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Synchronized flutter of two slender flags
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The interactions and synchronization of two parallel and slender flags in a uniform
axial flow are studied in the present paper by generalizing Lighthill’s elongated
body theory (EBT) and Lighthill’s large-amplitude elongated body theory (LAEBT)
to account for the hydrodynamic coupling between flags. The proposed method
consists of two successive steps, namely the reconstruction of the flow created by a
flapping flag within the LAEBT framework and the computation of the fluid force
generated by this non-uniform flow on the second flag. In the limit of slender flags
in close proximity, we show that the effect of the wakes has little influence on the
long-time coupled dynamics and can be neglected in the modelling. This provides
a simplified framework extending LAEBT to the coupled dynamics of two flags.
Using this simplified model, both linear and large-amplitude results are reported to
explore the selection of the flapping regime as well as the dynamical properties of
two side-by-side slender flags. Hydrodynamic coupling of the two flags is observed to
destabilize the flags for most parameters, and to induce a long-term synchronization
of the flags, either in-phase or out-of-phase.

Key words: aerodynamics, flow–structure interactions

1. Introduction
A flexible plate or filament may flap spontaneously in a uniform axial flow as a

result of the competition between its internal rigidity, its inertia and the destabilizing
fluid forces resulting from the deflection of the fluid particles by the deforming
structure. This flutter or ‘flag’ instability and resulting flapping motion have received
much interest as exemplified in the recent review of Shelley & Zhang (2011).
Beyond its academic interest or traditional applications, flag flutter has also recently
been studied to extract energy from an incoming flow, for example by converting
the flapping motion into an electric current using flags covered by electro-active
materials (Doaré & Michelin 2011; Giacomello & Porfiri 2011).

Understanding the hydrodynamic coupling of multiple flags is critical in this
context, in particular, to assess how it affects the flapping properties, synchronization
and more generally the collective performance of an assembly of piezoelectric flags.
Two-dimensional soap-film experiments by Zhang et al. (2000) on two flexible
filaments revealed an in-phase synchronization for small separation distances, and an
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out-of-phase synchronization at larger distances, a trend later supported by further
experimental, theoretical and numerical studies (Zhu & Peskin 2003; Jia et al.
2007). More insight on the two-dimensional multiple-flag dynamics was also gained
from experiments (Schouveiler & Eloy 2009), linear stability analysis (Michelin &
Llewellyn Smith 2009) and numerical simulations (Farnell, David & Barton 2004;
Alben 2009; Tian et al. 2011a).

These studies all focus on the two-dimensional problem which is representative
of the three-dimensional case only when the width of the flags is much larger
than its length. The coupling of multiple flags for arbitrary span, and in particular
for slender flags, remains poorly documented despite its practical importance,
for energy harvesting purposes for instance. Direct numerical simulations of the
fluid–solid systems are possible (Banerjee, Connell & Yue 2015), but their complexity
and computational cost prohibit at the moment systematic parametric studies or
optimization and emphasize the need for reduced-order modelling of these interactions.
The main objective of the paper is therefore to provide a simplified model in the
slender body limit allowing us both to give insights to the physical synchronization
process and to provide a useful benchmark for subsequent works on the topic.

In potential flow, fluid forces on a single flapping slender flag can be computed
as a reactive local force: an added momentum maun is associated with each slice of
fluid normal to the structure’s centreline, with un the local normal relative velocity of
the solid with respect to the background flow and ma the added mass coefficient of
the structure’s cross-section; the reactive force results from changes in the momentum
of the fluid advected along the deformed structure. This idea is at the heart of
elongated body theory (EBT) (Lighthill 1960) and its generalization to nonlinear
flapping dynamics, the large-amplitude elongated body theory (LAEBT) (Lighthill
1971). The powerful advantage of this method is its simplicity: the fluid force is
expressed solely in terms of the local kinematics of the solid body. Extensions to this
theory have recently been proposed for three-dimensional body motions (Candelier,
Boyer & Leroyer 2011) and weakly non-uniform background flows (Candelier, Porez
& Boyer 2013).

The present article extends this approach to model the flapping dynamics of several
slender flags and is organized as follows. Section 2 presents the problem’s geometry,
the relevant parameters and structural model, and § 3 describes the method for
computing the fluid forces in the presence of hydrodynamic interactions based on a
generalization of Lighthill’s LAEBT to the case of two flags. The linear stability and
mode selection of the two-flag configuration is analysed in §§ 4 and 5 focusing on
flag synchronization in the saturated large-amplitude dynamics. Finally, § 6 proposes
a discussion of the problem and new opportunities for future work.

