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Summary 

 

The quantum mechanics, in the infinitesimal world, is the reign of the quantification of energies, and 

of the probability of presence of particles with the famous wave function ψ associated at the 

Schrodinger equation. The General relativity, is for it, reserved at the infinitely large world where the 

mater, the energy density 𝑇𝜇𝜈 influence the curvature 𝐺𝜇𝜈 of the space time at 4 dimensions and 

reciprocally. Finally, the strength of materials is the mechanic of objects at the human scale (beams, 

columns, plates, shells) used for the design of structures, without common measures with this two 

pillars of the of the physics cited earlier. We are going to show in first part of this paper that the 

results of the quantum mechanics (quantification of energy, shape of the wave function) are similar 

at the eigen frequencies and eigen modes of a beam. In second part, we will show on simples cases, 

that the concepts of curvature linked with energy density present in general relativity are equally at 

the bases of the fundamental equations of the elasticity and of the strength of material. We will 

demonstrate finally that the stress energy tensor written for small speeds non relativistic is an 

extension in 4 dimensions of stress tensor of the elasticity theory. 
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1st part) – Quantum mechanics and beam vibration  

1.1) Free vibration of a beam on two supports – natural frequencies and mode of vibration 

We consider a beam on two supports, with a span L (m), carried out with a material of elastic 

modulus E (MPa), that have a section with an inertia I (m4) and an area S (m²) and that have a mass 

by unit of length (m= S) in kg/m (cf. figure 1). [4] 

The beam is in free vibration and as a deflection along the time 𝑦(𝑥,𝑡) : 

 

           

      

      

 

 

 

                      

Figure 1 – Beam on 2 supports under its self-weight – 

We can write: 

𝐹 = 𝑚𝑎 = 𝑚
𝜕²𝑦(𝑥,𝑡)

𝜕𝑡²
= 𝑚𝑦̈(𝑥,𝑡)     (1) 

In addition, we have by connecting the radius of curvature R (m) at the bending moment 𝑀(𝑥,𝑡) : 

1

𝑅
=

𝜕2𝑦(𝑥,𝑡)

𝜕𝑥2
=

𝑀(𝑥,𝑡)

𝐸𝐼
      (2) 

Knowing that: 

𝜕𝑀(𝑥,𝑡)

𝜕𝑥
= 𝑉(𝑥,𝑡)   (3) 

𝜕𝑉(𝑥,𝑡)

𝜕𝑥
= −𝑞(𝑥,𝑡)     (4) 

We obtain by deriving twice respect to 𝑥  the equation (2): 

2

𝑥²
(
1

𝑅
) =

4𝑦(𝑥,𝑡)

𝜕𝑥4
=

2

𝑥²
(
𝑀(𝑥,𝑡)

𝐸𝐼
) =

−𝑞(𝑥,𝑡)

𝐸𝐼
     (5) 

So: 

𝐸𝐼 
4𝑦(𝑥,𝑡)

𝜕𝑥4
= −𝑞(𝑥,𝑡)       (6) 

By equating equations (1) and (6) in the case of auto-vibration, we obtain the well-known differential 

equation which controls the self-vibration of a beam on 2 supports: 

𝑥 

𝑀,𝐸, 𝐼 

𝑦(𝑥,𝑡) 

𝑦 

𝐿 
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𝑚
𝜕²𝑦(𝑥,𝑡)

𝜕𝑡²
= −𝐸𝐼 

4𝑦(𝑥,𝑡)

𝜕𝑥4
    (7) 

So : 

4𝑦(𝑥,𝑡)

𝜕𝑥4
+ (

𝑚

𝐸𝐼
)
𝜕²𝑦(𝑥,𝑡)

𝜕𝑡²
= 0      (8) 

If we put 𝑦(𝑥,𝑡) = 𝑞(𝑡)(𝑥)
  (9) 

By replacing in equation (8) above, we obtains:  

𝐸𝐼𝑞(𝑡)(𝑥)
𝑖𝑉 + 𝑆𝑞̈(𝑡)𝜙(𝑥) = 0     (10) 

We can therefore separate the variables: 


𝐼𝑉


= −

𝑆

𝐸𝐼
×

𝑞̈

𝑞
   (11) 

As this equation has to be verified for all 𝑥 or t, the above ration have to be constant. 

We therefore define: 


𝐼𝑉


= −

𝑆

𝐸𝐼
×

𝑞̈

𝑞
=

𝛼4

𝐿4
   (12) 

And we define the pulsation (circular natural frequency) ω thus: 

2 =
𝛼4

𝐿4
×

𝐸𝐼

𝑆
      (13) 

We can cut in two parts the differential equation (12) in two equations (separation of variables): 


(𝑥)
𝐼𝑉 −

𝛼4

𝐿4
(𝑥) = 0     (14) 

𝑞̈(𝑡) + 2𝑞(𝑡) = 0     (15) 

The study of the first equation gives the following general equation: 


(𝑥)

= 𝐴𝑠𝑖𝑛 (𝛼
𝑥

𝐿
) + 𝐵𝑐𝑜𝑠 (𝛼

𝑥

𝐿
) + 𝐶𝑠𝑖𝑛ℎ (𝛼

𝑥

𝐿
) + 𝐷𝑐𝑜𝑠ℎ (𝛼

𝑥

𝐿
)    (16) 

And the successive derivative gives: 

′(𝑥) = 𝐴
𝛼

𝐿
𝑐𝑜𝑠 (𝛼

𝑥

𝐿
) − 𝐵

𝛼

𝐿
𝑠𝑖𝑛 (𝛼

𝑥

𝐿
) + 𝐶

𝛼

𝐿
𝑐𝑜𝑠ℎ (𝛼

𝑥

𝐿
) + 𝐷

𝛼

𝐿
𝑠𝑖𝑛ℎ (𝛼

𝑥

𝐿
)   (17) 

′′(𝑥) = −𝐴
𝛼2

𝐿2
𝑠𝑖𝑛 (𝛼

𝑥

𝐿
) − 𝐵

𝛼2

𝐿2
𝑐𝑜𝑠 (𝛼

𝑥

𝐿
) + 𝐶

𝛼2

𝐿2
𝑠𝑖𝑛ℎ (𝛼

𝑥

𝐿
) + 𝐷

𝛼2

𝐿2
𝑐𝑜𝑠ℎ (𝛼

𝑥

𝐿
)   (18) 

′′′(𝑥) = −𝐴
𝛼3

𝐿3
𝑐𝑜𝑠 (𝛼

𝑥

𝐿
) + 𝐵

𝛼3

𝐿3
𝑠𝑖𝑛 (𝛼

𝑥

𝐿
) + 𝐶

𝛼3

𝐿3
𝑐𝑜𝑠ℎ (𝛼

𝑥

𝐿
) + 𝐷

𝛼3

𝐿3
𝑠𝑖𝑛ℎ (𝛼

𝑥

𝐿
)   (19) 


𝐼𝑉

(𝑥)
= 𝐴

𝛼4

𝐿4
𝑠𝑖𝑛 (𝛼

𝑥

𝐿
) + 𝐵

𝛼4

𝐿4
𝑐𝑜𝑠 (𝛼

𝑥

𝐿
) + 𝐶

𝛼4

𝐿4
𝑠𝑖𝑛ℎ (𝛼

𝑥

𝐿
) + 𝐷

𝛼4

𝐿4
𝑐𝑜𝑠ℎ (𝛼

𝑥

𝐿
)  (20) 

