M. Ambroise, T. Levi, S. Joucla, B. Yvert, and S. Saïghi, Real-time biomimetic Central Pattern Generators in an FPGA for hybrid experiments, Frontiers in Neuroscience, vol.7, 2013.
DOI : 10.3389/fnins.2013.00215

URL : https://hal.archives-ouvertes.fr/hal-00956624

M. Antri, N. Mellen, C. , and J. R. , Functional Organization of Locomotor Interneurons in the Ventral Lumbar Spinal Cord of the Newborn Rat, PLoS ONE, vol.37, issue.8, 2011.
DOI : 10.1371/journal.pone.0020529.g003

G. Barrière, H. Leblond, J. Provencher, and S. Rossignol, Prominent Role of the Spinal Central Pattern Generator in the Recovery of Locomotion after Partial Spinal Cord Injuries, Journal of Neuroscience, vol.28, issue.15, pp.3976-3987, 2008.
DOI : 10.1523/JNEUROSCI.5692-07.2008

D. Barthélemy, H. Leblond, J. Provencher, and S. Rossignol, Nonlocomotor and Locomotor Hindlimb Responses Evoked by Electrical Microstimulation of the Lumbar Cord in Spinalized Cats, Journal of Neurophysiology, vol.96, issue.6, pp.3273-3292, 2006.
DOI : 10.1152/jn.00203.2006

D. Barthélemy, H. Leblond, and S. Rossignol, Characteristics and Mechanisms of Locomotion Induced by Intraspinal Microstimulation and Dorsal Root Stimulation in Spinal Cats, Journal of Neurophysiology, vol.97, issue.3, 1986.
DOI : 10.1152/jn.00818.2006

S. Bonnet, J. Bêche, S. Gharbi, O. Abdoun, F. Bocquelet et al., NeuroPXI: A real-time multi-electrode array system for recording, processing and stimulation of neural networks and the control of high-resolution neural implants for rehabilitation, IRBM, vol.33, issue.2, pp.55-60, 2012.
DOI : 10.1016/j.irbm.2012.01.013

G. T. Brown, The Intrinsic Factors in the Act of Progression in the Mammal, Proceedings of the Royal Society B: Biological Sciences, vol.84, issue.572, pp.308-3190077, 1911.
DOI : 10.1098/rspb.1911.0077

J. R. Cazalets, M. Borde, C. , and F. , Localization and organization of the central pattern generator for hindlimb locomotion in newborn rat, J. Neurosci, vol.15, pp.4943-4951, 1995.

J. R. Cazalets, Y. Sqalli-houssaini, C. , and F. , Activation of the central pattern generators for locomotion by serotonin and excitatory amino acids in neonatal rat., The Journal of Physiology, vol.455, issue.1, pp.187-204, 1992.
DOI : 10.1113/jphysiol.1992.sp019296

G. Charvet, L. Rousseau, O. Billoint, S. Gharbi, J. P. Rostaing et al., BioMEA???: A versatile high-density 3D microelectrode array system using integrated electronics, Biosensors and Bioelectronics, vol.25, issue.8, pp.1889-1896, 2010.
DOI : 10.1016/j.bios.2010.01.001

G. Courtine, Y. Gerasimenko, R. Van-den-brand, A. Yew, P. Musienko et al., Transformation of nonfunctional spinal circuits into functional states after the loss of brain input, Nature Neuroscience, vol.128, issue.10, pp.1333-1342, 2009.
DOI : 10.1038/nn.2401

G. Courtine, B. Song, R. R. Roy, H. Zhong, J. E. Herrmann et al., Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury, Nature Medicine, vol.81, issue.1, pp.69-74, 1093.
DOI : 10.1152/jn.01073.2004

M. R. Dimitrijevic, Y. Gerasimenko, and M. M. Pinter, Evidence for a Spinal Central Pattern Generator in Humansa, Annals of the New York Academy of Sciences, vol.7, issue.1 NEURONAL MECH, pp.360-376, 1998.
DOI : 10.1016/S0166-2236(96)10068-0

S. F. Giszter, Spinal cord injury: Present and future therapeutic devices and prostheses, Neurotherapeutics, vol.30, issue.1, pp.147-162, 2008.
DOI : 10.1016/S0165-0173(99)00008-9

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2390875

S. Grillner and P. Wallén, Central Pattern Generators for Locomotion, with Special Reference to Vertebrates, Annual Review of Neuroscience, vol.8, issue.1, 1985.
DOI : 10.1146/annurev.ne.08.030185.001313

L. Guevremont, C. G. Renzi, J. A. Norton, J. Kowalczewski, R. Saigal et al., Locomotor-Related Networks in the Lumbosacral Enlargement of the Adult Spinal Cat: Activation Through Intraspinal Microstimulation, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.14, issue.3, pp.266-272, 2006.
DOI : 10.1109/TNSRE.2006.881592

S. Harkema, Y. Gerasimenko, J. Hodes, J. Burdick, C. Angeli et al., Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study, The Lancet, vol.377, issue.9781, pp.1938-1947, 2011.
DOI : 10.1016/S0140-6736(11)60547-3

M. Heim, L. Rousseau, S. Reculusa, V. Urbanova, C. Mazzocco et al., Combined macro-/mesoporous microelectrode arrays for low-noise extracellular recording of neural networks, Journal of Neurophysiology, vol.108, issue.6, pp.1793-1803, 2011.
DOI : 10.1152/jn.00711.2011

A. A. Hill, J. Lu, M. A. Masino, O. H. Olsen, and R. L. Calabrese, A model of a segmental oscillator in the leech heartbeat neuronal network, Journal of Computational Neuroscience, vol.10, issue.3, pp.281-302, 2001.
DOI : 10.1023/A:1011216131638