2. Problem setting
We consider two parallel, rectangular and infinitely thin flags of length L and width

H in a steady uniform flow of velocity U∞, density ρ and kinematic viscosity ν,
with d the distance between their clamped leading edges (figure 1a). Both flags are
inextensible, with surface density µ and bending rigidity B; gravity is neglected. When
Re = U∞L/ν � 1, viscous effects are negligible except within thin boundary layers
around the flags that separate at the trailing edge into vortex sheets; thus, a potential
flow model is used. The flag and flow dynamics are both governed by four non-
dimensional parameters, namely

H∗ = H
L
, d∗ = d

L
, M∗ = ρL

µ
, U∗ =U∞L

√
µH
B
, (2.1a−d)
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FIGURE 1. Sketches of the configuration: (a) three-dimensional view, (b) view
from above.

which respectively correspond to the flags’ aspect ratio, the non-dimensional inter-plate
distance, the mass ratio and the reduced velocity.

In the following, Fi and Wi denote the ith flag and its wake (i= 1, 2). Neglecting
streamwise torsion and spanwise displacement, the position xi(si, zi, t) of Fi is entirely
described by its centreline position xi0(si, t) = xi(si, zi = 0, t) with si the Lagrangian
curvilinear coordinate and zi the spanwise position. The local orientation of the
centreline with respect to the incoming flow is θi(si, t) and (eτi, eni) denote the local
tangent and normal unit vectors to the flag’s surface (figure 1b). An Euler–Bernoulli
beam model is used for each flag. Using L, L/U∞, ρHL2 as characteristic length,
time and mass, the non-dimensional equations of motion for Fi read

∂2xi0

∂t2
= ∂

∂si

[
fT ieτi −

1
U∗2

∂2θi

∂si
2

eni

]
+ f fluidi

, (2.2)

where fT i(si, t) is the local tension, acting as a Lagrange multiplier to enforce each
flag’s inextensibility, namely

eτi =
∂xi0

∂si
, (2.3)

and f fluidi
(si, t) is the local fluid force applied on Fi. The flags’ coupling is purely

hydrodynamic, and is therefore included in f fluidi
which depends on the flags’

kinematics, and is discussed in detail in the following.

3. Fluid modelling
3.1. Preliminary discussion

In potential flow, the local pressure force on the flag is directly related to the
local flow velocity which can be reconstructed using the Biot–Savart law from the
distribution of bound and free vorticity associated with Fi and Wi. The relative
magnitude of different hydrodynamic contributions can therefore be assessed by
considering that of the induced flow velocity. In the case of two slender flags, we
look for the dominant hydrodynamic terms depending upon d. This first approach
provides a rough classification between the contributions of the neighbouring flag
and that of the wakes. Further quantitative justifications will be given in subsequent
sections. From the Biot–Savart law, the contribution of the velocity field created on
Fi by Fj is typically O(d−2) while, away from the direct neighbourhood of the
trailing edge, the wakes contribute as O(L−2) for Wi (own wake) and O((d2 + L2)−1)

for Wj (wake of the neighbour). Three cases must therefore be considered.



(i) If d� L, the effect of Wi on Fi is dominant over the hydrodynamic coupling
between the flags.

(ii) If d=O(L), all the contributions are of the same order and should all be retained.
(iii) If d � L, the effects of the wakes are negligible compared to hydrodynamic

coupling. More precisely a flag region of O(H) near the trailing edge may feel
a significant effect of the wakes. It will however be evidenced in the following
that the global effect on the flapping dynamics nevertheless remains negligible
in this limit. Note that this limitation is intrinsic to the original LAEBT and it
is therefore consistent to try to extend this approach to the two-flag case in the
range d� L.

These first considerations indicate that it may be relevant to neglect wakes in
the limit of flags in close proximity. In the following, we focus on the range
H � d� L for which the spirit of Lighthill’s LAEBT can be extended naturally to
account for hydrodynamic coupling: in that range, the effect of the wakes including
their complex dynamics appears to remain negligible in front of the hydrodynamic
coupling contribution.

3.2. Methodology
For a single flag, an asymptotic expansion of the potential flow problem in the limit
of small aspect ratio H∗ (but large displacement) provides the LAEBT formulation of
a reactive force that depends exclusively on the local relative velocity of the flag to
the background uniform flow (Candelier et al. 2011). This is particularly convenient
as a detailed knowledge of the flow around the flag is unnecessary. Note also that this
formalism reveals that the non-local effect of the wake is negligible in the slender
body limit, and comes at higher order in the expansion in powers of H∗, as shown by
Eloy et al. (2010) in the linear case (EBT). For a freely flapping body, the reactive
force obtained here through LAEBT must be complemented by a local resistive force
to account for lateral flow separation (Eloy, Kofman & Schouveiler 2012; Singh,
Michelin & de Langre 2012a).