The 4 boundary conditions allows to write: 
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0)0( x
  

0)( Lx
  

0
)0(


x

II


  

0
)(


Lx

II


  


(𝑥=0)

= 𝐴𝑠𝑖𝑛 (𝛼
0

𝐿
) + 𝐵𝑐𝑜𝑠 (𝛼

0

𝐿
) + 𝐶𝑠𝑖𝑛ℎ (𝛼

0

𝐿
) + 𝐷𝑐𝑜𝑠ℎ (𝛼

0

𝐿
)   (21) 


(𝑥=0)

= 0𝐴 + 𝐵 + 0𝐶 + 𝐷 = 0 (22) 


(𝑥=𝐿)

= 𝐴𝑠𝑖𝑛 (𝛼
𝐿

𝐿
) + 𝐵𝑐𝑜𝑠 (𝛼

𝐿

𝐿
) + 𝐶𝑠𝑖𝑛ℎ (𝛼

𝐿

𝐿
) + 𝐷𝑐𝑜𝑠ℎ (𝛼

𝐿

𝐿
)   (23) 


(𝑥=𝐿)

= 𝐴𝑠𝑖𝑛(𝛼) + 𝐵𝑐𝑜𝑠(𝛼) + 𝐶𝑠𝑖𝑛ℎ(𝛼) + 𝐷𝑐𝑜𝑠ℎ(𝛼) = 0 (24) 

′′(𝑥=0) = −𝐴
𝛼2

𝐿2
𝑠𝑖𝑛 (𝛼

0

𝐿
) − 𝐵

𝛼2

𝐿2
𝑐𝑜𝑠 (𝛼

0

𝐿
) + 𝐶

𝛼2

𝐿2
𝑠𝑖𝑛ℎ (𝛼

0

𝐿
) + 𝐷

𝛼2

𝐿2
𝑐𝑜𝑠ℎ (𝛼

0

𝐿
)   (25) 

′′(𝑥=0) = 0𝐴 − 𝐵
𝛼2

𝐿2 + 0𝐶 + 𝐷
𝛼2

𝐿2 = 0 (26) 

′′(𝑥=𝐿) = −𝐴
𝛼2

𝐿2
𝑠𝑖𝑛 (𝛼

𝐿

𝐿
) − 𝐵

𝛼2

𝐿2
𝑐𝑜𝑠 (𝛼

𝐿

𝐿
) + 𝐶

𝛼2

𝐿2
𝑠𝑖𝑛ℎ (𝛼

𝐿

𝐿
) + 𝐷

𝛼2

𝐿2
𝑐𝑜𝑠ℎ (𝛼

𝐿

𝐿
)  (27) 

′′(𝑥=𝐿) = −𝐴
𝛼2

𝐿2 𝑠𝑖𝑛(𝛼) − 𝐵
𝛼2

𝐿2 𝑐𝑜𝑠(𝛼) + 𝐶
𝛼2

𝐿2 𝑠𝑖𝑛ℎ(𝛼) + 𝐷
𝛼2

𝐿2 𝑐𝑜𝑠ℎ(𝛼) = 0 (28) 

We can put these equations on the form of a matrix: 

[
 
 
 
 
 

0 𝐵  0                  𝐷
𝐴𝑠𝑖𝑛𝛼 𝐵𝑐𝑜𝑠𝛼 𝐶𝑠𝑖𝑛ℎ𝛼 𝐷𝑐𝑜𝑠ℎ𝛼

0

−𝐴
𝛼²𝑠𝑖𝑛𝛼

𝐿²

−𝐵
𝛼²

𝐿²

−𝐵
𝛼²𝑐𝑜𝑠𝛼

𝐿²

0

𝐶
𝛼²𝑠𝑖𝑛ℎ𝛼

𝐿²

𝐷
𝛼²

𝐿²

𝐷
𝛼²𝑐𝑜𝑠ℎ𝛼

𝐿² ]
 
 
 
 
 

  (29) 

The determinant of this matrix have to be null. 

We notice that from the equations (1) and (3) that B = D = 0 


(𝑥)

= 𝐴𝑠𝑖𝑛 (𝛼
𝑥

𝐿
) + 𝐵𝑐𝑜𝑠 (𝛼

𝑥

𝐿
) + 𝐶𝑠𝑖𝑛ℎ (𝛼

𝑥

𝐿
) + 𝐷𝑐𝑜𝑠ℎ (𝛼

𝑥

𝐿
)   (30) 


(𝑥)

= 𝐴𝑠𝑖𝑛 (𝛼
𝑥

𝐿
) + 𝐶𝑠𝑖𝑛ℎ (𝛼

𝑥

𝐿
)   (31) 

And we have: −
𝑆

𝐸𝐼
×

𝑞̈

𝑞
=

𝛼4

𝐿4    (32) 

The two equations (2) and (4) gives: 


(𝑥=𝐿)

= 𝐴𝑠𝑖𝑛(𝛼) + 𝐶𝑠𝑖𝑛ℎ(𝛼) = 0 (33) 

′′(𝑥=𝐿) = −𝐴
𝛼2

𝐿2 𝑠𝑖𝑛(𝛼) + 𝐶
𝛼2

𝐿2 𝑠𝑖𝑛ℎ(𝛼) = 0 (34) 
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So: 


(𝑥=𝐿)

= 𝐴𝑠𝑖𝑛(𝛼) + 𝐶𝑠𝑖𝑛ℎ(𝛼) = 0   (35)  

′′(𝑥=𝐿) = −𝐴𝑠𝑖𝑛(𝛼) + 𝐶𝑠𝑖𝑛ℎ(𝛼) = 0   (36)  

The sum of these two equations gives: 

2𝐶𝑠𝑖𝑛ℎ(𝛼) = 0 =>  𝛼 = 0 𝑜𝑢 𝐶 = 0 (37) 

The subtraction of these two equations gives: 

2𝐴𝑠𝑖𝑛(𝛼) = 0 =>  𝛼 = 𝑛 And so C = 0 (38) 

Is the Eigen value of the system. 

