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Summary 

Einstein has shown that the matter curves the space-time. In its model, the space-time is a 

mathematical conceptualization unifying the space and the time that accounts for measured physical 

phenomena (delay of the perihelion of Mercury, deviation, curvature of light by a large mass, relativity 

of length and time, propagation of gravitational waves, caused in particular by coalescence of black 

holes, which materialize by infinitesimal deformations L / L of space-time (10-21)), etc. The question 

that then comes to mind is whether the mathematical conceptualization of space-time has a physical 

reality? In this case, what is the material of the fabric of the space-time that undulates or bends under 

gigantic masses in motion? Where, from a mechanical point of view, can we find an equivalent Young's 

modulus E to the fabric of the space-time? A first clue is the Casimir's force, which tells us that the 

vacuum of space is not empty ... From recent publications on the subject and simple analogies based on 

the strength of materials, we will show that if the E-module of space-time exists, it seems 

incommensurably large whatever the approach considered (elastic plates in 2 dimensions, plates 

analyzed by a tensor calculation in 4 dimensions, strings, Casimir force). In any case, only a measure of 

the latter would make it possible to decide definitively. 

 

 

 



2 
 
1) Determination of the young modulus of the fabric of the space time by analogy with the classical 

mechanic then with a tensorial calculation in 4 dimensions  

1.1) Determination of the base equations 

We have shown in previous publications that the relation between the curvature and the energy can be 

written in 2 dimensions (plate theory) and in 4 dimensions (General relativity theory) [23]. 

We have so: 

- In plate theory in two dimensions: 

𝑈 =
𝐷

2
[(

𝜕2𝑤(𝑥,𝑦)

𝜕𝑥2 )

2

+ 2𝑣
𝜕2𝑤(𝑥,𝑦)

𝜕𝑥2

𝜕2𝑤(𝑥,𝑦)

𝜕𝑦2
+ 2(1 − 𝑣)(

𝜕2𝑤(𝑥,𝑦)

𝜕𝑥𝜕𝑦
)

2

+ (
𝜕2𝑤(𝑥,𝑦)

𝜕𝑦2 )

2

]𝑥𝑦  (1) 

Or again, if we put following a more clearly way the curvature in one side and the energy on the 

other side of the equation, we obtain: 

[(
1

𝑅𝑥
)
2

+ (
1

𝑅𝑦
)

2

+ 2(1 − 𝜈) {(
1

𝑅𝑥𝑦
)

2

} + 2𝜈 {
1

𝑅𝑥

1

𝑅𝑦
}] =

24(1 − 𝜈2)

𝐸ℎ3
×

𝑈

𝑥𝑦
   (2) 

 

- Following the general relativity, if we put following a more clearly way the curvature of the space 

time in one side and the stress energy tensor on the other side of the equation, we obtain: 

𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 + 𝛬𝑔𝜇𝜈 =

8𝜋𝐺

𝑐4
𝑇𝜇𝜈    (3)   

With for memory for the stress energy tensor: 

𝑇𝜇𝑣 =

[
 
 
 
 
𝑚𝑐²

𝑉
𝜌𝑐𝑣𝑥

𝜌𝑐𝑣𝑦 𝜌𝑐𝑣𝑧

𝜌𝑐𝑣𝑥 𝜎𝑥𝑥
𝜏𝑥𝑦 𝜏𝑥𝑧

𝜌𝑐𝑣𝑦

𝜌𝑐𝑣𝑧

𝜏𝑦𝑥

𝜏𝑧𝑥

𝜎𝑦𝑦

𝜏𝑧𝑦

𝜏𝑦𝑧

𝜎𝑧𝑧 ]
 
 
 
 

       (4) 

If we suppose that the space-time fabric is a superposition of thin sheets of thickness Lp (with Lp the 
length of Planck), we obtain a multi sandwich universe. 
It is then possible by analogy between the two models (Einstein's general relativity and the plate theory in 
strength of materials) to find an evaluation of the Young's modulus E of the space-time E (N / m²). 