This local formulation is however lost for two flags, and the hydrodynamic
perturbations induced by the second flag must be computed to determine f fluidi

. More
specifically, in the limit of H∗� d∗, these flow perturbations remain subdominant in
front of each flag’s dominant self-contribution (at least while the flags amplitudes
remain small) and vary slowly along the flag’s width. The approach followed here
is therefore to consider the motion of each flag within the weakly non-uniform
local flow field created at its surface by its neighbour’s motion. Two steps must
be combined, namely (i) the reconstruction of the flow field created by a flapping
flag and (ii) a generalization of LAEBT (and of the resistive force) to account for
non-uniformities and unsteadiness in the resulting local flow. These two points are
detailed below and further combined to propose an extension of the LAEBT approach
in the case of two slender flags.

3.3. Flow created by a flapping flag in the LAEBT
In this section, an explicit expression of the flow created by a single flapping flag
in the large-amplitude regime is obtained. In potential flows, the velocity potential φi
satisfies Laplace’s equation in the fluid domain, that is 1φi = 0. In this framework,
Green’s second identity (see Jackson 1999, for instance) leads to an expression of
the velocity potential in the entire fluid domain from the knowledge of the velocity



potential and its normal derivative (i.e. the normal flow velocity) on the flag and its
wake. As a consequence, the flow created in x by the ith flag and its wake reads

φi(x, t)=
∮

Fi+Wi

[
G(|x− xi|)∂φi(xi)

∂ni
− φi(xi)

∂G(|x− xi|)
∂ni

]
dSi(xi), (3.1)

with G(r) = −1/(4πr) the free-space Green function of the Laplace equation and
where integration should be performed here on both sides of the flag and wake.

In addition, the structure acts as an impermeable surface, so that the normal
flow velocity matches that of the flag. For infinitely thin structures, this leads to the
continuity of the normal derivative of the flow potential, ∂φ(x+i )/∂ni− ∂φ(x−i )/∂ni= 0,
and the single-layer potential term in (3.1) vanishes

φi(x, t)=−
∫

Fi+Wi

[φi](xi)
∂G(|x− xi|)

∂ni
dSi(xi), (3.2)

where [φi] = φi(x+i ) − φi(x−i ) corresponds to the velocity potential jump across the
flag and wake. In this formalism, the wake is assumed to consist of an infinitely thin
vortical sheet of height H extending to infinity. Physically, (3.2) corresponds to the
flow induced by bound and free vorticity present in the vicinity of the flag and its
wake respectively.

In the slender body limit (H� L), the potential jump is given by Candelier et al.
(2011) and reads

[φi](xi)=−2ũni

√
H∗2/4− zi

2, (3.3)

with ũni = [∂xi0/∂t − ex] · eni . Note that this elliptic form of the potential jump is
analogous to the small-displacement limit (Lighthill 1970, EBT); effectively, the
large-amplitude case can locally be seen as a straight plate having normal relative
velocity ũni .

Using (3.3), an explicit form of the flow created in the midplane, z = 0, can be
obtained from (3.2) by integrating the contributions of the spanwise direction (for zi

from −H∗/2 to H∗/2):

φi(x, t)=−
∫ 1

0

ũni(x− xi) · eni

π[(x− xi)2 + (y− yi)2]1/2 [E(X)−K(X)] dsi(xi)+ φWi(x, t, Lw), (3.4)

where X = −H∗2/(4[(x − xi)
2 + (y − yi)

2]) and K, E correspond to the complete
elliptic integral functions of the first and second kind respectively (see Abramowitz &
Stegun 1964, p. 590). The first term in (3.4) is the flag’s contribution and φWi is the
contribution of the wake of non-dimensional size Lw. Equation (3.4) will allow us to
study the influence of the wake on the flow reconstruction in the following paragraph
by means of a simple wake model. Later on, an additional assumption termed the
far-field approximation will be introduced for convenience and its range of validity
will also be examined.
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FIGURE 2. (Colour online) Flow created in the midplane z= 0 during a flapping sequence
for M∗ = 10, U∗ = 20 and H∗ = 0.1. Instantaneous normalized velocity potential obtained
from (3.2) and (3.3) using a frozen wake model of non-dimensional length Lw = 2. The
flag’s (respectively wake’s) position is shown by a thick black (respectively dashed) line.

3.3.1. Role of the wake
Solving (3.4), the flow around the flag is obtained everywhere provided the wake

characteristics (position and circulation) are known. In order to assess the effect of
the wake on the created flow, a simplified wake model is constructed. We neglect
auto-induction and therefore assume that the vorticity shed at the trailing edge is only
advected downstream by the uniform flow. This wake model is referred to as frozen
wake in the following and has already been considered in previous studies on flexible
bodies (see Candelier et al. 2011, for instance). Figure 2 shows an example of velocity
potential contours obtained from (3.4) with such a simplified wake model. From this
flapping sequence, it can be seen that the flow varies in the streamwise direction on
length scales of the order of the flapping wavelength, that is of the order of L for the
first flapping modes.