We obtain the following equation of the Eigen mode: 


(𝑥)

= 𝐴𝑠𝑖𝑛 (
𝑛𝑥

𝐿
)   (39) 

That we write in function of n (quantification): 

The Eigen mode is so written: 


𝑛(𝑥)

= 𝐴𝑛𝑠𝑖𝑛 (
𝑛𝑥

𝐿
)   (40) 

The norm of the Eigen mode is so written: 

∫ 
𝑛
(𝑥)

𝐿

0


𝑛
(𝑥) = ∫ 𝐴𝑛

2𝑠𝑖𝑛
2(

𝑛𝑥
𝐿

)
𝑑𝑥  (41)

𝐿

0

 

We replace du sin²(ax) by 
1

2
(1 − cos (2𝑎𝑥))  (42) 

∫ 
𝑛
(𝑥)

𝐿

0


𝑛
(𝑥) = 𝐴𝑛

2 ∫
1

2

𝐿

0

(1 − 𝑐𝑜𝑠 (
2𝑛𝑥

𝐿
))𝑑𝑥  (43) 

We define 𝑢 =
2𝑛𝑥

𝐿
 

𝑑𝑢 =
2𝑛

𝐿
𝑑𝑥 

𝑑𝑥 =
𝐿

2𝑛
𝑑𝑢 

∫ 
𝑛
(𝑥)

𝐿

0


𝑛
(𝑥) = 𝐴𝑛

2 ∫
1

2
𝑑𝑥 + 𝐴𝑛

2
1

2
∫

𝐿

2𝑛
𝑐𝑜𝑠𝑢 𝑑𝑢    (44)

𝐿

0

𝐿

0

 

The antiderivative of cosu is sinu : 

∫ 
𝑛
(𝑥)

𝐿

0


𝑛
(𝑥) = 𝐴𝑛

2 [(
𝑥

2
−

𝐿

4𝑛
𝑠𝑖𝑛 (

2𝑛𝑥

𝐿
))]

0

𝐿

= 𝐴𝑛
2 (

𝐿

2
− 0 − (0 − 0)) =

𝐴𝑛
2𝐿

2
   (45)  

We note that if we chose𝐴𝑛 = √
2

𝐿
    (46)) the modes 

𝑛
(𝑥) would form an orthonormal basis for the 

canonical scalar product. 
In the case of normed Eigen vector we have so: 
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
𝑛(𝑥)

= √
2

𝐿
𝑠𝑖𝑛 (

𝑛𝑥

𝐿
)    (47) 

 

We have to study the second equation now : 

𝑞̈(𝑡) + 2𝑞(𝑡) = 0 

We fix 𝑞(𝑡)as following: 

𝑞(𝑡) = 𝑎𝑐𝑜𝑠𝑡 + 𝑏𝑠𝑖𝑛𝑡 

𝑞̇(𝑡) = −𝑎𝑠𝑖𝑛𝑡 + 𝑏𝑐𝑜𝑠𝑡 

𝑞̈(𝑡) = −𝑎²𝑐𝑜𝑠𝑡 − 𝑏2𝑠𝑖𝑛𝑡 

At the time t = 0, the system is in static, and so the speed is null:  

𝑞̇(𝑡=0) = −𝑎𝑠𝑖𝑛0 + 𝑏𝑐𝑜𝑠0 

That imply b = 0: 

And so the final deflection of the beam is: 

𝑦(𝑥,𝑡) = 𝑞(𝑡)(𝑥)
      (9) 

𝑦𝑛(𝑥,𝑡) = 𝑎√
2

𝐿
𝑠𝑖𝑛 (

𝑛𝑥

𝐿
) cos(𝜔𝑡)       (9𝑏𝑖𝑠) 

Note 

We find this result by writing that the determinant of the matrix of the components must be zero. 

Determination of circular natural frequency: 

2 =
𝛼4

𝐿4
×

𝐸𝐼

𝑆
   (48) 

With α = n   (49) 

2 =
𝑛44

𝐿4
×

𝐸𝐼

𝑆
  (50)      =>   =

𝑛²²

𝐿²
√

𝐸𝐼

𝑆
   (51) 

With these equations, we can define the different Eigen mode of vibration of the beam (cf. figure 2). 

1st mode : 

 

 

 

 

1 =
²

𝐿²
√

𝐸𝐼

𝑆
 


1(𝑥)

= √
2

𝐿
𝑠𝑖𝑛 (

𝑥

𝐿
) 
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2nd mode : 

 

 

 

 

 

3rd mode : 

 

 

 

 

 

 

Figure 2 – Eigen mode and circular natural frequencies of a beam on two supports – 

1.2) Particle in a potential well with an infinite dimension  

We consider a particle in a potential well as defined below (cf. figure 3). 

 
Figure 3 – Particle in movement in a potential well – 

The Schrodinger equation independent of the time can be written as following: 

(
ħ2

2𝑚
)

𝜕2
(𝑥)

𝜕𝑥2
+ 𝐸𝑚(𝑥)

= 0       (52)  

2 =
4²

𝐿²
√

𝐸𝐼

𝑆
 


2(𝑥)

= √
2

𝐿
𝑠𝑖𝑛 (

2𝑥

𝐿
) 

 

2 =
9²

𝐿²
√

𝐸𝐼

𝑆
 


3(𝑥)

= √
2

𝐿
𝑠𝑖𝑛 (

3𝑥

𝐿
) 

 

m 

m 

v 

v 

𝑥 

L 

0 
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This equation can be also written on the form curvature = k energy 
𝑑2

(𝑥)

𝑑𝑥2
= −(

2𝑚

ħ2
(𝑥))𝐸𝑚     (52 𝑏𝑖𝑠) 

 
The dimensional equation is so the following: 

1

𝑚²
=

𝑘𝑔

(
𝑘𝑔𝑚²𝑠

𝑠²
)
2 ×

𝑘𝑔𝑚²

𝑠²
 

1

𝑚²
=

𝑠²

𝑘𝑔𝑚4
×

𝑘𝑔𝑚²

𝑠²
 

1

𝑚²
=

𝑠²

𝑘𝑔𝑚
×

𝑈

𝑚3
 

 
The boundary conditions are therefore the following: 
The particle is present in the potential well:  The particle is not present in the potential well: 
0 ≤ 𝑥 ≤ 𝐿         𝑥 < 0 ou 𝑥 > 𝐿 

(
ħ2

2𝑚
)

𝜕2
(𝑥)

𝜕𝑥2
+ 𝐸𝑚(𝑥)

= 0                                                                                               
(𝑥)

= 0 

The particle follows the Schrodinger equation    there is no particle 
Otherwise, 

(𝑥)
 is a continuous function. The consequence is so: 

(0)
= 

(𝐿)
= 0  

 
So: 

𝑑2
(𝑥)

𝑑𝑥2
+ 𝑘2

(𝑥)
= 0     (53) 

With: 

𝑘2 =
2𝑚𝐸𝑚

ħ2
     (54) 

 
The solution of the wave function for this differential equation is of the following shape: 
 


(𝑥)

= 𝐴𝑠𝑖𝑛(𝑘𝑥) + 𝐵𝑐𝑜𝑠(𝑘𝑥)      (55) 

 
We suppose that the energy Em is positive. 
 
By use of the boundary condition we can find the constant A and B: 
In 𝑥 = 0, 

(0)
= 0 : 

That this imply that  𝐵 = 0 


(𝑥)
= 𝐴𝑠𝑖𝑛(𝑘𝑥) 

In  𝑥 = 𝐿, 
(𝐿)

= 0 : 


(𝐿)

= 𝐴𝑠𝑖𝑛(𝑘𝐿) = 0 

 
It is so necessary that with A and k different from 0 that 𝑘𝐿 = 𝑛 
That imply that: 

𝑘 =
𝑛

𝐿
      (56) 

With n an integer =1,2,3…… 
 
As we have posed: 
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𝑘2 =
2𝑚𝐸𝑚

ħ2
 

The result is : 

𝑘2 =
2𝑚𝐸𝑚

ħ2
=

𝑛22

𝐿2
     (57) 

 
We finally obtain the quantified values of the energy: 

𝐸𝑚,𝑛 =
𝑛22ħ2

2𝑚𝐿2
    (58) 

With n = 1,2,3,… 
 
So, the Eigen values of the energy are quantified. 
 
