hence, ¢ is winning. O
From Theorem 5 and the local structure of the arena of game Gichin one easily concludes that any
language of the form LEE(A) is w-regular.

Theorem 6. Let A = (A, Q, qini, A, Coly be a parity tree automaton using d colours. Then, there exists a
parity tree automaton A' = (A,Q’,q.,;, A',Col’) such that LES{(A) = L(A"). Moreover, |Q'| = O(|Q|) and
A’ uses d colours.

Proof. Consider the local structure of game GngFin as described in Figure 3. The way one defines A’ is fairly
simple: for any state on A and any mode, one éets a new state in A’, and the transition function A’ directly
follows from the way we update the modes. The states in wait mode all get the same odd minimal colour
(hence, if they are never left Eloise looses), the states in path mode all get the same even minimal colour
(hence, if they are never left Eloise wins), and the states in check mode get the colour they had in .A. Hence,
we do not need to add any extra colour (except in the case where A uses only one colour but in this very
degenerated case one can simply take A" = A). O

4.3. Languages L% (A) and LES;(A) vs. Biichi Tree Languages

<Count
One can wonder, as it will be later the case (see Section 5) for languages of the form L2°°(A) or
Lace . (A) | whether a Biichi condition is enough to accept (with the classical semantics) a language of the

form Lz‘goum (A) (resp. Lii(A)). The next Proposition answers negatively.

Proposition 1. There is a co-Biichi deterministic tree automaton A such that for any Biichi tree automaton
'A/’ ngount(‘A) 7= L(A/) and L?ﬁi(/‘) #* L(A/)

Proof. We choose for A the same automaton that was used by Rabin in [2] to derive a similar statement
where one replaces Li{goum (A) by L(A) and we generalise the proof of this result as given in [4, Example 6.3].

Let L be the set of {a,b}-labelled trees such that the number of branches that contain infinitely many b’s
is at most countable. Obviously there is a deterministic co-Biichi automaton A such that L = Li‘goum(/l).
Indeed, consider an automaton A with two states, one forbidden and the other one non-forbidden, and that
from any state, goes (for both children) in the forbidden state whenever he was in a b-labelled node and

otherwise goes (for both children) in the non-forbidden state.

10

Assume, by contradiction, that there is some Biichi tree automaton A" = {{a, b}, @, gini, A, F) such that
ngount (A) = L(A’). Note that we will not treat the case where L?iei(A) = L(A") as it is identical. Let
n = |Q| and let t be the {a, b}-labelled tree such that ¢(u) = b if and only if u € (071)* for some 1 < k < n,
i.e. label b occurs when a right successor is taken after a sequence of left successors, however allowing at most
n right turns. Clearly, t € L as every branch contains finitely many b-labelled nodes. Let p be an accepting
run of A’ on .

The goal is to exhibit three nodes u, v and w such that:

1. u is a strict prefix of both v and w.

2. v is not a prefix of w and vice versa;

3. p(u) = p(v) = p(w) is a final state;

4. t(u) =t(v) = t(w) = a;

5. on the path segment from u to v there is at least one node labelled b;

6. on the path segment from u to w there is at least one node labelled b.

Once this is done we can form a new tree t' (and an associated run p’ of A’ on t') by iterating the finite
path segment from wu (inclusive) to v (exclusive) and from w (inclusive) to w (exclusive) indefinitely, copying
also the subtrees which have their roots on these path segments. More formally, consider the two-hole context
Ci[e, o] (resp. C,[e,e]) obtained by placing holes at v and w in ¢ (resp. in p) and the two-hole context D;[e, o]
(resp. D,[e, e]) obtained by placing holes at u~tv and u~'w in the subtree t/, of t rooted at u (resp. py,) .
The tree ¢’ is equal to C¢[t”,¢"] where t” is the unique tree satisfying the equation " = D[t”,¢"]. Similarly
p’ is equal to C,[p”, p”] where p” is the unique tree satisfying the equation p” = D,[p”, p"].

This process exhibits a binary tree like structure® inside # (resp. p’) such that any branch in ¢’ contains
infinitely many b-labelled nodes, hence ¢’ ¢ L (indeed, there will be uncountably many branches in this binary
tree like structure). But this leads to a contradiction as p’ is easily seen to be accepting while being a run on
.

We now explain why we can find nodes u, v and w as above. We first claim that for any node u € 0% (10%)*,
for some 0 < k < n, there are two nodes vy, w, € u0T10" such that (i) w is a strict prefix of v, and wy;
(ii) vy, is not a prefix of w, and wvice versa; and (iii) p(v,) = p(w,) is a final state. Indeed, for any ¢ > 0, the
branch ©0?10¢ is accepting in p and therefore there exists some index k; > 0 such that p(u0?10%) € F; thus,
by the pigeon hole principle, there exists i # j such that p(u010%:) = p(u0710%i) € F and therefore one can
choose v,, = ©0?10% and w, = w0710% .

Now define a sequence of nodes ug = u; = us = --- C u, as follows: we let ug € 0" to be such that
p(up) € F (such a node exists as the branch 0 is accepting in p); and for all 1 < ¢ < n, u; = v,,_,. In
particular, one has p(u;) € F for all 0 < ¢ < n and therefore, by the pigeon hole principle there exists
0 < i < j < n such that p(u;) = p(u;). Now, to finish our construction, we simply let u = u;, v = u; and
w = wy,_,. This concludes the proof. O

5. Counting Accepting Branches

We now consider the case where acceptance is defined by a constraint on the number of accepting branches
and we show that the associated languages are w-regular. It leads to new proofs, that rely on games rather
than on logic, of the results in [11].

Fix, for this section, a parity tree automaton A = (A, Q, gini, A, Col) and recall that a tree ¢ is in L3°(A)
(vesp. LS, ...(A)) if and only if there is a run of A on ¢ that contains infinitely (resp. uncountably) many
accepting branches.

6 Actually it is what we refer to as an accepting-pseudo binary tree in Section 5.2.1.

11

5.1. The Case of Languages L4°(A)

The key idea behind defining an acceptance game for L3°°(A) for some tree t is to exhibit a pseudo comb
in a run of A over ¢t. In a nutshell, a pseudo comb consists of an infinite branch U and a collection V' of
accepting branches each of them sharing some prefix with U. One easily proves that a run contains infinitely
many accepting branches if and only if it contains a pseudo comb.

Figure 4: A pseudo comb (U, V)

More formally, a pseudo comb (see Figure 4 for an illustration) is a pair of subset (U, V') of nodes with
U,V < {0,1}* such that:

e U and V are disjoint.
e U is a branch: ¢ € U, for all u € U one has [{u0,ul} n U| =1 and if u # ¢ its parent is in U as well.
e V is a set of nodes such that

(i) for all v e V, one has |{v0,vl} n V| =1;
(ii) forallveV,ve (U uV)-{0,1}.

e For infinitely many u € U there exists some v € V' such that either v = u0 or v = ul.

The following folklore lemma characterises infinite sets of branches in the full binary tree (recall that we
say that a node w belongs to a branch = if and only if w = 7).

Lemma 2. Let IT be a set of branches. Then I is infinite if and only if the set W = {w | I €
IT s.t. w belongs to w} contains a pseudo comb (U, V), ie. UV € W.

Proof. It W contains a pseudo comb it directly implies that IT is infinite, so we focus on the other implication.

There exists an increasing sequence (for the prefix relation =) (u;);>¢ of nodes such that for all ¢ = 0
infinitely many branches in II go through u; and for both directions j = 0 and j = 1, at least one branch in II
goes through u; - j. The existence of this sequence is by an immediate induction.

Define U as the set of prefixes of elements in the sequence (u;);>o: U is a branch as the sequence (u;);>0
is increasing.