To do this, it is sufficient, to compare the curvature of the two equations (2) and (3). We obtain then: 

24(1 − 𝜈2)

𝐸ℎ²
×

𝑈

𝑎𝑏ℎ
≈

8𝜋𝐺

𝑐4
×

𝑈

 𝑉
     (5) 

By simplifying by U / V on each side of the equation, we obtain: 

8𝜋𝐺

𝑐4
≈

24(1 − 𝜈2)

𝐸ℎ²
    (6) 

The dimensional equation allows us to verify that this equivalence is reasonable: 

𝐿3

𝑀𝑇2 𝐿4

𝑇4

=>
1

𝑀
𝐿
𝑇2

=
1

𝑀
𝐿²

𝐿
𝑇²

𝐿²
=>

1

𝑀
𝐿
𝑇²

=
𝑠²

𝑘𝑔𝑚
    (7) 
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We can extract from the equation (6) an estimation of the Young's modulus E of the space-time fabric.. 

𝐸𝑓𝑎𝑏𝑟𝑖𝑐 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑝𝑎𝑐𝑒 𝑡𝑖𝑚𝑒 =
24(1 − 𝜈2)𝑐4

ℎ²8𝜋𝐺
   (8) 

By introducing  𝜅 =
8𝜋𝐺

𝑐4  (9) 

We obtain the Young modulus E of the space-time fabric by analogy with a thin sheet of thickness h of 

the space-time in bending: 

𝐸𝑓𝑎𝑏𝑟𝑖𝑐 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑝𝑎𝑐𝑒 𝑡𝑖𝑚𝑒 =
24(1 − 𝜈2)

ℎ²𝜅
    (10) 

v is the Poisson’s ratio of the space-time . 

If we assume that the thickness of the thin sheet is equal to the length of Planck Lp (smaller than it is 

possible to reach), we obtain: 

 

𝐸𝑓𝑎𝑏𝑟𝑖𝑐 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑝𝑎𝑐𝑒 𝑡𝑖𝑚𝑒 =
24(1 − 𝜈2)

𝐿𝑝²𝜅
    (11) 𝑤𝑖𝑡ℎ 𝐿𝑝 = √

ћ𝐺

𝑐3
    (12)    𝑎𝑛𝑑      𝜅 =

8𝜋𝐺

𝑐4
 

𝐸𝑓𝑎𝑏𝑟𝑖𝑐 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑝𝑎𝑐𝑒 𝑡𝑖𝑚𝑒 =
6(1 − 𝜈2)𝑐7

𝐺2ℎ
 =

3(1 − 𝜈2)𝑐7

𝐺2ћ𝜋
  (13)  

It will be noted that this last expression associates the 3 fundamental constants of physics, c, G and ℏ. 

1.2) Numerical application  

We apply the formula (11) from the following data: 

 

v = 0 (hypothesis) 

G = 6.6726x10-11 m3/kg/s² 

c = 299792458 m/s 

h =6.62607004x10-34 m² kg/s 

κ =2.07651x10-43 s²/(kg . m) 

Lp = 1.62 x10-35 m 

This results for the Young's modulus E is so: 

 

Espace time fabric  = 4.4247E+113 N/m² 

 

We can see the extremely high value of this young modulus following this approach. 
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1.3) Comparison of the obtained results with the state of the art– tensorial calculation of a plate in 4 

dimensions  

In the publication [5]: “The Mechanics of Spacetime {A Solid Mechanics Perspective on the Theory of 

General Relativity} T G Tenev and M F Horstemeyer” we have an expression of young modulus. 

The same approach was developed, but this time considering a plate in 4 dimensions and performing 

the tensor calculations. The authors arrive at the following expression: 

𝑌 = 2(1 + 𝑣)𝜇  With  𝜇 =
12

𝐿𝑝
2 𝜅

 and with 𝜅 =
8𝜋𝐺

𝑐4  and 𝐿𝑝 = √
ћ𝐺

𝑐3  and v = 1 

See. Formula 3.12 or 4.45 following the date of publication [5] considered with v = 1: 

𝑌 = 𝐸𝑠𝑝𝑎𝑐𝑒 𝑡𝑖𝑚𝑒 𝑓𝑎𝑏𝑟𝑖𝑐 =
48

𝐿𝑝²𝜅
=

24(1 + 𝑣)

𝐿𝑝²𝜅
   (14) 