We can finally write the expression of the wave function: 


(𝑥)

= 𝐴𝑠𝑖𝑛 (
𝑛𝑥

𝐿
𝑥) 

We are looking for now the value of the constant A: 
 
As the particle has to be somewhere in the quantum well  

The function ‖(𝑥)‖
2

= 1 to satisfy the density of probability (the particle must be somewhere in 

the box between 0 and L). 

∫ ‖(𝑥)‖
2
𝑑𝑥 = 1    (59)

𝐿

0

 

∫ 𝐴2𝑠𝑖𝑛² (
𝑛𝑥

𝐿
)𝑑𝑥

𝐿

0

=
𝐴2

2
∫ {1 − 𝑐𝑜𝑠 (

2𝑛𝑥

𝐿
)} 𝑑𝑥

𝐿

0

=
𝐴2

2
[𝑥 −

𝐿

2𝑛
𝑠𝑖𝑛 (

2𝑛𝑥

𝐿
)]

0

𝐿

=
𝐴2

2
(𝐿 −

𝐿

2𝑛
𝑠𝑖𝑛 (

2𝑛𝐿

𝐿
)) =

𝐴2𝐿

2
= 1 

So 𝐴 = √
2

𝐿
     (60) 

 
And the solution of the problem in the quantum well, the wave function, is so: 
 


(𝑥)

= √
2

𝐿
𝑠𝑖𝑛 (

𝑛𝑥

𝐿
𝑥)    (61) 

                 Wave function           probability to be present   


(𝑥)

= √
2

𝐿
𝑠𝑖𝑛 (

𝑛𝑥

𝐿
𝑥)                     ‖(𝑥)‖

2
=

2

𝐿
𝑠𝑖𝑛² (

𝑛𝑥

𝐿
𝑥)     (62)                   

 
Not about the Energy: 

By the following classic notation:𝐸 = ℎ𝑣 =
ℎ

𝑇
 

And with 𝑇 =
2


 

𝐸 =
ℎ

2
= ħ 

ħ =
𝑛²²

𝐿²
(

ħ2

2m
) 

 =
𝑛²²

𝐿²
(
ħ

2m
)   (63) 
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1.3 Conclusion of this first part 
 
Table 1 below shows the perfect analogy between the vibrations of a beam on two supports 
(resulting from the strength of the materials) and the quantification of the energy of a particle in a 
quantum well (derived from quantum mechanics). 
 

Case 
studied 

Eigen value Eigen Modes  

Natural circular Frequencies Quantified 
energy 

Eigen mode of 
oscillation of a beam  

Expression of the Wave 
function  

Beam on 
two 
supports  

 =
𝑛²²

𝐿²
(√

𝐸𝐼

𝑆
) 


𝐼𝑉


= −

𝑆

𝐸𝐼
×

𝑞̈

𝑞
=

𝛼4

𝐿4
 


(𝑥)
𝐼𝑉 −

𝛼4

𝐿4
(𝑥) = 0 

𝑦(𝑥,𝑡) = 𝑞(𝑡)(𝑥)
 

Without 
interests 

𝑛(𝑥)
= √

2

𝐿
𝑠𝑖𝑛 (

𝑛𝑥

𝐿
) 


𝐼𝑉


= −

𝑆

𝐸𝐼
×

𝑞̈

𝑞
=

𝛼4

𝐿4
 

𝑑2𝑞(𝑡)

𝑑𝑡²
+ (

𝛼4𝐸𝐼

𝐿4𝑆
)𝑞(𝑡)

= 0 
𝑦(𝑥,𝑡) = 𝑞(𝑡)(𝑥)

 

Without interests 

Particle 
in the 
potential 
well 

With the notation :𝐸 = ℎ𝑣 =
ℎ

𝑇
 

 =
𝑛²²

𝐿²
(
ħ

2m
) 

𝑑2
(𝑥)

𝑑𝑥2
+ (

2𝑚𝐸𝑚

ħ2
)

(𝑥)
= 0 

E =
𝑛²²

𝐿²
(

ħ2

2m
) 

Without interests 


𝑛(𝑥)

= √
2

𝐿
𝑠𝑖𝑛 (

𝑛𝑥

𝐿
) 

𝑑2
(𝑥)

𝑑𝑥2
+ (

2𝑚𝐸𝑚

ħ2
)

(𝑥)
= 0 

Tableau 1 – Analogy between the natural circular frequencies of vibration of a beam on 2 supports 
and the quantified energy of a particle in a quantum well  

 

The circular natural frequencies  of a beam in strength of materials have an analogy with the jump 

of quantified energy Em of a particle in a quantum well. (√
𝐸𝐼

𝑆
)
𝑅𝐷𝑀

=> (
ħ

2m
)
𝑞𝑢𝑎𝑛𝑡𝑖𝑞𝑢𝑒

 

The Eigen modes s  of vibration of a beam in strength of materials have an analogy with the Eigen 
mode of the wave function in the quantum well. 
 
 
 
 
2nd part) Relation between curvature and energy in 1 and 2 dimensions (beam and slab in strength 

of materials) and in 4 dimensions (General relativity)  

2.1) Case of the beam on two simple supports  
Considering the same beam as that defined in figure 1. 

The fundamental relation connecting the curvature (1/R) at the bending moment 𝑀(𝑥)and at the 

second derivative of the deflection  𝑦(𝑥) writes: 

𝑑2𝑦

𝑑𝑥2
= −

𝑀(𝑥)

𝐸𝐼
=

1

𝑅 
     (64) 

In this expression, 𝑦(𝑥) is the deflection of the beam (m), 𝑀(𝑥) the bending moment (N.m), E the 

young modulus of the material that constitute the beam (N/m²), I the inertia in(m4) and R the 

curvature radius in (m). 
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The exact expression of the curvature is given in the expression (65). The part in cube root is negligible. 

1

𝑅
=

𝑑²𝑦
𝑑𝑥²

(√1 + (
𝑑𝑦
𝑑𝑥

)
2

)

3  (65) 

In addition the elastic bending energy of a beam can be written as: 

𝑈 =
1

2
∫

𝑀(𝑥)
2

𝐸𝐼
𝑑𝑥     (66)

𝐿

0

 

Considering to simplify a beam under a constant bending moment M at each extremity (cf. figure 4). 

 

 

           

      

      

 

 

 

Figure 4 – Beam on two supports under a bending moment M at each extremity – 

The bending moment equation (pure bending) is the following: 

𝑀(𝑥) = 𝑀      (67) 

From the equation (64) w obtain: 

𝑑2𝑦

𝑑𝑥2
= −

𝑀

𝐸𝐼
=

1

𝑅 
     (68) 

𝑀(𝑥) = 𝑀 = −
𝐸𝐼

𝑅
     (69) 

By introducing the expression (69) in the expression of bending energy (66): 

𝑈 =
1

2
∫

(𝐸𝐼)2

𝑅2𝐸𝐼
𝑑𝑥 =

1

2
∫

𝐸𝐼

𝑅2
𝑑𝑥     

𝐿

0

   
𝐿

0

 

With the curvature that is constant, we obtain: 

𝑈 =
1

2

𝐸𝐼𝐿

𝑅2
 

So in pure bending: 
1

𝑅2
=

2

𝐸𝐼
(
𝑈

𝐿
)  (70) 

𝑀,𝐸, 𝐼 

𝑥 

𝑦(𝑥,𝑡) 
M 

R 

𝑦 

𝐿 

M 
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We obtain thus a relation between the curvature and the strain energy of a beam  
 
Note: 
By integral two times from 𝑥 the expression (68) and considering that the deflection have to be null 
on each support, we obtain the expression of the deflection. 
 