For all 4, pick a branch V; that goes through u; but not through w;;1 (it exists by definition of ;). Then
to obtain a pseudo comb (U, V') such that U u V < W, it suffices to define V' = (| J;5, Vi)\U.- O

Now, fix a tree ¢ and define an acceptance game for L3°(A). There are two modes in the game (See
Figure 5 for the local structure of the arena): path mode and check mode and the game starts in path mode.
Hence, (Elo'l'se’s) configurations in the game are elements of @ x {0,1}* x {path, check}. In path mode, in a
node u with state ¢ Eloise picks a transition (q,#(u), go,q1) € A, and she chooses a direction i € {0,1}. Then
Eloise has two options. Either she moves down the pebble to u - i and updates the state to be ¢;. Or she
proposes Abélard to change to check mode: if he accepts, the pebble is moved down to u - (1 — i) and the
state is updated to q(;_;); if he refuses, the pebble is moved down to u - i and the state is updated to ¢; (and
the game stays in path mode).

In check mode Eloise plays alone: in a node u with state ¢ she picks a transition (q,t(u),qo,q1) € A, and
she chooses a direction i € {0, 1}; then the pebble is moved down to u -4 and the state is updated to ¢;. Note
that it is not possible to switch from check mode back to path mode.

A play is won by Eloise if one of the two following situations occurs.

12

path mode check mode

q,,90,91,0

q,u,90,q1,0
q,u,q0,491, 1

G — ()

q7u7q07q171

for any (q,t(v), q0,q1) € A for any (q,t(u), q0,q1) € A

Figure 5: Local structure of the arena of the acceptance game Gﬁctc ®,

e Eventually the players have switched to check mode and the parity condition is satisfied.
e Eloise proposed infinitely often Abélard to switch the mode but he always refused.

Call this game Gﬁ‘ffoo. Intuitively path mode is used to define the U part of the pseudo-comb (U, V) and
each of the branches in V is inspected in check mode. Note that in check mode, Eloise plays alone and hence
only checks the existence of an accepting branch. However, as the automata we consider are assumed to be
complete hence, there always exists some run containing this accepting branch.

The next theorem states that it is an acceptance game for the language L?OCC(.A).

Theorem 7. One has t € L2°(A) if and only if Eloise wins in Gﬁftcm from (gini, €, path).

Proof. Assume that Eloise has a winning strategy ¢ in Gﬁ‘jfoo from configuration (gini, £, path). With ¢ we
associate a run p of A on ¢ and a pseudo comb (U, V) as follows. We inductively associate with any node
w e U a partial play A, where Eloise respects ¢ and that is always in path mode; and we inductively associate
with any node v € V a partial play A, where Eloise respects ¢ and where the mode has eventually been
switched to check mode. For this we let € € U and A: = (gini, €, path). Now assume that we defined A\, for
some node u € U and let (q,t(u), o, q1) be the transition and let i be the direction Eloise plays from A, when
she respects . Then we have two possible situations depending whether, right after playing (g, ¢(w), qo,¢q1)
and still respecting ¢, Eloise proposes Abélard to switch to check mode.

e If she does so we let u- (1 —1i) belong to V and we define \,.(;_;y as the partial play obtained by extending
A by Eloise choosing transition (q,t(u), o, q1) and direction 4, followed by Eloise proposing Abélard
to switch the mode and Abélard accepting (hence, moving down the pebble in direction (1 — ¢) and
attaching state g(;_;) to it). We let u - i belong to U and we define \,.; as the partial play obtained by
extending)\, by Eloise choosing transition (g,%(u), go,q1) and direction i, followed by Eloise proposing
Abélard to switch the mode and Abélard refusing (hence, moving down the pebble in direction 7 and
attaching state ¢; to it).

e If Eloise does not propose Abélard to switch the mode we do not let u - (1 — i) belong to V. And we let
u -1 belong to U and we define \,.; as the partial play obtained by extending A, by Eloise choosing
transition (g,t(u),qo,q1) and direction i, followed by Eloise not proposing Abélard to switch the mode
(hence, moving down the pebble in direction ¢ and attaching state g; to it).

The run p is defined by letting, for any w e U u V, p(w) be the state attached to the pebble in the last
configuration of \,,. For those w ¢ U u V we define p(w) so that the resulting run is valid, which is always

13

possible as we only consider complete automata. By construction, p is a run of A on ¢t and (U, V) is a pseudo
comb. Moreover with any branch 7 that can be built as an initial sequence of nodes in U followed by an
infinite sequence of nodes in V' one can associate a play A, in ij‘ftcoo from (gini, €, path) where Eloise respects
© (one simply considers the limit of the increasing sequence of partial plays A\, where v ranges those nodes
nodes in V along branch 7). By construction 7 is accepting as A, fulfils the parity condition. Hence, by
Lemma 2 we conclude that p contains infinitely many accepting branches, meaning that ¢ € LOAOCC (A).

Conversely, assume that Eloise does not have a winning strategy in Gﬁ‘ftcoo from (gini, €, path). By Borel

determinacy, Abélard has a winning strategy) in Gﬁffoo from (gini, €, path). By contradiction, assume that
there is a run p of A on t that contains infinitely many accepting branches. By Lemma 2, it follows that p
contains a pseudo comb (U, V') such that any branch that can be built as an initial sequence of nodes in U
followed by an infinite sequence of nodes in V' is an accepting branch. From p and (U, V') we define a strategy
o of Eloise in Gﬁ‘ffoo from (qini, €, path) as follows. Strategy ¢ uses as a memory either a node u € U if the
play is in path mode or a node v € V' if the play is in check mode; initially the memory is u = . Now assume
that the pebble is in some node u € U with state ¢ attached to it (one will inductively check that p(u) = q).
Then there are two possibilities.

e Both u0 and u1 belong to UUV': the strategy ¢ indicates that Eloise chooses transition (g, t(u), p(u0), p(ul))
and direction ¢ where ui € U and proposes Abélard to switch to check mode. Then the memory is
updated to u - j where j =i if the mode is unchanged and j = 1 — i otherwise.

e If u0 (resp. ul) belongs to U but ul (resp. u0) does not belong to V: strategy ¢ indicates that Eloise
chooses the transition (g, t(u), p(u0), p(ul)) and chooses the direction 0 (resp. 1) and does not propose
Abélard to switch to check mode. Then the memory is updated to u0 (resp. ul).

Now assume that the pebble is in some node v € V' with state ¢ attached to it: one will inductively check
that p(v) = ¢ and that the mode is check. Call i the (unique) direction such that vi belongs to V: then the
strategy ¢ indicates that Eloise chooses transition (q,(v), p(v0), p(v1)) and then moves down the pebble to
direction vi. In particular, once a node in V' is reached, strategy ¢ ensures that the pebble always stays in V'
for the rest of the play.

Now consider the (unique) play A where Eloise respects her strategy ¢ while Abélard respects his strategy
1. As we assumed 1 to be a winning strategy for Abélard, A is won by him. Now, as (U,V) is a pseudo
comb and by definition of ¢, it follows that A only goes through nodes in U u V', and if A only goes through
nodes in U then Eloise proposes infinitely often to Abélard to switch to check mode. Hence, as \ is winning
for Abélard one concludes that eventually the mode is switched in A and that the resulting play does not
fulfil the parity condition. Now, it is easily seen that with A one associates a branch 7 in the run p and that
this branch can be built as an initial sequence of nodes in U followed by an infinite sequence of nodes in V
(indeed, at some point the mode is switched to check and from that point the play stays in nodes from V'
forever). Now, by definition of a pseudo comb, it follows that the branch 7 is accepting in p which means that
it satisfies the parity condition, and therefore so does A, which brings a contradiction with the fact that it is
won by Abélard. O

One can modify Gﬁ‘f"o so that to obtain an equivalent game that has the form of a classical acceptance

game. From this follows the fact that the languages of the form L4°(A) are indeed w-regular. As the new
game can be seen to be obtained from a Biichi automaton, this also permits to lower the acceptance condition.