R. M. Ichiyama, Y. P. Gerasimenko, H. Zhong, R. R. Roy, and V. R. Edgerton, Hindlimb stepping movements in complete spinal rats induced by epidural spinal cord stimulation, Neuroscience Letters, vol.383, issue.3, pp.339-344, 2005.
DOI : 10.1016/j.neulet.2005.04.049

E. M. Izhikevich, Simple model of spiking neurons, IEEE Transactions on Neural Networks, vol.14, issue.6, pp.1569-1572, 2003.
DOI : 10.1109/TNN.2003.820440

S. Joucla, P. Branchereau, D. Cattaert, Y. , and B. , Extracellular Neural Microstimulation May Activate Much Larger Regions than Expected by Simulations: A Combined Experimental and Modeling Study, PLoS ONE, vol.7, issue.8, 2012.
DOI : 10.1371/journal.pone.0041324.g010

URL : http://doi.org/10.1371/journal.pone.0041324

O. Kiehn and S. J. Butt, Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord, Progress in Neurobiology, vol.70, issue.4, pp.347-361, 2003.
DOI : 10.1016/S0301-0082(03)00091-1

O. Kjaerulff and O. Kiehn, Distribution of networks generating and coordinating locomotor activity in the neonatal rat spinal cord in vitro: a lesion study, J. Neurosci, vol.16, pp.5777-5794, 1996.

B. Lau, L. Guevremont, and V. K. Mushahwar, Strategies for Generating Prolonged Functional Standing Using Intramuscular Stimulation or Intraspinal Microstimulation, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.15, issue.2, pp.273-285897030, 2007.
DOI : 10.1109/TNSRE.2007.897030

M. A. Lemay and W. M. Grill, Modularity of Motor Output Evoked By Intraspinal Microstimulation in Cats, Journal of Neurophysiology, vol.91, issue.1, pp.502-514, 2003.
DOI : 10.1152/jn.00235.2003

D. S. Magnuson, R. Lovett, C. Coffee, R. Gray, Y. Han et al., Functional Consequences of Lumbar Spinal Cord Contusion Injuries in the Adult Rat, Journal of Neurotrauma, vol.22, issue.5, pp.529-543, 2005.
DOI : 10.1089/neu.2005.22.529

K. A. Mazurek, B. J. Holinski, D. G. Everaert, R. B. Stein, R. Etienne-cummings et al., Feed forward and feedback control for over-ground locomotion in anaesthetized cats, Journal of Neural Engineering, vol.9, issue.2, 2012.
DOI : 10.1088/1741-2560/9/2/026003

K. Minassian, I. Persy, F. Rattay, M. M. Pinter, H. Kern et al., Human lumbar cord circuitries can be activated by extrinsic tonic input to generate locomotor-like activity, Human Movement Science, vol.26, issue.2, pp.275-295, 2007.
DOI : 10.1016/j.humov.2007.01.005

P. Musienko, R. Van-den-brand, O. Maerzendorfer, A. Larmagnac, C. et al., Combinatory Electrical and Pharmacological Neuroprosthetic Interfaces to Regain Motor Function After Spinal Cord Injury, IEEE Transactions on Biomedical Engineering, vol.56, issue.11, pp.2707-2711, 2009.
DOI : 10.1109/TBME.2009.2027226

Y. Nishimura, S. I. Perlmutter, and E. E. Fetz, Restoration of upper limb movement via artificial corticospinal and musculospinal connections in a monkey with spinal cord injury, Frontiers in Neural Circuits, vol.7, 2013.
DOI : 10.3389/fncir.2013.00057

J. B. Ranck and . Jr, Which elements are excited in electrical stimulation of mammalian central nervous system: A review, Brain Research, vol.98, issue.3, pp.417-440, 1975.
DOI : 10.1016/0006-8993(75)90364-9

R. Saigal, C. Renzi, and V. K. Mushahwar, Intraspinal Microstimulation Generates Functional Movements After Spinal-Cord Injury, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.12, issue.4, pp.430-440, 2004.
DOI : 10.1109/TNSRE.2004.837754

S. Shahdoost, S. Frost, G. Acker, S. Van-dejong, S. Barbay et al., Towards a miniaturized brain-machine-spinal cord interface (BMSI) for restoration of function after spinal cord injury, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.486-489, 2014.
DOI : 10.1109/EMBC.2014.6943634

J. Tabak, W. Senn, M. J. O-'donovan, and J. Rinzel, Modeling of spontaneous activity in developing spinal cord using activity-dependent depression in an excitatory network, J. Neurosci, vol.20, pp.3041-3056, 2000.

R. Van-den-brand, J. Heutschi, Q. Barraud, J. Digiovanna, K. Bartholdi et al., Restoring Voluntary Control of Locomotion after Paralyzing Spinal Cord Injury, Science, vol.30, issue.32, pp.1182-1185, 2012.
DOI : 10.1523/JNEUROSCI.1435-10.2010

R. J. Vogelstein, F. Tenore, L. Guevremont, R. Etienne-cummings, and V. K. Mushahwar, A Silicon Central Pattern Generator Controls Locomotion in Vivo, IEEE Transactions on Biomedical Circuits and Systems, vol.2, issue.3, pp.212-222, 2008.
DOI : 10.1109/TBCAS.2008.2001867

J. Yeomans, P. Prior, and F. Bateman, Current-distance relations of axons mediating circling elicited by midbrain stimulation, Brain Research, vol.372, issue.1, pp.95-106, 1986.
DOI : 10.1016/0006-8993(86)91462-9