𝑦(𝑥) = −
𝑀

2𝐸𝐼
𝑥2 +

𝑀𝐿

2𝐸𝐼
𝑥   (71) 

And we find the well-known result of the strength of materials: 

𝑦(𝐿/2) = −
𝑀𝐿2

8𝐸𝐼
+

𝑀𝐿2

4𝐸𝐼
=

𝑀𝐿2

 8𝐸𝐼
   (72) 

𝑑2𝑦(𝑥)

𝑑𝑥2
−

𝑀

𝐸𝐼
=

1

𝑅 
      

 
2.2) Case of a thin plate of thickness h  
Considering a thin plane h, of sides 𝑥 et 𝑦 sunder a bending moments Mx  (cf. figure 5) : 

 

 

                

                  

      

Figure 5 – Plate under a bending moment on its sides – 

𝑀𝑥 Represent a bending moment by unit of length: 

 

Under the bending moment, the plate is in bending and takes a curvature of radius R as indicated at 

the figure 6 below: 

: 

 

 

 

 

 

 

Figure 6 – Relation between the radius of curvature R of the plate and each mean fiber – 

We have following the figure 6: 𝑅𝑥𝜃 = 𝑑𝑠 ≈ 𝑥   (73) 

And we have a relation connecting the curvature 1/R and the defection w of the plate: 

1

𝑅𝑥
= 

𝜕2𝑤(𝑥,𝑦)

𝜕𝑥2
  (74) 

θ 
R 

𝑑𝑠 ≈ 𝑥 

𝑥 

𝑀𝑥 

𝑦 

𝑀𝑥 

ℎ 
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By introducing the expression (74) in the expression (73) we obtain: 

𝜃 =
𝑥

𝑅𝑥
= −

𝜕2𝑤(𝑥,𝑦)

𝜕𝑥2
𝑥      (75) 

The elastic bending energy of the plate can be written so:  

𝑈 =
1

2
𝑀𝑥𝑦𝜃     (76) 

𝑈𝑥 = −
1

2
𝑀𝑥

𝜕2𝑤(𝑥,𝑦)

𝜕𝑥2
𝑥𝑦    (77) 

The contribution of energy following 𝑦 can be written following the same approach if a bending 

𝑀𝑦  is now applied on the side 𝑥 : 

𝑈𝑦 = −
1

2
𝑀𝑦

𝜕2𝑤(𝑥,𝑦)

𝜕𝑦2
𝑥𝑦    (78) 

The contribution due at the torsion can be also written: 

𝑈𝑥𝑦 =
1

2
2𝑀𝑥𝑦

𝜕2𝑤(𝑥,𝑦)

𝜕𝑦𝜕𝑥
𝑥𝑦    (79) 

Finally the strain energy of the plate can be defined: 

𝑈 = 𝑈𝑥 + 𝑈𝑦 + 𝑈𝑥𝑦     (80) 

𝑈 = −
1

2
𝑀𝑥

𝜕2𝑤(𝑥,𝑦)

𝜕𝑥2
𝑥𝑦 −

1

2
𝑀𝑦

𝜕2𝑤(𝑥,𝑦)

𝜕𝑦2
𝑥𝑦 +

1

2
2𝑀𝑥𝑦

𝜕2𝑤(𝑥,𝑦)

𝜕𝑦𝜕𝑥
𝑥𝑦     (81) 

So : 

𝑈 =
1

2
[−𝑀𝑥

𝜕2𝑤(𝑥,𝑦)

𝜕𝑥2
+ 2𝑀𝑥𝑦

𝜕2𝑤(𝑥,𝑦)

𝜕𝑦𝜕𝑥
− 𝑀𝑦

𝜕2𝑤(𝑥,𝑦)

𝜕𝑦2
]𝑥𝑦        (82) 

By using the well-known relation connecting the bending moment at the second derivative of the deflection:  

𝑀𝑥 = −𝐷 (
𝜕2𝑤(𝑥,𝑦)

𝜕𝑥2
+ 𝑣

𝜕2𝑤(𝑥,𝑦)

𝜕𝑦2 )   (83) ,𝑀𝑦 = −𝐷 (
𝜕2𝑤(𝑥,𝑦)

𝜕𝑦2
+ 𝑣

𝜕2𝑤(𝑥,𝑦)

𝜕𝑥2 )   (84) 

𝑀𝑥 = 𝐷 (
1

𝑅𝑥
+ 𝑣

1

𝑅𝑦
)    (85),𝑀𝑦 = 𝐷 (

1

𝑅𝑦
+ 𝑣

1

𝑅𝑥
)     (86) 

𝑀𝑥𝑦 = 𝐷(1 − 𝑣)
𝜕2𝑤(𝑥,𝑦)

𝜕𝑥𝜕𝑦
    (87) 

And by reporting these expressions into (82) we obtain: 

𝑈 =
1

2
[𝐷 (

𝜕2𝑤(𝑥,𝑦)

𝜕𝑥2
+ 𝑣

𝜕2𝑤(𝑥,𝑦)

𝜕𝑦2 )
𝜕2𝑤(𝑥,𝑦)

𝜕𝑥2
+ 2𝐷(1 − 𝑣)

𝜕2𝑤(𝑥,𝑦)

𝜕𝑥𝜕𝑦

𝜕2𝑤(𝑥,𝑦)

𝜕𝑦𝜕𝑥

+ 𝐷 (
𝜕2𝑤(𝑥,𝑦)

𝜕𝑦2
+ 𝑣

𝜕2𝑤(𝑥,𝑦)

𝜕𝑥2 )
𝜕2𝑤(𝑥,𝑦)

𝜕𝑦2
]𝑥𝑦     (88) 

By developing the expression (88): 
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𝑈 =
1

2
[𝐷 (

𝜕2𝑤(𝑥,𝑦)

𝜕𝑥2 )

2

𝑣𝐷
𝜕2𝑤(𝑥,𝑦)

𝜕𝑥2

𝜕2𝑤(𝑥,𝑦)

𝜕𝑦2
+ 2𝐷

𝜕2𝑤(𝑥,𝑦)

𝜕𝑥𝜕𝑦

𝜕2𝑤(𝑥,𝑦)

𝜕𝑦𝜕𝑥
− 2𝑣𝐷

𝜕2𝑤(𝑥,𝑦)

𝜕𝑥𝜕𝑦

𝜕2𝑤(𝑥,𝑦)

𝜕𝑦𝜕𝑥

+ 𝐷 (
𝜕2𝑤(𝑥,𝑦)

𝜕𝑦2 )

2

+ 𝑣𝐷
𝜕2𝑤(𝑥,𝑦)

𝜕𝑥2

𝜕2𝑤(𝑥,𝑦)

𝜕𝑦2 ]𝑥𝑦 

𝑈 =
𝐷

2
[(

𝜕2𝑤(𝑥,𝑦)

𝜕𝑥2 )

2

+ 2𝑣
𝜕2𝑤(𝑥,𝑦)