Espace time fabric (v=1)  = 8.8495E+113 N /m² 
By taking v = 0 (Poisson’s ratio) to compare with our results, we obtain: 

𝐸𝑠𝑝𝑎𝑐𝑒 𝑡𝑖𝑚𝑒 𝑓𝑎𝑏𝑟𝑖𝑐 =
24

𝐿𝑝²𝜅
=

24(1 + 𝑣)

𝐿𝑝²𝜅
   (15) 

Espace time fabric (v=0)  = 4.43E+113 N /m² 
 

2) Determination of the Young modulus of the space time by an approach of wave transmit by the 

elastic material constituting the fabric of the universe 

2.1) Determination of the base equations 

We can consider the space-time fabric as an assembly of extremely fine and short strings (see Figure 1). 

We also consider that it is this fabric (invisible to our eyes since it is made up of elements of the size of 

Planck's length) which transmits the gravitational waves and bends in the presence of matter. 

 

      R 

 

  E,S             E,S 

 

 

 

 

 

 

Figure 1 – Fabric of the space time made of an assembly of thin strings that have a young modulus E 

and a section S – 

Lp 

Lp 

Lp 

Lp 

x 
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By definition of a force we have: 

𝐹 = 𝑚𝛾     (16) 

By denoting by S the section of the string and ρ the density of the material constituting it, we denote by 
u(x,t) the displacement of a point of a string : 

𝜌𝑆 × 𝛥𝑥 ×
𝜕²𝑢(𝑥, 𝑡)

𝜕𝑡²
= 𝐹(𝑥 + 𝑑𝑥) − 𝐹(𝑥)       (17) 

In addition: 

𝐹(𝑥 + 𝛥𝑥) = 𝐹(𝑥) +
𝜕𝐹(𝑥)

𝜕𝑥
𝛥𝑥    (18) 

By introducing the expression (18) into the expression (17) we obtain: 

𝜌𝑆 ×
𝜕²𝑢(𝑥, 𝑡)

𝜕𝑡²
=

𝜕𝐹(𝑥)

𝜕𝑥
       (19) 

In addition, the Hooke law allows to write: 

𝐹(𝑥) = 𝜎𝑆 = 𝐸𝜀𝑆       (20) 

By definition of a strain we have: 

𝜀 =
𝜕𝑢(𝑥)

𝜕𝑥
      (21) 

𝐹(𝑥) = 𝜎𝑆 = 𝐸𝜀𝑆 = 𝐸𝑆
𝜕𝑢(𝑥)

𝜕𝑥
       (22) 

So for a plane wave by introducing the equation (22) in the equation (19) we obtain: 

𝜌𝑆 ×
𝜕²𝑢(𝑥, 𝑡)

𝜕𝑡²
= 𝐸𝑆

𝜕²𝑢(𝑥)

𝜕𝑥²
        (23) 

 

We obtain the d’Alembert’s equation: 

𝜌

𝐸
×

𝜕²𝑢(𝑥, 𝑡)

𝜕𝑡²
=

𝜕²𝑢(𝑥)

𝜕𝑥²
         (24) 

By definition of a strain, we obtain for a plane wave: 

𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
= 𝜀(𝑥, 𝑡) = −

𝑎

𝐶
𝑓′ (𝑡 −

𝑥

𝐶
)        (25) 

And by the Hook law we obtain also: 

𝐹(𝑥) = 𝜎𝑆 = 𝐸𝜀𝑆 

𝜎(𝑥, 𝑡) = −
𝑎𝐸

𝐶
𝑓′ (𝑡 −

𝑥

𝐶
)         (26) 

𝜕²𝑢(𝑥, 𝑡)

𝜕𝑥²
=

𝑎

𝐶²
𝑓′′ (𝑡 −

𝑥

𝐶
)         (27) 

In addition we have: 
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𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
= 𝑎 × 𝑓′ (𝑡 −

𝑥

𝐶
)       (28) 

𝜕²𝑢(𝑥, 𝑡)

𝜕𝑡²
= 𝑎 × 𝑓′′ (𝑡 −

𝑥

𝐶
)        (29) 

If we introduce these two equations (27) and (29) in the d’Alembert’s formula we obtain: 

𝜌

𝐸
𝑎 × 𝑓′′ (𝑡 −

𝑥

𝑐
) =

𝑎

𝐶2
𝑓′′ (𝑡 −

𝑥

𝑐
)         (30) 

And finally we obtain: 

𝜌

𝐸
=

1

𝑐²
       (31) 

 

We can so deduct from the expression (31) the equivalent young modulus of the fibers that constitute 

the fabric of the space time. 