Theorem 8. Let A = (A, Q, ini, A, Col) be a parity tree automaton using d colours. Then there exists a
Biichi tree automaton A" = (A,Q’,¢.,;, A',Col') such that L3(A) = L(A’). Moreover |Q'| = O(d|Q)).

Proof. Start from game Gﬁffoo and observe that if one duplicates the control states (with a classical version

and a starred version of each state) and add a Boolean flag Eloise can indicate the direction she wants to
follow and whether she proposes to switch to check mode: e.g. if she wants to choose transition (g, (), qo, q1)
and direction 1 and not change the mode, she just moves to configuration (g, u, qo, ¢f, L) in the new game; if
she wants to choose transition (g, t(u), go,q1) and direction 0 and offer Abélard the option to switch to check
mode she moves to configuration (q,u, ¢, g1, T). Now, we allow Abélard to choose any direction but if the
corresponding state is not starred then either one goes to a dummy winning configuration for Eloise if the
Boolean was 1 and otherwise one changes the mode to check. We indicate the check mode in the control

14

state and we use the same trick to let Eloise impose the choice of the branch (if Abélard does not follow her
choice one ends up in the previous dummy configuration). It should be clear that the resulting game is an
equivalent acceptance game when equipped with the following winning condition: Eloise wins if either the
dummy configuration is reached, or infinitely many configuration with Boolean T are visited but the play is
always in path mode or the play is eventually in check mode and the parity condition holds. Now, the two
first criteria are Biichi criteria while the third one is a priori a parity condition. But as Eloise plays alone
in check mode, she can indicate at some point that the smallest infinitely visited colour will be some (even)
integer and that no other smaller colour will latter be visited: hence, if one stores the colour, go to a final
state whenever it is visited and to a rejecting state if some smaller colour occurs, then one obtains a Biichi
condition. All together (combining the Biichi conditions in the usual way) one obtains an equivalent Biichi
classical acceptance game, showing that Li{gount(A) is w-regular and accepted by a Biichi automaton.

The construction of A" is immediate from the final game and the size is linear in d|Q| due to the fact that
one needs to remember the smallest colour for the check mode. O

5.2. The Case of Languages L5 (A)

Uncount

We now discuss the case of languages of the form L3 (A). For this we start with some key objects
(accepting pseudo binary trees and k-pseudo binary trees) that are used to characterise runs with uncountably
many accepting branches. Then, we describe two acceptance games: the first one is very simple while the
second one is more involved but later permits to lower the acceptance condition to Biichi when showing that
the languages L, (A) are accepted by tree automata with the classical semantics.
5.2.1. Accepting-Pseudo Binary Tree € k-Pseudo Binary Tree

The key idea behind defining an acceptance game for Lﬁffcount (A) for some tree ¢ is to exhibit an accepting
pseudo binary tree in a run of A over ¢. In a nutshell, an accepting pseudo binary tree is an infinite set U of
nodes with a tree-like structure between them and such that any branch that has infinitely many prefixes in
U is accepting.

We now formally define accepting-pseudo binary trees and k-pseudo binary trees that characterise those
runs that contains uncountably many accepting branches (Lemma 3 and Lemma 4 below).

Figure 6: An accepting-pseudo binary tree U: nodes in U are marked by the symbol e and all blue branches are accepting.

Let A ={A,Q, ¢ini, A, Col) be a parity tree automaton and let p be a run of A on some tree t.
An accepting-pseudo binary tree in p (see Figure 6 for an illustration) is a subset U < {0, 1}* of nodes
such that

(i) for all w € U there are v, w € U such that v = u0v’ and w = ulw’ for some v’ and w’ € {0, 1}*;
(ii) for all v,w € U the longest common prefix u of v and w belongs to U;

(iii) any branch 7 that goes through infinitely many nodes in U is accepting.

We now give a stronger notion than accepting-pseudo binary tree. For this, let £ be some even colour. A
k-pseudo binary tree in p (see Figure 7 for an illustration) is a subset U < {0, 1}* of nodes such that

(i) for all w € U there are v, w € U such that v = u0v’ and w = ulw’ for some v’ and w’ € {0, 1}*;

15

Figure 7: A k-pseudo binary tree U: nodes in U are marked by symbol e.

(ii) for all v,w € U the largest common prefix u of v and w belongs to U;

(iii) for all u,v € U such that v = v, one has min{Col(p(w)) | u E w E v} = k.

The following lemma characterises runs that contain an uncountable sets of accepting branches. Its proof
is a direct consequence of [11, Lemma 2]. But for the sake of completeness, we give a proof here.

Lemma 3. Let p be a run. Then p contains uncountably many accepting branches if and only if it contains a
k-pseudo binary tree for some even colour k.

Proof. Clearly if p contains a k-pseudo binary tree for some even colour k, p contains uncountably many
accepting branches. It remains to prove the converse.

Let p be a run with uncountably many accepting branches. For an even colour £ and a node u in p, we
denote by IIj ,, the set of branches 7 of p such that:

e 7 goes through u (i.e. u & 7),
e the smallest colour appearing infinitely often in 7 is k,
e 10 colour strictly smaller than &k appears below u (i.e. for all u = v & 7, p(v) = k).

As the set of all accepting branches in p is equal to the (countable) union of all the IIj, ,,, there exists an even
colour ky and a node ug such that Ilj, ., is uncountable. In the following, we write II for Il .-

Claim. For all nodes u 3 ug such that uncountably many branches of I go through wu, there exists a node
w,, such that:

e w, is a strict descendant of u (i.e. u = wy,),
e min{Col(p(v)) | u € v E w,} = ko,
e there are uncountably many branches of II going though w,0 and through w,,1.

If we assume that the claim holds, we can construct a kg-pseudo binary tree by considering the smallest
set U such that w,, belongs to U and such that for all v, v € U implies w,o € U and w,; € U.

Hence, it remains to show that the claim holds. Let u 3 uy be a node such that uncountably many
branches of II go through u. Consider the sets:

X :={v 3 u| min{Col(p(v)) |uE wE v} =k

and uncountably many branches of IT go through v }
Y :={v 3 u | min{Col(p(v)) | u E w E v} = ko

and countably many branches of II go through v }

A branch 7 € IT that goes through » must contain a node in X u Y. There are two cases:

16

1. either it contains a node in Y,

2. or after some position all nodes in 7 belong to X.

As there are at most countably many branches satisfying Case 1, there must be uncountably many branches
satisfying Case 2. In turn this implies that there exists v € X such that both v0 and v1 also belong to X and
we can simply take w, to be such a v. Indeed if it was not the case, there would be exactly one branch of IT
satisfying Case 2 and going through any given vertex in X: the set of branches satisfying Case 2 would be at
most countable. O

As any k-pseudo binary tree is an accepting-pseudo binary tree, we directly have the following Lemma
from Lemma 3.

Lemma 4. Let p be a run. Then p contains uncountably many accepting branches if and only if it contains
an accepting-pseudo binary tree.