𝜕𝑥2

𝜕2𝑤(𝑥,𝑦)

𝜕𝑦2
+ 2(1 − 𝑣)(

𝜕2𝑤(𝑥,𝑦)

𝜕𝑥𝜕𝑦
)

2

+ (
𝜕2𝑤(𝑥,𝑦)

𝜕𝑦2 )

2

]𝑥𝑦 

𝑈 =
𝐷

2
[(

𝜕2𝑤(𝑥,𝑦)

𝜕𝑥2 )

2

+ 2𝑣
𝜕2𝑤(𝑥,𝑦)

𝜕𝑥2

𝜕2𝑤(𝑥,𝑦)

𝜕𝑦2
+ 2(1 − 𝑣) (

𝜕2𝑤(𝑥,𝑦)

𝜕𝑥𝜕𝑦
)

2

+ (
𝜕2𝑤(𝑥,𝑦)

𝜕𝑦2 )

2

]𝑥𝑦  (89) 

We obtain a relation between the curvature and the density of strain energy of the plate: 

[(
1

𝑅𝑥
)
2

+ (
1

𝑅𝑦
)

2

+ 2(1 − 𝜈) {(
1

𝑅𝑥𝑦
)

2

} + 2𝜈 {
1

𝑅𝑥

1

𝑅𝑦
}] =

24(1 − 𝜈2)

𝐸ℎ3
×

𝑈

𝑥𝑦
   (90) 

Note: 

The expression below allow to reformulate and to simplify the expression (89): 

−2(1 − 𝑣) [
𝜕2𝑤

𝜕𝑥2

𝜕2𝑤

𝜕𝑦2
− (

𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

] = −2
𝜕2𝑤

𝜕𝑥2

𝜕2𝑤

𝜕𝑦2
+ 2(

𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

+ 2𝑣
𝜕2𝑤

𝜕𝑥2

𝜕2𝑤

𝜕𝑦2
− 2𝑣 (

𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

 (91) 

(
𝜕2𝑤(𝑥,𝑦)

𝜕𝑥2
+

𝜕2𝑤(𝑥,𝑦)

𝜕𝑦2 )

2

= (
𝜕2𝑤(𝑥,𝑦)

𝜕𝑥2 )

2

+ (
𝜕2𝑤(𝑥,𝑦)

𝜕𝑦2 )

2

+ 2
𝜕2𝑤

𝜕𝑥2

𝜕2𝑤

𝜕𝑦2
      (92) 

The sum of the two expressions (91) et (92) above gives again the expression (89) : 

(
𝜕2𝑤(𝑥,𝑦)

𝜕𝑥2 )

2

+ (
𝜕2𝑤(𝑥,𝑦)

𝜕𝑦2 )

2

+ 2
𝜕2𝑤

𝜕𝑥2

𝜕2𝑤

𝜕𝑦2
− 2

𝜕2𝑤

𝜕𝑥2

𝜕2𝑤

𝜕𝑦2
+ 2(

𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

+ 2𝑣
𝜕2𝑤

𝜕𝑥2

𝜕2𝑤

𝜕𝑦2
− 2𝑣 (

𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

 

Therefore the expression (89) can be written from the two expression (91) and (92): 

𝑈 =
𝐷

2
[(

𝜕2𝑤(𝑥,𝑦)

𝜕𝑥2
+

𝜕2𝑤(𝑥,𝑦)

𝜕𝑦2 )

2

− 2(1 − 𝑣) [
𝜕2𝑤

𝜕𝑥2

𝜕2𝑤

𝜕𝑦2
− (

𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

]]𝑥𝑦   (93) 

With for the bending rigidity D: 

𝐷 =
𝐸ℎ3

12(1 − 𝑣²)
   (94) 

𝑈 =
𝐷

2
[(−

1

𝑅𝑥
−

1

𝑅𝑦
)

2

− 2(1 − 𝑣) [
1

𝑅𝑥

1

𝑅𝑦
− (

1

𝑅𝑥𝑦
)

2

]]𝑥𝑦   (95) 

If we present the expression to put in first plane the curvature in one side and the energy of the other side: 

[(−
1

𝑅𝑥
−

1

𝑅𝑦
)

2

− 2(1 − 𝑣) [
1

𝑅𝑥

1

𝑅𝑦
− (

1

𝑅𝑥𝑦
)

2

]] = (
2

𝐷
)

𝑈

𝑥𝑦
   (96) 
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We are developing now this expression in the case of the pure flexion: 

The radius of curvature are all equal. The radius of curvature due to the torsion is null. 

𝜕2𝑤

𝜕𝑥𝜕𝑦
= 0,

1

𝑅𝑥
=

1

𝑅𝑦
=

1

𝑅
    (97) 

By introducing these expressions in the equation (96) we obtain: 

𝑈 =
𝐷

2
[(−

2

𝑅
)
2

− 2(1 − 𝑣) [
1

𝑅2]]𝑥𝑦 

𝑈 =
𝐷

2
[
4

𝑅2
−

2

𝑅2
+ 2𝑣

1

𝑅2]𝑥𝑦 

𝑈 =
𝐷

2
[
2

𝑅2
+ 2𝑣

1

𝑅2]𝑥𝑦 

𝑈 =
𝐷

𝑅2
[1 + 𝑣]𝑥𝑦 

So: 

1

𝑅2
=

1

𝐷(1 + 𝑣)

𝑈

𝑥𝑦
 (98) 

 

If we take into account of the bending rigidity (94) and if we define fix 𝑥.𝑦 = 𝐴 

1

𝑅2
=

12(1 − 𝑣²)

𝐸ℎ3(1 + 𝑣)

𝑈

𝐴
 

1

𝑅2
=

12(1 − 𝑣²)

𝐸ℎ2(1 + 𝑣)
×

𝑈

𝐴ℎ
 

1

𝑅2
=

12(1 + 𝑣)(1 − 𝑣)

𝐸ℎ2(1 + 𝑣)
×

𝑈

𝐴ℎ
 

We obtain in the case of the pure bending: 

1

𝑅2
=

12(1 − 𝑣)

𝐸ℎ2
×

𝑈

𝐴ℎ
    (99) 

 

 

 

And the dimensional equation is: 

1

𝑚²
=

1

𝑘𝑔𝑚
𝑠²𝑚²

× 𝑚²
×

𝑈

𝑚3
 

1

𝑚²
=

𝑠²

𝑘𝑔𝑚
×

𝑈

𝑉
 

Energy density 

Curvature 

Proportionality 

factor 

proportionnalité 
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2.3) Case of the General relativity  

2.3.1) Expression Einstein Equation 

The Einstein equation has to be written as following: 

𝐺𝜇𝑣 = 𝜅𝑇𝜇𝑣    (100) 

In this equation, the curvature and the energy of the space time are linked (cf. figure 7). 

 

 

 

 

 

 

 

 

Figure 7 – Symbolic view of the curvature of the space time by projection in a plane space – 

With: 

𝐺𝜇𝑣 is the Einstein tensor. 