The effect of the wake on the created flow field is now investigated in figure 3(a)
which corresponds to the relative error map obtained by comparison between results
with a wake of non-dimensional length Lw= 2 and results obtained without taking the
wake into account. The white area corresponds to locations where the error associated
with ignoring the wake is less than 1 % while the darkest blue region indicates an error
larger than 30 %. For this value of H∗, the length of the wake does not significantly
change the result provided Lw > 1 (not shown). In these cases, we therefore obtain
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FIGURE 3. (Colour online) Relative error maps for the flow reconstruction in the midplane
z = 0 in the case M∗ = 3, U∗ = 15 and H∗ = 0.1. (a) Error obtained when the wake
is neglected. The error is defined as |[r.m.s.(vLw=2) − r.m.s.(vLw=0)]/r.m.s.(vLw=2)| where
the case without wake is compared to the case with a frozen wake of non-dimensional
length Lw = 2. (b) Error due to far-field approximation (FF) defined as |[r.m.s.(vFF) −
r.m.s.(v)]/r.m.s.(vFF)|. Wakes are neglected in this case. The black area delineates the
envelope of the flapping flag.

that the wake influence is weak while y< 0.3 (for H∗= 0.1) and far enough from the
trailing edge as the error becomes important for distances O(H∗) from this location.
When considering two flags side by side, it is reasonable to neglect wake effects in the
coupling terms within the range d∗< 0.3. Even though the flow is not well predicted
close to the trailing edge, it will be verified that it does not significantly affect the
global dynamics whose prediction is the main focus of the present article.

3.3.2. Far-field approximation (FF)
Equation (3.4) can be reformulated when looking at the flow field at distances from

the flag that are large compared to H∗. Using the asymptotic expansion of E(X) and
K(X) for X� 1, the following approximation of the flow potential is obtained in the
midplane z= 0,

φi(x, t)=−H∗2

16

∫ 1

0

ũni(x− xi) · eni

[(x− xi)2 + (y− yi)2]3/2 dsj(xi), (3.5)

if φWi is further neglected. This approximation is equivalent to assuming that the
Green function is independent of the spanwise coordinate in (3.2). The range of
validity of the far-field approximation can be estimated from figure 3(b) where the
error shows that this approximation essentially affects the flow for lateral distances to
the flag of order H∗. Equation (3.5) therefore provides a simplified version of (3.4)
which is valid far from the flag (compared to H∗) and in regions where wakes do
not contribute significantly to the flow; it is therefore valid for intermediate lateral
distances (0.1 < y < 0.3 in the present case where H∗ = 0.1). This form of the
velocity potential given by (3.4) is introduced here only as a matter of convenience
as it allows for faster simulations and simplifies the analysis; but the present method
could be applied directly using (3.4). In addition, as detailed in the following, far-field
approximation is consistent with further modelling steps for two flags and has little
impact on the global dynamic when d∗ >H∗.



3.4. LAEBT in a weakly non-uniform potential flow
Lighthill’s LAEBT was recently generalized by Candelier et al. (2013) to the case of
a slender structure in a weakly non-uniform potential flow. In the classical LAEBT,
the uniform incoming flow and the flow created by the flapping flag can respectively
be termed ambient flow and perturbed flow. Candelier et al. (2013) extends LAEBT
for weakly non-uniform ambient flows, i.e. for cases where the ambient flow varies
on length scales much larger than the cross-section dimensions.

Under this assumption, the local ambient flow can be expended in Taylor series in
each cross-section around the centreline of the body. This provides a decomposition
of the perturbed flow which accounts for non-uniformities of the ambient flow. Such
a procedure eventually leads to an expression for the fluid force exerted on a body
immersed in a weakly non-uniform and potential flow, which has been successfully
implemented to simulate swimming of a slender fish in a von Kármán vortex street
(Candelier et al. 2013).

In this paragraph, we present a brief summary of this result, and use dimensional
quantities (in capital letters) to clarify the physical origin of the different contributions
to the force. The reader is referred to the original study of Candelier et al. (2013) for
more details. Considering a slender structure with centreline position X0 immersed
in a potential and weakly non-uniform ambient flow with velocity V(X, T) and
pressure P(X, T), body-fitted coordinates Xn and Xτ are introduced and respectively
correspond to normal and tangential positions. For planar motions of the structure,
the dimensional local pressure force exerted on the solid is obtained as (see Candelier
et al. 2013, equation (4.5))

F=−S ∇P|X=X0
−
[
∂MaUnen

∂T
− ∂MaUnUτen

∂Xτ
+ 1

2
∂MaU2

neτ
∂Xτ

]
−MaUn

∂V
∂Xn

∣∣∣∣
X=X0

, (3.6)

with S the surface area of the body’s local cross-section and Ma the added mass
associated with its normal displacement. Note that the body shape (and therefore S
and Ma) may slowly vary along the tangential direction in this formalism. In addition,
Un and Uτ correspond to the components of the local relative velocity between the
solid and the ambient flow which are defined as

Unen +Uτeτ = ∂X0

∂T
−V(X=X0). (3.7)

The physical origin of the three terms in (3.6) can be understood as follows.