𝜌

𝐸
=

1

𝑐²
=> 𝐸 = 𝜌𝑐2         (32) 

If we consider that the space-time fabric consists of an infinity of these fibers / cords and that the 

gravitational waves propagate at the speed of light, we can evaluate the Young-E modulus of the space-

time. 

 

2.2) Numerical application (cf. [30]) 

We envisage two hypotheses, because the state of the art of current physics gives two values of the 

energy density of the vacuum. 

a) Hypothesis n°1 : the vacuum energy comes of the cosmologic constant  

The vacuum energy density: 𝜌𝑐𝑜𝑠𝑚𝑜𝑙𝑜𝑔𝑖𝑐 is 1E-9 J/m3  

The vacuum density from Ev =mc² => Ev/c² = m that imply 𝜌𝑐𝑜𝑠𝑚𝑜𝑙𝑜𝑔𝑖𝑐  = 1.11E-26 kg/m3 or 10-29 g/cm3 

The equivalent Young modulus E is so 1.11E-26 x 299792458² = 1E-9 N/m² 

Efabric of the space time  = 1E-9 N/m² 

b) Hypothesis n°2 : the vacuum energy comes of the quantum mechanics (field theory) 

The vacuum energy density: 𝜌𝑞𝑢𝑎𝑛𝑡𝑖𝑞𝑢𝑒 is 1E+113 J/m3  

The vacuum density from Ev =mc² => Ev/c² =m that imply 𝜌𝑞𝑢𝑎𝑛𝑡𝑖𝑐 = 1.11E+96 kg/m3 

The equivalent Young modulus E is so 1.11E96 x 299792458 ²= 1E113 N/m² 

Efabric of the space time = 1E113 N/m² 

 

The hypothesis of the quantum mechanics seems more realistic than the cosmologic approach by 

comparison with the previous results obtained. 
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3) Determination of the young modulus of the space time by a quantic approach– field theory and 

Casimir force  

3.1) Determination of the base equations 

The principle of the Casimir force is given figure 2 below. The vacuum energy of each side of the two 

plates create a force F which brings them closer together: 

     Casimir force (vacuum energy) 

 

 

 

 

 

 

Figure 2 – Definition of the Casimir force confirmed experimentally – 

 

In the case of an approach in one dimension, the energy due to the Casimir force takes the following 

expression (see [25] and [29]): 

𝑈 =
𝜋ћ𝑐

24𝐿
  (33) 

To obtain the associated force, we use the fact that a force derives of a potential: 

𝐹 = 𝑔𝑟𝑎𝑑 (𝑈)  (34) 

We obtain by deriving the energy by L: 

𝐹 = −
𝜋ћ𝑐

24𝐿2
   (35) 

Moreover, we can assimilate the displacement of the two plates due to the Casimir force F to an 
application of Hooke's law to the space-time fabric located between these two plates (see Figure 3). 

In this case, it is possible to consider, between the two surface plates S of a length L, an elastic material 

of Young's modulus E. 

 

 

 

 

 

 

Figure 3 – Equivalent material (fabric of the space time) located between the two plates loaded by the 

Casimir Force F– 

L 

S 
S F 

F 

L 

S F 

F 

E 
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The strain energy of this type of system loaded with a normal effort F supposed constant for L fixed is 

the following: 

𝑈 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑠𝑡𝑟𝑎𝑖𝑛 =
1

2
∫

(𝑁(𝑥))
2

𝐸𝑆

𝐿

0

𝑑𝑥 =
1

2
×

𝐹2𝐿

𝐸𝑆
   (36) 

Assuming that U = Ustrain energy   and considering the force F of Casimir we obtain for the elastic 

deformation energy of the fabric of the space time located between the two plates: 