𝜅 =
8𝜋𝐺

𝑐4
    (101) 

In addition the dimensional equation of κ is the following: 

𝜅 =
𝐿3𝑇4

𝑀𝑇²𝐿4
=

𝑇²

𝑀𝐿
=

𝑠²

𝑘𝑔𝑚
     (102) 

The developed equation of Einstein becomes: 

𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 + 𝛬𝑔𝜇𝜈 =

8𝜋𝐺

𝑐4
𝑇𝜇𝜈      (103) 

1

𝑚²
=

𝑠²

𝑘𝑔𝑚
×

𝑈

𝑉
 

2.3.2) Details on the curvature tensor  

The Ricci tensor is obtained by contraction of the Riemann tensor on the indices λ: 

𝑅𝜇𝑣 = 𝑅𝜇𝑣
  

R is a contraction of the tensor 𝑅𝜇𝑣  . 

The curvature tensor or Riemann tensor is written as following: 

𝑅   𝜇𝑣𝛼
 = 𝛤𝜇𝛼,𝑣

 − 𝛤𝜇𝑣,𝛼
 + 𝛤𝑣

 𝛤𝜇𝛼


− 𝛤𝛼
 𝛤𝜇𝑣


      (104) 
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Or in another way: 

𝑅   𝜇𝑣𝛼
 =

𝜕𝛤𝜇𝛼


𝜕𝑥𝑣
−

𝜕𝛤𝜇𝑣


𝜕𝑥𝛼
+ 𝛤𝑣

 𝛤𝜇𝛼


− 𝛤𝛼
 𝛤𝜇𝑣


      (104 𝑏𝑖𝑠) 

By definition the definition of the Christoffel symbols is the following: 

𝛤𝜇𝑣
 =

1

2
𝑔(𝑔𝜇,𝑣 + 𝑔𝑣,𝜇 − 𝑔𝜇𝑣,) =

1

2
𝑔 (

𝜕𝑔𝜇

𝜕𝑥𝑣
+

𝜕𝑔𝑣

𝜕𝑥𝜇
−

𝜕𝑔𝜇𝑣

𝜕𝑥
)     (105) 

gμν is the metric,  

The coefficient of the metric are issued of the differential distance (special relativity): 

𝑑𝑠2 = 𝑐2𝑑𝑡2 − 𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2  (106) 

So, considering the Einstein convention of summation: 

𝑑𝑠2 = 𝑔𝜇𝑣𝑑𝑥𝜇𝑑𝑥𝑣   (107) 

𝑔𝜇𝑣 = 𝜇𝑣

𝜕𝜉𝛼

𝜕𝑥𝜇

𝜕𝜉𝛽

𝜕𝑥𝑣
   (108) 

𝜉0 = 𝑐𝑡; 𝜉1 = 𝑥; 𝜉2 = 𝑦; 𝜉3 = 𝑧   (109) 

𝜇𝑣 = [

1 −0 −0 −0
0 −1 −0 −0
0
0

−0
−0

−1
−0

−0
−1

]   (110) 

Λ is the cosmologic constant (possible candidate to explain the dark energy and dark matter)  

The 


  are the first derivative of the metric gμν :  

For example in coordinates (t,r,θ,φ) : 

𝛤𝑟,𝑟
 = 𝛤𝑟𝑡,𝑟

𝑡 + 𝛤𝑟𝑟,𝑟
𝑟 + 𝛤𝑟𝜃,𝑟

𝜃 + 𝛤𝑟𝜑,𝑟
𝜑

=
𝜕𝛤𝑟𝑡

𝑡

𝜕𝑟
+

𝜕𝛤𝑟𝑟
𝑟

𝜕𝑟
+

𝜕𝛤𝑟𝜃
𝜃

𝜕𝑟
+

𝜕𝛤𝑟𝜑
𝜑

𝜕𝑟
        (111) 

So the  𝛤𝑟,𝑟
  are the second derivatives of the metrics 𝑔𝜇𝑣 that we can by analogy compare in one and 

two dimensions with the expressions of curvatures given in the expression (70) , (90), (96) and (99). 

So 𝐺𝜇𝑣 has the dimensional value of a curvature in 1/m²  

For example the first terms 𝑅   𝜇𝑣𝛼
  (see 104 bis) 

𝜕𝛤𝜇𝛼


𝜕𝑥𝑣
=

𝜕 {
1
2𝑔 (

𝜕𝑔𝜇

𝜕𝑥𝑣 +
𝜕𝑔𝑣

𝜕𝑥𝜇 −
𝜕𝑔𝜇𝑣

𝜕𝑥
)}

𝜕𝑥𝑣
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2.3.3) Detail on the stress energy tensor  

We have showing below that the component of the stress energy tensor 𝑇𝜇𝜈  have the dimension of 

an energy density  

     G = 6.6726x10-11 m3kg-1s-2  1J = 1W.s = 1 N.m = 1kg.m².s-2                  kg 

 

𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 =
8𝜋𝐺

𝑐4
×

𝐸𝑛𝑒𝑟𝑔𝑦

𝑉𝑜𝑙𝑢𝑚𝑒
=

8𝜋𝐺

𝑐2

𝑀𝑎𝑠𝑠

𝑉𝑜𝑙𝑢𝑚𝑒
   (112) 

 

                                     1/L²       (L/T)4     (L3)                     

The stress energy tensor is a matrix where the component are given below (113): 

𝑇𝜇𝑣 =

[
 
 
 
 
 
𝑚𝛾2𝑐²

𝑉
𝜌𝛾2𝑐𝑣𝑥 𝜌𝛾2𝑐𝑣𝑦 𝜌𝛾2𝑐𝑣𝑧

𝜌𝛾2𝑐𝑣𝑥 𝜌𝛾2𝑣𝑥𝑣𝑥 𝜌𝛾2𝑣𝑥𝑣𝑦 𝜌𝛾2𝑣𝑥𝑣𝑧

𝜌𝛾2𝑐𝑣𝑦

𝜌𝛾2𝑐𝑣𝑧

𝜌𝛾2𝑣𝑦𝑣𝑥

𝜌𝛾2𝑣𝑧𝑣𝑥

𝜌𝛾2𝑣𝑦𝑣𝑦

𝜌𝛾2𝑣𝑧𝑣𝑦

𝜌𝛾2𝑣𝑦𝑣𝑧

𝜌𝛾2𝑣𝑧𝑣𝑧]
 
 
 
 
 

      (113) 

Where γ is le factor of Lorentz (114) (cf. special relativity), the energy density 𝜌 =
𝑚

𝑉
 with m the mass and V 

unitary volume, c the speed of light, vi a speed in the direction i. 

The factor of Lorentz becomes from the Lorentz transformation that imply that the speed of light stay constant in 

all the referential. 

𝛾 =
1

√1 −
𝑣2

𝑐2

=
1

√1 − 𝛽2
     (114) 

We show that at low velocity (in a non-relativistic situation) and in 3 dimensions, this tensor with 16 components 

in four-dimensional space-time actually includes the stress tensor (9 components) of the continuum mechanics 

from which derive the strength of materials [11]. 