(i) The first term is due to non-uniformities of the ambient pressure and can
physically be interpreted as a generalization of Archimedes’ force which vanishes
in the case of the infinitely thin flag considered here (S→ 0).

(ii) The second term corresponds to the classical LAEBT expression (see Singh,
Michelin & de Langre 2012b, for instance) in which the relative velocity defined
by (3.7) now takes into account the non-uniformities of the ambient flow.

(iii) The third term is an additional contribution due to structure’s motion within the
ambient velocity gradient.

3.5. LAEBT in a weakly non-uniform potential flow: application to flag geometry
Moving back to the non-dimensional framework introduced in § 2 the above theory
is now applied to the specific flag geometry investigated in this work. Considering



a flag Fi placed in a weakly non-uniform and potential ambient flow v, the general
expression of the reactive fluid force shown in (3.6) simplifies for an infinitely thin
flag with uniform added mass coefficient (ma = π/4). Furthermore, applying the
inextensibility of the structure and irrotationality of the ambient flow, the tangential
component of the force in (3.6) can be shown to vanish exactly. If the ambient flow
is further symmetric with respect to the midplane, the local reactive force exerted on
Fi is purely normal and its non-dimensional form can be written as

f reacti =−maH∗M∗
(
∂uni

∂t
− ∂uniuτi

∂si
+ u2

ni

2
∂θi

∂si
+ unieni · [∇v|xi=xi0] · eni

)
eni (3.8)

with relative velocity

unieni + uτieτi =
∂xi0

∂t
− v(xi = xi0). (3.9)

Equation (3.8) generalizes LAEBT to the motion of a flag in non-uniform flow.
Inhomogeneities of the ambient flow appear explicitly in the last term and implicitly
in the others through the relative velocity defined in (3.9). The EBT can be extended
to non-uniform flows in a similar fashion, and corresponds to the leading-order
expansion of the previous equation in the limit of small displacements. Since v is
only weakly non-uniform, the last term in (3.8) is quadratic in the small flapping
amplitude regime and should be discarded: the force expression in the EBT is
therefore formally identical in uniform and weakly non-uniform flows and only differ
in the definition of the appropriate relative velocity.

Additionally, the reactive contribution given by (3.8) from LAEBT must be
complemented by a resistive contribution which should also be modified to account
for flow non-uniformities. In line with Eloy et al. (2012), skin drag is neglected and
we model the drag associated with lateral flow separation as

f resisti =− 1
2 M∗Cduni |uni |eni, (3.10)

with Cd = 1.8 for a flat plate and uni defined in (3.9).
The combination of f reacti and f resisti finally provides a model for the local fluid force

applied on a slender flag immersed in the weakly non-uniform flow v. The weak non-
uniformity means that the components of v are not significantly varying over O(H∗)
length scales. In particular, this explains why only the flow at the centreline is needed
to obtain the fluid forces in (3.8) and (3.10). In the following, these expressions are
used to model the configuration of two slender flags by considering that the ambient
flow corresponds to the superposition of the uniform axial flow and the flow created
by the neighbouring flag.

3.6. LAEBT for two slender flags
For a specific intermediate range of non-dimensional distances d∗, combination of the
results of the two previous sections provides an extension of LAEBT to the case of
two slender and infinitely thin structures placed side by side. The underlying idea is
to consider that each flag is flapping in the non-uniform flow corresponding to the
superposition of the uniform incoming flow and the flow created by its neighbour.
From § 3.4 the local fluid forces exerted on each flag can therefore be modelled as
f fluidi
= f reacti+ f resisti, where f reacti and f resisti are given by (3.8) and (3.10) respectively,



and in which the velocity v must be replaced by ex +∇φj, where φj corresponds to
the velocity potential created by Fj (with j 6= i) and is obtained from (3.4).

Based on the conclusions of § 3.3 and unless otherwise stated, the influence of the
wakes is neglected in the following which focuses on regimes where the flags are
close compared to their length. Doing so effectively overlooks the modification of the
flow field in the trailing edge’s immediate vicinity, but we show in the following that
this assumption has essentially no effect on the overall dynamics.