5.2.2. The Acceptance Game G5 Uneomnt

q,%, 90, q1

for any (g,t(u),q0,q1) € A

Figure 8: Local structure of the arena of the acceptance game Gi‘\cg Uncount

Fix a tree ¢t and define an acceptance game for L3, (A). In this game (see Figure 8 for the local

structure of the arena) the two players move a pebble along a branch of ¢ in a top-down manner: to the pebble
is attached a state, and the colour of the state gives the colour of the configuration. Hence, (Eloise’s main)
configurations in the game are elements of @ x {0,1}*. In a node u with state ¢ Eloise picks a transition
(q,t(u), qo,q1) € A, and then Eloise has two options. Either she chooses a direction 0 or 1 or she lets Abélard
choose a direction 0 or 1. Once the direction ¢ € {0, 1} is chosen, the pebble is moved down to u - ¢ and the
state is updated to g;. A play is won by Eloise if and only if

(1) the parity condition is satisfied and
(2) Eloise lets Abélard infinitely often choose the direction during the play.

Call this game Gﬁftc Uncount_
The next theorem states that it is an acceptance game for the language Llé,%ccount (A).

Theorem 9. Eloise wins in Gﬁff Uncount from (gini, €) if and only if t € LS (A).

Uncount

Proof. In the following proof for a set X < {0,1}* we denote by Pref(X) the set of prefixes of elements in
X, ie. Pref(X) ={u|Jve X st. u= v}.

Assume that Eloise has a winning strategy ¢ in Gﬁ‘f Uncount from (gini,). With ¢ we associate a run
p of A on t and an accepting-pseudo binary tree U as follows. We inductively define U and Pref(U) and
associate with any node u € Pref(U) a partial play A, where Eloise respects . Remark that even if Pref(U)
is uniquely determined by U we independently define them, making sure that they are indeed compatible. For
this we let € € Pref(U) and we set Az = (¢ini, €)-

Now assume that we have defined A, for some node u € Pref(U). Then let (q,t(u), go,q1) be the transition
Eloise plays from), when she respects ¢. Then we have two possible situations depending whether, right
after playing (q,t(u), qo,q1) and still respecting ¢, Eloise chooses the direction or lets Abélard make that
choice. If she chooses the direction, let ¢ be this direction: then one lets ui € Pref(U) and defines \,.; as
the partial play obtained by extending A, by Eloise choosing transition (g,t(u),qo,q1), followed by Eloise

17

choosing direction . If she lets Abélard choose the direction, one lets u belong to U and lets both 40 and
ul belongs to Pref(U) and defines \,.; for i € {0, 1} as the partial play obtained by extending A, by Eloise
choosing transition (g, t(u), qo, q1), followed by Eloise letting Abélard choose the direction and Abélard picking
direction i. Note that for any ui € Pref(U), \,.; ends with the pebble on w - ¢ with state ¢; attached to it,
equivalently in configuration (g;, ui).

The run p is defined by letting, for any u € Pref(U), p(u) be the state attached to the pebble in the last
configuration of \,. For those u ¢ Pref(U) we define p(u) so that the resulting run is valid, which is always
possible as we only consider complete automata. By construction, p is a run of A on ¢t. Moreover, with
any branch 7 consisting only of nodes in Pref(U), one can associate a play A, in Gﬁ‘f Uncount from (gini,)

where Eloise respects ¢ (one simply considers the limit of the increasing sequence of partial plays A, where u
ranges over nodes along branch 7). As A\, is winning it follows easily that U is a pseudo binary tree (indeed,
condition () and (i¢) from the definition of an accepting-pseudo binary tree are immediate, while condition
(1) follows from the fact that A; is winning). Hence, from Lemma 4 we conclude that p contains uncountably
many accepting branches, meaning that ¢ € Lﬁffwum(A).

Conversely, assume that there is a run p of A on ¢ that contains uncountably many accepting branches.
By Lemma 4, it follows that p contains an accepting pseudo binary tree U.

From p and U we define a strategy ¢ of Eloise in GACC Uncount from (ging, €) as follows. Strategy ¢ uses as a
memory a node v € Pref(U), and initially v = . Now assume that the pebble is on some node v with state ¢

attached to it (one will inductively check that v € Pref(U) and that p(v) = ¢). Then we have two possibilities.

e Assume v € U. Both v0 and v1 belong to Pref(U): strategy ¢ indicates that Eloise chooses transition
(g,t(v), p(v0), p(v1)) and let Abélard choose the direction, say . Then the memory is updated to v - i.

e Assume v ¢ U. Hence, v - i belong to Pref(U) for only one i € {0,1}: strategy ¢ indicates that Eloise
chooses transition (g,t(v), p(v0), p(v1)) and chooses direction ¢. Then the memory is updated to v - i.

Now consider a play A where Eloise respects her strategy ¢. It is easily seen that with A one associates a
branch 7 in the run p and that this branch goes only through nodes in Pref(U). From this observation and
from the definition of an accepting-pseudo binary tree, we conclude that A is winning for Eloise (it satisfies the
parity condition as 7 does and in A Eloise lets Abélard choose the direction infinitely often, namely whenever
her memory v belongs to U). Hence, we conclude that strategy ¢ is winning from (gin;, €). O

5.2.8. The Acceptance Game @ﬁcf Uncount

One can modify Gf}‘ftc Uncount 6 ohtain an equivalent game that has the form of a classical acceptance game.
From this follows the fact that the languages of the form L‘['}%Ccoum(A) are indeed w-regular. Nevertheless,
using a more involved game than GACC Uncount gpe can obtain a stronger result where the acceptance condition
is lowered to a Biichi condition. We now describe this game.

Fix a tree t and define an acceptance game for L3 (A). There are two modes in the game (See
Figure 9 for the local structure of the arena): wait mode and check mode and the game starts in wait
mode. Moreover the check mode is parametrised by a colour k. Again, the two players move a pebble
along a branch of ¢ in a top-down manner. Hence, (main) configurations in the game are elements of
Q x {0,1}* x {wait,check®, ..., check?®} where {0,...,2¢} are the even colours used by A. In wait mode
Eloise plays alone: in a node u with state q she picks a transition (q,%(u),qo,q1) € A, and she chooses a
direction i € {0, 1}; then the pebble is moved down to w -4 and the state is updated to ¢;. When moving
the pebble down she can decide to switch the mode to some check® (for any even colour k). Once entered
check® mode the play stays in that mode forever and goes as follows. In a node u with state ¢ Eloise picks a
transition (q,t(u), qo,q1) € A, and then she has two possible options. Either she chooses a direction 0 or 1 or
she lets Abélard choose a direction 0 or 1. Once the direction i € {0, 1} is chosen, the pebble is moved down
to u -7 and the state is updated to ¢;. A play is won by Eloise if and only if

(1) it eventually enters some check® mode and
(2) it goes infinitely often through configurations in {(q,u, check®) | Col(q) = k},

(3) it never visits a configuration in {(g, u, check®) | Col(q) < k},

18

wait mode check® mode

for any (g,t(u), g0, q1) € A for any (g,t(u),q0,q1) € A

for any even colour k

Figure 9: Local structure of the arena of the acceptance game (N}ﬁ‘cf Uncount,

(4) Eloise lets Abélard infinitely often choose the direction during the play, and between two such situations
the smallest colour visited is always k.

The next theorem states that it is an acceptance game for the language L3 . (A). Note that its proof
is a refinement of the one of Theorem 9.

Theorem 10. One has t € LS, .(A) if and only if Eloise wins in ([N}ﬁ"tc Uncount from, (ini, €, wait).

Proof. In the following proof for a set X < {0, 1}* we denote by Pref(X) the set of prefixes of elements in
X, ie. Pref(X) ={u|Ive X st. u= v}.

Assume that Eloise has a winning strategy ¢ in @ﬁcf Uncount from (gini, €, wait). With ¢ we associate a
run p of A on ¢t and a k-pseudo binary tree U (for some k to be defined later) as follows. We inductively
define U and Pref(U) (even if Pref(U) is uniquely determined by U we independently define them, making
sure that they are indeed compatible) and associate with any node u € Pref(U) a partial play A, where Eloise
respects . For this we let € € Pref(U) and we let A, = (gini, €, wait).

