The Advantage of Evidential Attributes in Social Networks

Abstract : Nowadays, there are many approaches designed for the task of detecting communities in social networks. Among them, some methods only consider the topological graph structure, while others take use of both the graph structure and the node attributes. In real-world networks, there are many uncertain and noisy attributes in the graph. In this paper, we will present how we detect communities in graphs with uncertain attributes in the first step. The numerical, probabilistic as well as evidential attributes are generated according to the graph structure. In the second step, some noise will be added to the attributes. We perform experiments on graphs with different types of attributes and compare the detection results in terms of the Normalized Mutual Information (NMI) values. The experimental results show that the clustering with evidential attributes gives better results comparing to those with probabilistic and numerical attributes. This illustrates the advantages of evidential attributes.
Type de document :
Communication dans un congrès
20th International Conference on Information Fusion, Jul 2017, Xi'an, China. 2017
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01562965
Contributeur : Salma Ben Dhaou <>
Soumis le : mardi 5 septembre 2017 - 16:13:08
Dernière modification le : jeudi 7 septembre 2017 - 01:08:23

Fichiers

PaperFUSION.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01562965, version 2
  • ARXIV : 1707.08418

Citation

Salma Ben Dhaou, Kuang Zhou, Mouloud Kharoune, Arnaud Martin, Boutheina Ben Yaghlane. The Advantage of Evidential Attributes in Social Networks. 20th International Conference on Information Fusion, Jul 2017, Xi'an, China. 2017. 〈hal-01562965v2〉

Partager

Métriques

Consultations de la notice

108

Téléchargements de fichiers

20