In addition, the LAEBT extension leading to the reactive force is only valid in
the case of a weakly non-uniform flow, i.e. if the components of v are not varying
much on length scales of the order of H∗. The present fluid model is therefore valid
if all parts of the flags remain far compared to H∗, a condition which corresponds to
H∗� d∗ for small amplitudes. Large-amplitude cases require more care as it depends
on the synchronization phase between flags, but it is worth noting that it will
automatically hold in the case of in-phase motion for which the distance between
flags does not get significantly smaller than d∗. This weakly non-uniform restriction
legitimates the far-field approximation and φj is therefore calculated using (3.5).

As a conclusion, (2.2)–(2.3) for both flags’ dynamics coupled to the fluid model
provided by (3.8)–(3.10) with v= ex+∇φj and φj given by (3.5) provide a model for
two side by side flags with geometric parameters in the range H∗� d∗� 1.

4. Linear case
For small lateral displacements yi(si, t) of flag Fi (i = 1, 2), equations (2.2)–(2.3)

and (3.8)–(3.10) can be linearized around the equilibrium position, yi(s, t)= 0, leading
to the EBT formulation of the two-flag problem:

∂2yi

∂t2
+ 1

U∗2

∂4yi

∂s4
i
=−maH∗M∗

(
∂2yi

∂t2
+ 2

∂2yi

∂t∂si
+ ∂

2yi

∂s2
i

)
+maH∗M∗

(
∂

∂t
+ ∂

∂si

)
vji,

(4.1)

with vji the linear lateral velocity induced by Fj ( j 6= i) on Fi obtained from (3.5)

vji(si)= H∗2

16

∫ 1

0

(
∂yj

∂t
+ ∂yj

∂sj

)
2d∗2 − (si − sj)

2

[d∗2 + (si − sj)2]5/2
dsj. (4.2)

Equations (4.1)–(4.2) provide a simplified linear system for y1(s, t) and y2(s, t),
which also provides important insight on the different fluid contributions (right-hand
side of (4.1)) and justifies a posteriori some of the modelling assumptions. This
discussion will be made using a classification of the fluid terms in powers of H∗
and d∗.

The first fluid term of (4.1) corresponds to the traditional EBT contribution (see
Eloy, Souilliez & Schouveiler 2007, for instance), while the second results from the
coupling with the neighbouring flag. Both fluid terms correspond to the flow forcing
over the local cross-section, leading to a pre-factor H∗ with the present set of non-
dimensional numbers. For the coupling term, a spanwise integration is performed on
the forcing flag leading to the factor H∗2 in the induced velocity. The integral in
(4.2) scales as 1/d∗2 and the coupling terms therefore finally scales as O(H∗3/d∗2).
We therefore obtain that EBT and coupling terms scale respectively as O(H∗) and
O(H∗3/d∗2). In order to validate the model, these terms should be compared to the
first correction of EBT for a single flag (which includes the first-order contribution
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FIGURE 4. (Colour online) Frequencies (a,b) and growth rates (c,d) for H∗ = 0.1 and
d∗ = 0.15. The black lines (respectively grey lines) correspond to in-phase (respectively
out-of-phase) modes. Frequencies corresponding to positive growth rates are shown in
bold red.

of the flag’s own wake), which scales as O(H∗3 ln H∗) (Eloy et al. 2010). For a flag
aspect ratio H∗, the coupling term decreases with d∗ and becomes as small as the
EBT correction at some point. For H∗= 0.1 for instance, it is found that the coupling
term has the same magnitude as the EBT correction for d∗≈ 0.7. For distances around
and larger than this value, it would therefore be inconsistent to retain hydrodynamic
coupling terms while neglecting EBT corrections. The present approach therefore only
works while d∗ � 1. In order to extend this approach for larger values of d∗, EBT
corrections (and therefore the contribution of the flag’s own wake) should be included
and the coupling terms due to the neighbour’s wake should also be taken into account.

In addition, it should be noted that higher-order coupling terms obtained by taking
into account, during the flow reconstruction, the flag’s immersion in a non-uniform
flow (i.e. replacing ũni by uni in (3.3)) scale as O(H∗5/d∗4). This term is therefore
neglected in the present study.

Searching for yi(si, t)= Yi(si)e−iωt with clamped–free boundary conditions and using
spatial Chebyshev collocation, the system (4.1)–(4.2) is rewritten as a generalized
eigenvalue problem for ω and [Y1(s1), Y2(s2)]. The real and imaginary parts of ω are
the frequency ωr and growth rate ωi of the corresponding mode, respectively, and
ωi > 0 denotes instability. The problem’s symmetry imposes that Y1 =±Y2, i.e. flags
are either in-phase or out-of-phase (Michelin & Llewellyn Smith 2009).