Now assume that we have defined A, for some node u € Pref(U) and that the mode in A, is always wait.
Then let (¢,t(u),qo,q1) be the transition and let 4 be the direction Eloise plays from), when she respects
. If she does not change the mode, then one lets ui € Pref(U) and defines A,.; as the partial play obtained
by extending), by Eloise choosing transition (q,t(u), qo,q1), followed by Eloise choosing direction i and
keeping the mode to wait. If she changes the mode to check®, then one lets ui € Pref(U) and defines \,.; as
the partial play obtained by extending A, by Eloise choosing transition (g,t(u),qo, q1), followed by Eloise
choosing direction i and changing the mode to check® (this k is the one such that U is a k-pseudo binary tree
U).

Now assume that we have defined A, for some node u € Pref(U) and that the mode in A, has been switched
from wait to check®. Then let (q,t(u),qo,q1) be the transition Eloise plays from), when she respects ¢.
Then we have two possible situations depending whether, right after playing (g, t(u), go, ¢1) and still respecting
¢, Eloise chooses the direction or lets Abélard make that choice. If she chooses the direction, let i be this
direction: then one lets ui € Pref(U) and defines \,.; as the partial play obtained by extending), by Eloise
choosing transition (q,t(u), o, q1), followed by Eloise choosing direction i. If she lets Abélard choose the
direction, one lets u belongs to U and lets both ©0 and ul belongs to Pref(U) and defines A,.; for i € {0,1} as
the partial play obtained by extending A, by Eloise choosing transition (g,¢(u),qo, q1), followed by Eloise
letting Abélard choose the direction and Abélard picking direction i. Note that for any wui € Pref(U), A\y.;
ends with the pebble on u -7 with state ¢; attached to it, equivalently in configuration (g;, ui).

The run p is defined by letting, for any u € Pref(U), p(u) be the state attached to the pebble in the last
configuration of \,. For those u ¢ Pref(U) we define p(u) so that the resulting run is valid, which is always

19

possible as we only consider complete automata. By construction, p is a run of A on ¢. Moreover with any
branch 7 consisting only of nodes in Pref(U) one can associate a play A, in Gﬁ‘f Uncount from (gin, €, wait)

where Eloise respects ¢ (one simply considers the limit of the increasing sequence of partial plays A, where u
ranges over nodes along branch 7). As A\, is winning it follows easily that U is a k-pseudo binary tree (indeed,
condition () and (4¢) from the definition of a k-pseudo binary tree are immediate, while condition (#4¢) follows
from the definition of the winning condition and of the fact that A, is winning). Moreover 7 is accepting
as the smallest colour infinitely often visited is k. As there are uncountably many branches m consisting
only of nodes in Pref(U) we conclude that p contains uncountably many accepting branches, meaning that
te L%%Ccount ('A)

Conversely, assume that there is a run p of A on ¢ that contains uncountably many accepting branches.
By Lemma 3, it follows that p contains a k-pseudo binary tree U. Let X = {z € Pref(U) | p(x) > k}: then by
definition of a k-pseudo binary tree we conclude that X is finite and has a minimal element for the prefix
relation (with the convention that if X is empty this minimum is set to be the root ¢); call this minimum.
Note that there is also a minimum element ug in U (for the prefix relation) and that r = wg.

From p and U we define a strategy ¢ of Eloise in @ﬁcf Uncount from (gin;, €, wait) as follows. Strategy ¢
uses as a memory a node v € Pref(U) and initially v = ¢; moreover as long as v & r the play will be in wait
mode. Now assume that the pebble is on some node v with state g attached to it (one will inductively check
that v € Pref(U) and that p(v) = g). Then we have several possibilities.

e The mode is wait (i.e. v E r = up): strategy ¢ indicates that Eloise chooses transition (¢, t(v), p(v0), p(v1)),
goes to direction i where i is such that vi E wug, and stay in mode wait except if v = r where the mode
is switched to check®.

e The mode is check® and v € U. Both v0 and v1 belong to Pref(U): strategy ¢ indicates that Eloise
chooses transition (g, t(v), p(v0), p(v1)) and let Abélard choose the direction, say i. Then the memory is
updated to v - .

e The mode is check* and v ¢ U. Hence, v - i belong to Pref(U) for only one i € {0,1}: strategy ¢
indicates that Eloise chooses transition (g,t(v), p(v0), p(v1)) and chooses direction i. Then the memory
is updated to v - 7.

Now consider a play A where Eloise respects her strategy ¢. It is easily seen that with A one associates a
branch 7 in the run p and that this branch goes only through nodes in Pref(U). From this observation and
from the definition of a k-pseudo binary tree, we conclude that A is winning for Eloise hence, that strategy ¢
is winning from (gini, €, wait). O

Remark 2. In the winning condition we can remark the following (the first two points are obvious, the third
one requires to adapt the proof of Theorem 10 that then can simplify the construction of a Biichi automaton
accepting LS (A) (see Theorem 11 below). Condition (1) is in fact implied by Condition (2). Condition
(8) can be enforced by removing the edges of the game graph that violate it. Condition (4) can be replaced by:

(5) Eloise lets Abélard infinitely often choose the direction during the play.

while preserving the validity of Theorem 10. Indeed, one can remark that if we require condition (5) instead of
Condition (4) and follows the same lines as in the proof of Theorem 10 in the direct implication (the converse
implication is unchanged) the pseudo binary tree we build from a winning strategy ¢ for Eloise may no longer
be a k-pseudo binary tree; however, thanks to Condition (2), one can easily extract a k-pseudo binary tree
from it.
5.2.4. Languages of the Form L& . (A) Are Biichi Regular

Thanks to Theorem 10 we can easily prove that any language of the form L
a Biichi automaton.

Acc

Uncount

(A) can be accepted by

Theorem 11. Let A =<{A,Q, ¢ini, A, Coly be a parity tree automaton using d colours. Then there exists a
Biichi tree automaton A’ = (A, Q' q},;, A, Col’y such that Ly, (A) = L(A"). Moreover |Q'| = O(d|Q)).

Uncount

20

Proof. One can easily transform game GACC Uncount t, ohtain an equivalent game that is the acceptance game
of some tree automaton A’ with the classmal semantics. The construction is very similar to the one we had
for the other cases and we omit the details here. It simply suffices to notice that the winning condition in
Gﬁff Uncount g 3 conjunction of Biichi conditions, hence can be rephrased as a Biichi condition (up to adding
some flags). O

6. Checking Topological Largeness of Accepting Branches

We now consider the case of automata with topological bigness constraints and we prove that languages
of the form Lf;fgC(A) are always w-regular (Theorem 13). This acceptance condition is referred to as the
best model of a fair adversary in [13], and finite games where Eloise plays against such an adversary have
been studied and solved in [14]. We first characterise large set of branches (Lemma 5), then based on this, we
define an acceptance game for Lé;fge(A) and finally we transform it to obtain an equivalent game that has the
form of a classical acceptance game from which we extract an equivalent automaton with a classical semantic.

The Banach-Mazur theorem gives a game characterisation of large and meager sets of branches (see for
instance [22, 20]). The Banach-Mazur game on a tree t, is a two-player game where Abélard and Eloise
choose alternatively a node in the tree, forming a branch: Abélard chooses first a node and then Eloise chooses
a descendant of the previous node and Abélard chooses a descendant of the previous node and so on forever.

In this game it is always Abélard that starts a play.