𝑈𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑠𝑡𝑟𝑎𝑖𝑛 = 𝑈𝑐𝑎𝑠 =
ћ𝑐𝜋

24𝐿
=

1

2
×

(−
ћ𝑐𝜋
24𝐿2 )

2

𝐿

𝐸𝑆
   (37) 

So: 

ћ𝑐𝜋

24𝐿
=

1

2
×

ћ2𝑐²𝜋2𝐿 

24²𝐸𝑆𝐿4
  (38) 

Or again: 

ћ𝑐𝜋

24𝐿
=

1

𝐸𝑆
×

1

2
×

ћ2𝑐²𝜋2

24²
×

1

𝐿3
 

After simplification we obtain:  

1

𝐿
=

1

𝐸𝑆
×

ћ 𝑐𝜋

24𝐿
×

1

2𝐿²
 (39) 

With: 

𝑈 =
𝜋ћ𝑐

24𝐿
    (40) 

So we obtain: 

1

𝐿
=

1

2
×

1

𝐸𝑆
×

𝑈  

 𝐿²
   (41) 

The dimensional equation of 1/ES is: 

1

𝐸𝑆
=>

1

𝑀𝑃𝑎.𝑚²
=

1

𝑀𝑁
𝑚²

𝑚2
=

1

𝑀𝑁
=

1

𝑘𝑔
𝑚
𝑠²

=
𝑠²

𝑘𝑔𝑚
=

𝑇²

𝑀𝐿
    (42) 

From the expression (39), we can extract the equivalent Young's modulus E from the space-time fabric, 

which is also here that of the energy of the vacuum created by the disintegrating creations of the 

particles continuously and instantaneously (see quantum field theory). 

𝐸 =
ћ 𝑐𝜋 

48𝑆𝐿2
       (43) 

𝐸 =
𝑁.𝑚 × 𝑠 × 𝑚

𝑠 × 𝑚² × 𝑚²
=

𝑁

𝑚²
      (44) 
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3.2) Numerical application: 

By hypothesis we consider for L the Planck distance Lp in view to have the possibility to compare the 

results with the previous results obtained (S = L² = Lp
²). 

ћ =1.05457E-34 J.s 

Lp = 1.616252E-35 m 

c = 299792458 m/s 

 

Etissu de l’espace-temps = 3.03 E112 N/m² 

The results obtained is completely in connection with the previous results obtained.  

 

4) Conclusions 

The results are therefore similar regardless of the simplified approaches envisaged (see Table 1 below). 

The Young-E modulus of space-time fabric therefore seems extremely large. E seems to be of the order 

1E + 113 N / m². This remains to be confirmed by experience and measurement. 

 

Hypothesis Theory followed Equivalent Young 
modulus E obtained  

Numerical application 
at the Planck scale (E in 
N/m²) 

Fabric of the space 
time in 
compression 
between the two 
plates  

Casimir force 
developed in one 
direction and use 
of the Hook law  

𝐸 =
ћ 𝑐𝜋 

48𝑆𝐿2
 

 

L =Lp 
S = Lp² 
 
E = 3.03 E112 

Waves propagation 
in the fabric of the 
space time  

d’Alembert’s 
Equation 

𝐸 = 𝜌𝑐² 𝜌 issued of the 
quantum field theory  
E = 1E113 

The space time is a 
multi-sandwich 
constituted of a 
multitude of thin 
plates of Planck 
thickness Lp 

By analogy with 
the relation 
between the 
curvature and 
energy issued of 
the plate theory 
and the formula of 
Einstein general 
relativity  

𝐸 =
24(1 − 𝜈2)

ℎ²𝜅
    

 

h = Lp 

if v = 0 

 

 

 

 
E = 4.43E+113 

Elastic theory and 
tensor approach of 
the plates theory in 
4 dimensions  

See [5] 
𝐸 =

48

𝐿𝑝²𝜅
=

24(1 + 𝑣)

𝐿𝑝²𝜅
 

h =Lp 
If v=1  
E = 8.8495E+113 
If v=0  (added by  DI) 
E = 4.43E+113 

Table 1 – Comparison of different approaches and values obtained from the young modulus E of the 

space time fabric – 
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