Figure 4 shows that the two-flag configuration remains stable up to a critical
reduced velocity U∗c where the out-of-phase mode becomes unstable for the values of
M∗, H∗ and d∗ considered. Increasing U∗ further, successive switches are observed
in the synchronization of the most unstable mode (out-of-phase/in-phase). The map
of the most unstable mode in the parameter space (M∗, U∗) is shown on figure 5
and reveals that such switching phenomena are found for large values of M∗. From
this general picture, we conclude that in-phase modes are predominantly expected
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FIGURE 6. (Colour online) Effect of H∗ (a) and d∗ (b) on the synchronization in the most
unstable mode. Colour conventions are identical to those in figure 5.

for large M∗ and out-of-phase modes for small M∗, a trend reminiscent of the linear
predictions in the two-dimensional limit (Michelin & Llewellyn Smith 2009). In
addition, the presence of a neighbour has a destabilizing effect for most M∗ as
evidenced on figure 5 by comparison with the results for a single flag.

Figure 6(a) reveals that out-of-phase modes are predominant when H∗ tends to zero
while both modes are found for H∗ comparable to d∗. In addition, comparison with
the single-flag threshold shows that the effect of the neighbour becomes small when
H∗� 1, which is consistent with (4.2) and the O(H∗2) of the induced velocity scales.
Figure 6(b) reveals that in-phase modes are obtained for small values of d∗ while out-
of-phase modes dominate at larger distances. Noticeably, this latter trend also agrees
with two-dimensional experiments and numerical results (Zhang et al. 2000; Zhu &
Peskin 2003).
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5. Large-amplitude case
The numerical approach presented in more details in Michelin & Doaré (2013) is

extended here to solve the nonlinear coupled equations for the dynamics of the two
flags, (2.2)–(2.3), (3.5) and (3.8)–(3.10). The beam dynamics is projected along the
normal and tangential directions, and the projections on eτi provide the tensions fTi in
both flags which are substituted into the dynamics along the normal directions. Using
a semi-implicit time-stepping scheme, the entire system then becomes a nonlinear
equation for [∂θ1/∂s1, ∂θ2/∂s2] solved iteratively at each time step using Broyden’s
method. Eventually, flapping characteristics can be reconstructed from curvature
distributions using clamped–free boundary conditions. Initially, one flag is straight
and a small uniform curvature is imposed on the second flag. This ensures that initial
conditions do not promote in-phase or out-of-phase dynamics.

Figure 7 illustrates the resulting dynamics: the small perturbations grow on the
perturbed flag and set the second flag into motion, leading to exponential growth
and saturation of both flapping amplitudes. After a transient regime, flags settle
in a permanent regime, either in-phase or out-of-phase, with the same flapping
amplitude and frequency. For larger d∗ (not shown), a similar behaviour is found
and the time necessary to reach the saturation of the flapping amplitude is roughly
independent of d∗. However, the time required to reach synchronization (i.e. the
time necessary for the relative phase to converge to its long-term value) increases
significantly with d∗: flags are not necessarily in-phase or out-of-phase when their
flapping amplitude saturates, and a long transient regime may be required before
reaching synchronization. Saturation and synchronization therefore occur on different



Configuration Frequency Amplitude Synchronization

U∗ = 9 Lw = 0, FF approx. 3.27 0.0340 out-of-phase
Lw = 1, FF approx. 3.24 0.0354 out-of-phase
Lw = 0 3.26 0.0336 out-of-phase
Lw = 1 3.24 0.0349 out-of-phase
Lw = 2 3.24 0.0348 out-of-phase
LAEBT single flag 3.14 0.0271 —

U∗ = 10 Lw = 0, FF approx. 3.42 0.0766 in-phase
Lw = 1, FF approx. 3.44 0.0774 in-phase
Lw = 0 3.43 0.0761 in-phase
Lw = 1 3.44 0.0769 in-phase
Lw = 2 3.44 0.0769 in-phase
LAEBT single flag 3.49 0.0685 —

U∗ = 11.7 Lw = 0, FF approx. 4.56 0.1078 in-phase
Lw = 1, FF approx. 4.57 0.1076 in-phase
Lw = 0 4.57 0.1079 in-phase
Lw = 1 4.58 0.1077 in-phase
Lw = 2 4.58 0.1078 in-phase
LAEBT single flag 4.68 0.1065 —

TABLE 1. Influence of the model hypotheses on the flapping characteristics for H∗ = 0.1,
d∗= 0.15 and M∗= 27. For each U∗, the first line corresponds to cases shown on figure 7.

time scales. This is consistent with saturation being mainly driven by the flag’s
own dynamics and synchronization resulting from hydrodynamic coupling: the latter
become weaker when d∗ is increased. It should be noted nevertheless that the flapping
amplitude A (defined as the half of the peak-to-peak amplitude corresponding to the
trailing edge’s lateral position in the saturated regime) may be slightly modified
during the synchronization process (table 1).