Formally a play is an infinite sequence uy, us, ... of words in {0,1}", and the branch associated with this
play is ujus ---. A strategy for Eloise is a mapping ¢ : ({0,1}*)* — {0,1}* that takes as input a finite
sequence of words, and outputs a word. A play uj,us, ... respects ¢ if for all i = 1, ug; = o(uy,...,uz—1).

We define Outcomes(y) as the set of plays that respect ¢ and B(p) as the set branches associated with the
plays in Outcomes(p).

The Banach-Mazur theorem (see” e.g. [20, Theorem 4|) states that a set of branches B is large if and only
if there exists a strategy ¢ for Eloise such that B(p) < B.

Furthermore a folk result (see e.g. [20, Theorem 9]) about Banach-Mazur games states that when B is
Borel® one can look only at “simple” strategies, defined as follows. A decomposition-invariant strategy is a
mapping f : {0,1}* — {0,1}* and we associate with f the strategy ¢ defined by ps(u1,...,ux) = f(ur - - ug).
Finally, we define Outcomes(f) = Outcomes(¢y) and B(f) = B(py). The folk result states that for any
Borel set of branches B, there exists a strategy ¢ such that Outcomes(p) € B if and only if there exists a
decomposition-invariant strategy f such that B(f) < B.

Call a set of nodes W < {0,1}* dense if Yu € {0,1}*, Jw € W such that u = w. Given a dense set of
nodes W, the set of branches supported by W, B(W) is the set of branches m that have infinitely many
prefixes in W. Using the existence of decomposition-invariant winning strategies in Banach-Mazur games, the
following lemma characterises large sets of branches.

Lemma 5. A Borel subset of branches B < {0,1}¥ is large if and only if there exists a dense set of nodes
W < {0,1}* such that B(W) < B.

Proof. Assume that B is large and let f be a decomposition-invariant strategy for Eloise in the associated
Banach-Mazur game (recall that we assumed B to be Borel). Consider the set:

W = {vf(v) | ve{0,1}*}.

The set W is dense (as for all v € {0,1}*, v = vf(v) € W). We claim that B(W) is included in B. Let 7 be a
branch in B(W). As 7 has infinitely many prefixes in W, there exists a sequence of words uy,us, -+ such
that uq f(u1) = uaf(ug) = --- = . As the lengths of the w; are strictly increasing, there exists a sub-sequence
(vi)i=1 of (u;);=1 such that for all i > 1, v; f(v;) = v;+1. Now, consider the play in the Banach-Mazur game
where Abélard first moves to v; and then Eloise responds by going to vy f(v;). Then Abélard moves to vy

"In [20] the players of the Banach-Mazur game are called 0 and 1 and Player 0 corresponds to Abélard while player 1
corresponds to Eloise. Hence, when using a statement from [20] for our setting one has to keep this in mind as well as the fact
that one must replace the winning condition by its complement (hence, replacing “meager” by “large”).

8This statement holds as soon as the Banach-Mazur games are determined and hence, in particular for Borel sets.

21

(which is possible as v1 f(v1) = v2) and Eloise moves to v f(v2). And so on. In this play Eloise respects the
strategy f and therefore wins. Hence, the branch 7 associated to this play belongs to B.

Conversely let W be a dense set of nodes such that B(W) < B. To show that B is large, we define a
decomposition-invariant strategy f for Eloise in the associated Banach-Mazur game. For all nodes u we pick
v of W such that u is a strict prefix of v (since W is dense there must always exist such a v). Let v = uu’ and
fix f(u) = /. A play where Eloise respects f goes through infinitely many nodes in W (as f always points to
an element in W). Hence, the branch associated with the play belongs to B(W) < B which shows that f is
winning for Eloise. O

We aim to define, for a given tree an acceptance game witnessing membership into Léi;h((/l) In this
game, Eloise describes a run p together with a dense set U of nodes while Abélard tries either to prove that
U is not dense or that there is a rejecting branch in B(U). The way Eloise describes a run is as usual (she
proposes valid transitions); the way she describes U is by (1) indicating explicitly when a node is in U and;
(2) at each node giving a direction ¢ that should lead (by iteratively following the directions) to a node in U.
Abélard chooses the direction: if it does not select ¢ and does not go to a node in U the colour is a large even
one (preventing him not to follow Eloise forever); if he chooses i but does not go to a node in U the colour is
a large odd one (forcing Eloise to describe a dense set U); and if he chooses i and goes to a node in U the
colour is the smallest one seen since the last visit to a node in U (and it is computed in the game).

Before formally constructing the game we need the following lemma. A direction mapping is a mapping
d:{0,1}* — {0,1}, and given a set of nodes U, we say that d points to U if for every node v there exists
i1, ..., € {0,1} such that viy---i; € U and for all 1 < j <k, i; = d(viy - --ij-1).

Lemma 6. A set of nodes U is dense if and only if there exists a direction mapping that points to U.

Proof. Assume that U is dense. We define d(v) by induction on v as follows. Let v such that d(v) is not yet
defined, we pick a node viy - - - i € U (there must exists one since U is dense), and for all j < k we define

d(’l)il s ijfl) = ’LJ

The mapping is defined on every node and satisfies the requirement by definition. The other implication is
straightforward (for all nodes v, there exists viy - - - i € U). O

Acc Large

Fix a tree t and define an acceptance game G 4, for LAce

Large (A) as follows. The game is played along
a tree, Eloise chooses the transitions of the automaton and Abélard chooses the directions. Furthermore, at
each node Eloise proposes a direction that Abélard may or may not follow, and possibly marks some of the
children of the current state. In Eloise’s vertices, we keep track of informations about the choice of Abélard

in his previous move differentiating three possible situations:
(*) Abélard has picked a child that Eloise has marked,
(o) Abélard has not picked a marked child, but he has followed the direction that Eloise has given,

(o) Abélard has not picked a marked child and has not followed the direction given by Eloise.

Therefore Eloise’s vertices will be of the form (g, u, symb) with ¢ a state, u a node, and symb € {*, 0,0}, and
we define the colour of this vertex as the colour of ¢, and Abélard’s state will be of the form (g, u, o, q1,%,S)
where (g,t(u),qo,q1) is a transition of the automaton, i € {0,1} is the direction that Eloise has proposed
in the previous turn and S < {0, 1} describes which children of u she marked (see Figure 10 for the local
structure of the game).

The acceptance condition for Eloise is described as follows. She wins a play if and only if one of the
following occurs.

e There are infinitely many *-vertices and the smallest colour appearing infinitely often is even

e Eventually there are no more *-vertices but there are infinitely often o-vertices, i.e. Abélard stop visiting
marked nodes and avoids infinitely often the directions given by Eloise.

22

for any j € {0,1} s.t. j€ S
for any j € {0,1} s.t. j # i and j ¢ S

ifi¢g S

for any symb € {x, 0,0}

q,“,(IO,fhvi,S

for any (g,t(u),q0,q1) € A, any
i€{0,1} and any S < {0,1}

Figure 10: Local structure of the arena of the acceptance game Gﬁctc Large

Call Gﬁff Large this game.

Intuitively a strategy of Eloise is a run of the automaton over the tree, along with a set U of marked
nodes and directions on each of the nodes, and Abélard chooses a branch along the tree. If at some point
Abélard follows forever the directions given by Eloise without going through a marked node, then Abélard
wins. If Abélard goes infinitely often through a marked node, then the smallest colour seen infinitely often
is the one of the branch in the run of Eloise, therefore Eloise wins if this branch is accepting. These two
remarks intuitively mean that if Eloise has a winning strategy, then the set U of marked nodes implied by
this strategy must be a dense set and B(U) must consist only of accepting branches of the run, therefore the
set of accepting branches of the run is large.

On the other hand, if there exists a run whose set of accepting branches is large, there exists a dense set
of nodes U such that all branches in B(U) are accepting (Lemma 5), and directions on each nodes that leads
to nodes in U (Lemma 6). If Eloise plays according to them, she wins the game. Indeed, if Abélard follows
infinitely often the nodes in U, then the branch is an accepting branch and therefore Eloise wins the game.
His only option to avoid the nodes of U is to infinitely often go in the opposite direction than the one given
by Eloise, in which case Eloise also wins.

The next theorem states that G4’ “*"9° is an acceptance game for L, (A).

Theorem 12. One has t € Lf;fgc(/l) if and only if Eloise wins in Gi?tc Larae from (gini, €,0).

Proof. Assume that Eloise has a winning strategy ¢ in Gﬁftc Large from (qini, e, 0). With ¢ we associate a run

p of Aont as follows. We inductively associate with any node u a partial play A, where Eloise respects ¢.
For this we let Ae = (¢ini, &, 0). Now assume that we defined A, for some node u and let (¢.t(u), g0, ¢1,1,5)
be the transition Eloise plays from), when she respects ¢.

For j € {0,1}, one defines \,.; as the partial play obtained by extending A, by Eloise choosing transition
(g, t(uw),qo,q1,1,5), followed by Abélard choosing direction j (i.e. we extend A, by the unique successor that
respects ¢ and then let we Abélard choose direction j). Note that for j € {0,1}, A,.; ends in configuration
(gj,uj, symb) for some symb e {x,0,o}.

The run p is defined by letting p(u) be the state ¢ in the last configuration (g, u, symb) of A\,. By
construction, p is a valid run of A on t and moreover with any branch 7 in p one can associate a play A, in
Gﬁ‘f Large from (gini, €, 0) where Eloise respects ¢ (one simply considers the limit of the increasing sequence
of partial plays A\, where u ranges over those nodes along branch 7). By construction 7 is accepting if and
only if A\ fulfils the parity condition.

We define s(u) as the symbol symb in the last configuration (g, u, symb) of A,. Furthermore, we define a
direction mapping d and a set of nodes U as follows: for all u, d(u) =i with ¢(\,) = (g, u, qo,q1,1,5); and
for all u, w € U if and only if s(u) = *. Notice that if d(u) =i then s(u - i) = o or s(u i) = *.

Given a branch m = i1is - -+ we define s(m) as the infinite sequence of s(€)s(i1)s(i142) - - -, and Col(r) as
the smallest colours appearing infinitely often in p(7). Note that since Eloise wins the play A, * appears
infinitely often in s(m) and Col(w) is even, or * does not appear infinitely often in s(w) but o does.

First let us show that d points to U. Suppose by contradiction that this is not the case, i.e. there exists a
branch m = uiyig - - -, with 4; = d(wiy ---¢;_1) for all j > 1, such that for all k > 1, wiy -- - iy ¢ U. Then for all
k=1, s(uiy---ip) = o, therefore A, is loosing. This raises a contradiction since ¢ is a winning strategy.

Now, let us show that all branches in B(U) are winning in p. Let = € B(U). Then by definition, appears
infinitely often in s(m). Then since A, is winning we have that Col(r) is even, then 7 is an accepting branch

23

in p.

Conversely let p be a run whose set of accepting branches is large. From Lemma 6 there exist a direction
mapping d and a set of nodes U such that d points to U, and every branch 7 € B(U) is accepting in p. Define
the strategy ¢ of Eloise as follows. For all partial play A ending in (p(u), u, symb)

() = (p(u),u, p(u0), p(ul), d(u),{j | uj € U}),

and for all other plays, we do not give any restriction on ¢(\) (assuming that the automaton is complete,
Eloise can always play something). Let us show that ¢ is a winning strategy for Eloise.

As for the other direction, we inductively associate with any node u a partial play \, where Eloise respects
. For this we let Ac = (qini, €, 0). Now assume that we defined A, for some node u and let (¢.¢(u), g0, q1,7,5)
be the transition Eloise plays from)\, when she respects . For j € {0,1}, one defines Aw.j as the partial
play obtained by extending A, by Eloise choosing transition (q,(u), qo, q1,, S), followed by Abélard choosing
direction j. Note that for j € {0,1}, \,.; ends in configuration (g;,uj, symb) for some symb € {x,0,o}.

Moreover with any branch 7 in p one can associate a play A, in Giftc Large from (gini, €, 0) where Eloise
respects ¢ (one simply considers the limit of the increasing sequence of partial plays A\, where u ranges over
those nodes along branch 7). By construction 7 is accepting in p if and only if A, fulfils the parity condition.
Furthermore observe that any play that respects ¢ is equal to A, for some branch 7. Again, we define s(u) as
the symbol symb in the last configuration (g, u, symb) of A,. Observe that if s(u - i) = o for some node u and
i€ {0,1} then i = d(u).

Let A, be a play that respects . Note that Eloise wins the play \ if and only if « appears infinitely often
in s(m) and Col(w) is even, or » does not appear infinitely often in s(m) but o does. First observe that v e U
if and only if s(u) = *. If x appears infinitely often in s(7) then 7 is in B(U) therefore it is accepting, thus A,
is winning. If » does not appear infinitely often in s(m) let u and 41,2, ... be such that © = wuiyis--- and for
all k, s(uiy - --ix) # *. Assume by contradiction that o does not appears infinitely often in s(r). Therefore
there exists ¢ such that for all k > ¢, s(uiy - - - i) = o, thus 45 = d(uiy - -ix—1). Thus 7 is a branch where at
some point d is followed, but no node in U is eventually reached, which means that d does not point to U
hence, raises a contradiction.

Therefore A\, is a winning play, thus ¢ is a winning strategy. O

LAcc

Daree(A) are always w-regular.

Thanks to Theorem 12 we can now easily prove that languages of the form

Theorem 13. Let A = (A, Q, ¢ini, A, Col) be a parity tree automaton using d colours. Then there exists a
parity tree automaton A’ = (A,Q’,q.,;, A, Col’) such that Lﬁ‘gfge(A) = L(A’). Moreover |Q'| = O(d|Q]) and
A’ uses d + 2 colours.

Proof. The game Gﬁcf Large an be transformed into a standard acceptance game for w-regular language (as
/Rej<Count

defined in Section 2.3) by the following trick (this is the same as the one for G4). One adds to states
an integer where one stores the smallest colour seen since the last x-state was visited (this colour is easily
updated); whenever a starred state is visited the colour is reset to the colour of the state. Now o-states are
given an even colour e that is greater or equal than all colour previously used (hence, it ensures that if finitely
many *-states but infinitely many o-states are visited then Eloise wins), o-states are given the odd colour
e + 1 (hence it ensures that if at some points only o-states are visited, Eloise looses) and starred states are
given the colour that was stored (hence, if infinitely many starred states are visited we retrieve the previous
parity condition). It should then be clear that the latter game is a classical acceptance game, showing that
Lpss, (A) is w-regular.

The construction of A’ is immediate from the final game and the size is linear in d|Q| due to the fact that
one needs to compute the smallest colour visited between to starred states. O

7. Conclusion and Perspectives

In this paper we proved, using a game-theoretic approach, that the languages defined by automata with
cardinality constraints as well as those defined by automata with topological bigness constraints are always
w-regular. Moreover, in the case where the cardinality constraint is on the number of accepting branches we
showed that the languages collapse to those defined by classical Biichi tree automata, which contrasts with
the case where the cardinality constraint is expressed on the number of rejecting branches.

24

One advantage of our approach is that it preserves the well-known connection between automata and
games and that it permits to have tractable transformations (which might not be the case when using e.g.
the more general logical approach of [12]).