The flapping characteristics (i.e. the amplitude, frequency and synchronization type)
associated with the dynamics presented in figure 7 are reported in table 1 (bold),
which validates the different approximations made (i.e. neglecting the wake and
the far-field approximation). In addition, the single flag case is also reported for
comparison. Results show that both wakes and far-field approximation have little
influence on the flapping characteristics for the cases considered here. In particular,
the influence of both approximations remain small in front of that of hydrodynamic
coupling which is estimated through comparison with the single-flag case. This
validates the present model for the physical parameters considered in table 1.

For the same set of parameters, figures 8 and 9 compare large-amplitude results
with the linear predictions. Figure 8 displays the linear growth and the saturated
amplitude obtained from nonlinear simulations. As can be seen, final states obtained
from LAEBT simulations roughly correspond to the most unstable mode in the linear
predictions. The apparent discrepancy found at the lowest threshold (U∗≈ 7.5) is due
to the very small amplification rate which requires long simulation times to obtain
the final saturated state. It has been checked that the out-of-phase area predicted close
to threshold in the linear case eventually emerges from LAEBT simulations (but with
a very weak amplitude) for very long simulation times. Thresholds are therefore well
reproduced. Figure 9 compares the linear frequencies already presented in figure 4
to the flapping frequencies of the final state obtained from the large-amplitude
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FIGURE 8. (Colour online) Comparison of linear and nonlinear results for H∗= 0.1, d∗=
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stars. Parameters and colour conventions are identical to those in figure 8.
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FIGURE 10. Trailing edge angles as a function of time from LAEBT simulation for
M∗ = 3, d∗ = 0.1 and U∗ = 15.

simulations. A good agreement is found and large-amplitude results confirm that the
out-of-phase dynamics is associated with larger frequencies than in-phase dynamics;
a trend also reported in the two-dimensional experiments by Zhang et al. (2000).

However, figure 8 shows that the nonlinear dynamics may differ from linear
predictions regarding the flags’ synchronization based on the most unstable eigenmodes
(e.g. for U∗ ≈ 11.7). This behaviour corresponds to figure 7 (bottom line) where the
system is dominated by an out-of-phase mode at the beginning of the transient stage
(the out-of-phase mode is most unstable) before nonlinearities become important and
switch the system to in-phase synchronization. This phenomenon is highlighted for
another set of parameters in figure 10 where the growth of the linear out-of-phase
prediction is clearly seen before the system eventually settled in-phase. In both
cases, the nonlinearities therefore appear to favour in-phase synchronization. This
type of nonlinear selection is only observed when the most unstable in-phase and
out-of-phase modes have similar growth rates, and can be seen as a competition
between two modes which is expected to occur frequently for large values of M∗
(see figure 5).

6. Conclusion and perspectives
This study proposes a framework to analyse the hydrodynamic coupling of two

slender flags in axial flow when the separation distance is small compared to the
flag’s length but large compared to its width (H � d � L). The essential idea of
the present model is to account for hydrodynamic coupling by considering the
modifications introduced by each flag in the ambient flow seen by its neighbour. The
resulting extensions of Lighthill’s EBT and LAEBT were used to study the linear
and nonlinear dynamics, and in particular the role of hydrodynamic coupling in
the synchronization of the two flags’ dynamics. In the linear case, flutter instability
leads to either in-phase or out-of-phase modes and hydrodynamic coupling appears
to destabilize the system. In the nonlinear saturated regime, our simulations show
that the flags synchronize after a transient regime. The selected flapping dynamics
at long times, and in particular the flags’ synchronization, generally corresponds to
linear predictions and the linear maps are therefore representative of what should be
expected in the nonlinear regime. Out-of-phase dynamics is thus dominant for small
values of M∗, while large M∗ correspond to a greater sensitivity of the phase to the
system’s parameters. In addition, in-phase motion is generally expected for small



d∗ and out-of-phase motion at larger d∗. These results are consistent with previous
experimental and numerical studies on this topic.

Interestingly, nonlinear selection mechanisms are observed to dominate the linear
selection in some cases where in-phase and out-of-phase modes have similar growth
rates, and appear to favour in-phase dynamics. The mechanisms of this nonlinear
selection are beyond the scope of the present work and should be the focus of further
investigation. Understanding such nonlinear selection mechanisms is an important
challenge and still an open question in the domain of fluid–structure interactions.
The present problem, and its simplified framework, provide an interesting benchmark
configuration to investigate this question in greater depth.

Finally, the present framework can easily be extended to account for more than two
flags (Michelin & Llewellyn Smith 2009; Tian et al. 2011b; Udding, Huang & Sung
2013; Favier, Revell & Pinelli 2015) and to couple the fluid–solid system to an electric
generator as for piezoelectric flags (Michelin & Doaré 2013; Xia, Michelin & Doaré
2015).
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