One technical restriction of our work is that we required our automata to be complete. This restriction
was made for ease of presentation and can easily be removed thanks to the following trick (pointed to us by
an anonymous reviewer). It suffices that we modify the various constructions of acceptance games we consider
as follows. Every time Eloise determines the direction in the acceptance game Abélard has now the option to
either accept her choice or to challenge her. In the former case the play continues as usual. But if Abélard
challenges Eloise, we enter a new phase where she has to prove (in the same flavour as in the classical setting
described in Section 2.3) that she can construct a run (not necessarily accepting) on the subtree: if she is able
to do so she wins otherwise Abélard wins.

A first perspective has to do with applications. Indeed, while the present work is at the theoretical level
only, it permits to observe that classical questions (membership, emptiness) for the classes of languages
under consideration are tractable (at least not harder than for classical w-regular languages). Hence, it
would be interesting to find examples where automata with cardinality constraints or with topological bigness
constraints are a relevant way to express properties of systems: in particular we believe that it can be an
alternative to qualitative tree languages [15, 16] when specifying properties of non-deterministic system where
one wants to allow a negligible set of bad executions.

A second perspective has to do with games played on graphs. A generalisation of two-player games is
given by stochastic games (see e.g. [23]) where a third, uncontrollable and unpredictable, player is added to
the two usual antagonistic players. When the two first players aim to represent respectively a program and
its (potentially malicious) environment, the third player can be seen as an abstraction of nature. Usually
the nature player is equipped with a stochastic semantics and typical (qualitative) questions are whether the
first player has a strategy that, against any strategy of the second player, almost-surely satisfies an objective
(against all possible behaviours of the nature player). In other words, one seeks for a strategy that against
any strategy of the second player produces a set of plays such that the losing plays form a negligible subset,
negligible being understood in a measure theoretic sense (namely as being of measure 0). Following the ideas
developed in this paper, one can consider qualitative questions on two-player games with a third nature
player where one uses either counting or topology to define which sets of plays should be considered as being
negligible. This seems a promising approach as we showed in our recent work [24].

A third perspective has to do with logic. One question is whether there is a natural logic that exactly
captures the classes of automata studied in this paper. Obviously this should be a (strict) fragment of the
monadic second order logic. A second question is to study how the automata models considered in the present
work compare/can be combined with the quantifiers studied in the work of Barany, Kaiser and Rabinovich
[12] and in the recent study initiated by Michalewski and Mio in [25].

Acknowledgement
We would like to thanks the anonymous reviewers for their valuable comments, as well as Axel Haddad for
his contributions on a preliminary version of this work.

References

[1] M. O. Rabin, Decidability of second-order theories and automata on infinite trees, Transactions of the
American Mathematical Society 141 (1969) 1-35.

[2] M. O. Rabin, Automata on infinite objects and Church’s problem, American Mathematical Society,
Providence, R.I., 1972, conference Board of the Mathematical Sciences Regional Conference Series in
Mathematics, No. 13.

[3] A. Church, Logic, arithmetic and automata, in: Proceedings of the International Congress of Mathemati-
cians, 1962, pp. 23-35.

[4] W. Thomas, Languages, automata, and logic, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal
Language Theory, Vol. 111, Springer-Verlag, 1997, pp. 389-455.

25

151

[6]

7]

[8]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]
[22]

M. Y. Vardi, T. Wilke, Automata: from logics to algorithms, in: Logic and Automata: History and
Perspectives, Amsterdam University Press, 2007, pp. 629-736.

Y. Gurevich, L. Harrington, Trees, automata, and games, in: Proceedings of the Fourteenth Annual
ACM Symposium on the Theory of Computing (STOC’82), ACM, 1982, pp. 60-65.

J. R. Biichi, Using determinancy of games to eliminate quantifiers, in: Proceedings of the first International
Conference on Fundamentals of Computation Theory (FCT’77), Vol. 56 of Lecture Notes in Computer
Science, Springer-Verlag, 1977, pp. 367-378.

E. Griadel, W. Thomas, T. Wilke (Eds.), Automata, Logics, and Infinite Games: A Guide to Current
Research [outcome of a Dagstuhl seminar, February 2001], Vol. 2500 of Lecture Notes in Computer
Science, Springer-Verlag, 2002.

C. Loding, Infinite games and automata theory, in: K. R. Apt, E. Gradel (Eds.), Lectures in Game
Theory for Computer Scientists, Cambridge University Press, 2011, pp. 38-73.

D. Beauquier, M. Nivat, D. Niwinski, About the effect of the number of successful paths in an infinite
tree on the recognizability by a finite automaton with Biichi conditions, in: Proceedings of the 8th
International Conference on Fundamentals of Computation Theory (FCT’91), Vol. 529 of Lecture Notes
in Computer Science, Springer-Verlag, 1991, pp. 136-145.

D. Beauquier, D. Niwiriski, Automata on infinite trees with path counting constraints, Information and
Computation 120 (1) (1995) 117 — 125.

V. Barany, L. Kaiser, A. Rabinovich, Expressing cardinality quantifiers in monadic second-order logic
over trees, Fundamenta Informaticae 100 (2010) 1-18.

H. Vélzer, D. Varacca, E. Kindler, Defining fairness, in: Proceedings of the 16th International Conference
on Concurrency Theory (CONCUR 2005), Vol. 3653 of Lecture Notes in Computer Science, Springer-
Verlag, 2005, pp. 458-472.

E. Asarin, R. Chane-Yack-Fa, D. Varacca, Fair adversaries and randomization in two-player games, in:
Proceedings of the 13th International Conference on Foundations of Software Science and Computational
Structures (FOSSACS’10), Vol. 6014 of Lecture Notes in Computer Science, Springer-Verlag, 2010, pp.
64-78.

A. Carayol, A. Haddad, O. Serre, Qualitative tree languages, in: Proceedings of the 26th IEEE Symposium
on Logic in Computer Science (LiCS 2011), IEEE Computer Society, 2011, pp. 13—22.

A. Carayol, A. Haddad, O. Serre, Randomisation in automata on infinite trees, ACM Transactions on
Computational Logic 15 (3) (2014) 24:1-24:33.

N. Fijalkow, S. Pinchinat, O. Serre, Emptiness of alternating tree automata using games with imperfect
information, in: Proceedings of the 33rd International Conference on Foundations of Software Technology
and Theoretical Computer Science (FST&TCS 2013), Vol. 24 of LIPIcs, Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2013, pp. 299-311.

D. Perrin, J.-E. Pin, Infinite Words, Vol. 141 of Pure and Applied Mathematics, Elsevier, 2004.

H. Vélzer, D. Varacca, Defining fairness in reactive and concurrent systems, Journal of the Association
for Computing Machinery (ACM) 59 (3) (2012) 13.

E. Gridel, Banach-Mazur Games on Graphs, in: Proceedings of the 28th International Conference on
Foundations of Software Technology and Theoretical Computer Science (FST&TCS 2008), Vol. 2 of
LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2008, pp. 364-382.

D. A. Martin, Borel determinacy, Annals of Mathematics 102 (2) (1975) 363-371.

A. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, Springer-Verlag, 1995.

26

[23] K. Chatterjee, Stochastic w-regular games, Ph.D. thesis, University of California Berkeley (2007).

[24] A. Carayol, O. Serre, How good is a strategy in a game with nature?, in: Proceedings of the 30th Annual
IEEE Symposium on Logic in Computer Science (LiCS 2015), IEEE Computer Society, 2015, to appear.

[25] H. Michalewski, M. Mio, Baire category quantifier in monadic second order logic, in: Proceedings of the
42nd International Colloquium on Automata, Languages, and Programming (ICALP 2015), Vol. 9135 of
Lecture Notes in Computer Science, Springer-Verlag, 2015, pp. 362-374.

27