 

The stress tensor in two dimensions can be written as following: 

𝜎𝑖𝑗 = [
𝜎𝑥𝑥 𝑥𝑦

𝑥𝑦 𝜎𝑦𝑦
]   (115) 

And in 3 dimensions: 

𝜎𝑖𝑗 = [

𝜎𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑦𝑥 𝜎𝑦𝑦 𝜏𝑦𝑧

𝜏𝑧𝑥 𝜏𝑧𝑦 𝜎𝑧𝑧

]     (116) 

In theory of elasticity, that come from the continuum mechanics, the relation between the stress tensor 𝜎𝑖𝑗 and 

the applied force Qi on a surface of normal nj can be written as following: 

𝑄𝑖 = 𝜎𝑖𝑗𝑛𝑗    (117) 

In a field of a variational approach, the stress tensor can be written as follow: 
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𝜎𝑖𝑗 =
𝛥𝑄𝑖

𝛥𝑛𝑗
 𝑤𝑖𝑡ℎ 𝛥𝑛𝑗 → 0        (118) 

So, with m the mass, ρ the density of mass energy, V the volume and ai the acceleration, we have: 

𝜎𝑖𝑗 =
𝛥𝑄𝑖

𝛥𝑛𝑗
=

𝛥(𝑚 × 𝑎𝑖)

𝛥𝑛𝑗
=

𝛥(𝜌. 𝑉. 𝑎𝑖)

𝛥𝑛𝑗
      (119) 

If we make the hypothesis that the variation of the force is due only to the variation of the Volume V 

in function of the time t we obtain with: 

𝑎𝑖 =
𝑣𝑖

𝛥𝑡
    (120) 

𝜎𝑖𝑗 =
𝛥(𝜌. 𝑉. 𝑎𝑖)

𝛥𝑛𝑗
= 𝜌

1

𝛥𝑛𝑗
(
𝛥𝑉

𝛥𝑡
) 𝑣𝑖      (121) 

We can of course define the volume V: 

𝑉 = 𝛥𝑥𝑖 . 𝛥𝑥𝑗. 𝛥𝑥𝑘     (122) 

Thus we obtain: 

𝜎𝑖𝑗 = 𝜌
1

𝛥𝑛𝑗
(
𝛥𝑥𝑖. 𝛥𝑥𝑗. 𝛥𝑥𝑘

𝛥𝑡
) 𝑣𝑖    (123) 

We can replace the nj by its value: 

𝑛𝑗 = 𝛥𝑥𝑖 . 𝛥𝑥𝑘      (124) 

𝜎𝑖𝑗 = 𝜌
𝑣𝑖

𝛥𝑡
(
𝛥𝑥𝑖. 𝛥𝑥𝑗. 𝛥𝑥𝑘

𝛥𝑥𝑖. 𝛥𝑥𝑘
)    (125) 

After simplification we obtain: 

𝜎𝑖𝑗 = 𝜌𝑣𝑖 (
𝛥𝑥𝑗

𝛥𝑡
)   (126) 

By definition of a speed, we have: 

𝑣𝑗 = (
𝛥𝑥𝑗

𝛥𝑡
)     (127) 

We obtain finally the expression of the stress tensor at low speed in function of the energy density ρ 

and based on the multiplication of the velocity vi and vj: 

𝜎𝑖𝑗 = 𝜌𝑣𝑖𝑣𝑗 (128) 

The stress energy tensor becomes from the product of the density of energy and the multiplication of 

the four velocity (4 dimension of the space time) issued from the general relativity. 

𝑇𝜇𝑣 = 𝜌𝑢𝜇𝑢𝑣  (129) 

With for the four velocity: 
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𝑢𝜇 = |

𝛾𝑐
𝛾𝑣𝑥
𝛾𝑣𝑦

𝛾𝑣𝑧

     (130) 

Under low speed γ=1 the stress energy tensor becomes: 

𝑇𝜇𝑣 =

[
 
 
 
 
𝑚𝑐²

𝑉
𝜌𝑐𝑣𝑥

𝜌𝑐𝑣𝑦 𝜌𝑐𝑣𝑧

𝜌𝑐𝑣𝑥 𝜌𝑣𝑥𝑣𝑥
𝜌𝑣𝑥𝑣𝑦 𝜌𝑣𝑥𝑣𝑧

𝜌𝑐𝑣𝑦

𝜌𝑐𝑣𝑧

𝜌𝑣𝑦𝑣𝑥

𝜌𝑣𝑧𝑣𝑥

𝜌𝑣𝑦𝑣𝑦

𝜌𝑣𝑧𝑣𝑦

𝜌𝑣𝑦𝑣𝑧

𝜌𝑣𝑧𝑣𝑧]
 
 
 
 

      (131) 

Based on the definition of the stress tensor, (cf. equation 128), the stress energy tensor at low speed 

can be written as following: 

𝑇𝜇𝑣 =

[
 
 
 
 
𝑚𝑐²

𝑉
𝜌𝑐𝑣𝑥

𝜌𝑐𝑣𝑦 𝜌𝑐𝑣𝑧

𝜌𝑐𝑣𝑥 𝜎𝑥𝑥
𝜏𝑥𝑦 𝜏𝑥𝑧

𝜌𝑐𝑣𝑦

𝜌𝑐𝑣𝑧

𝜏𝑦𝑥

𝜏𝑧𝑥

𝜎𝑦𝑦

𝜏𝑧𝑦

𝜏𝑦𝑧

𝜎𝑧𝑧 ]
 
 
 
 

      (132) 

The Einstein equation build a link in 4 dimensions (space time) with the curvature tensor 

𝐺𝜇𝑣(dimension 1/m²) and the stress energy tensor 𝑇𝜇𝑣 (dimension energy/m3) that is itself a 

generalization in 4 dimensions of the stress tensor of the continuum mechanics. 

 

2.4) Conclusion of this second part 

The table 2 below makes a synthesis of the results obtained. We can see that the general relativity is 

a generalization of the elastic theory in 4 dimensions of the space time.  

Theory 
considered 

Number of 
dimensions 

Formulation between energy and curvature  Example of application  (pure bending) or expression 
at low speed 

Beam on 
two 
simple 
supports 
in 
elasticity 

1 
1

𝑅
=

𝑑²𝑦
𝑑𝑥²

(√1 + (
𝑑𝑦
𝑑𝑥

)
2

)

3   

𝑈 =
1

2
∫

𝑀(𝑥)
2

𝐸𝐼
𝑑𝑥                           

𝐿

0

𝑑2𝑦

𝑑𝑥2
= −

𝑀(𝑥)

𝐸𝐼
=

1

𝑅 
     

1

𝑅2
=

2

𝐸𝐼
(
𝑈

𝐿
) 

Thin plate 2 

[(−
1

𝑅𝑥
−

1

𝑅𝑦
)

2

− 2(1 − 𝑣) [
1

𝑅𝑥

1

𝑅𝑦
− (

1

𝑅𝑥𝑦
)

2

]] = (
2

𝐷
)

𝑈

𝑥𝑦
    

1

𝑅2
=

12(1 − 𝑣)

𝐸ℎ3
×

𝑈

𝐴
   

General 
relativity 

4 
𝑅𝜇𝜈 −

1

2
𝑔𝜇𝜈𝑅 + 𝛬𝑔𝜇𝜈 =

8𝜋𝐺

𝑐4
𝑇𝜇𝜈       

𝐺𝜇𝑣 = 𝜅𝑇𝜇𝑣     

𝑇𝜇𝑣 =

[
 
 
 
 
𝑚𝑐²

𝑉
𝜌𝑐𝑣𝑥

𝜌𝑐𝑣𝑦 𝜌𝑐𝑣𝑧

𝜌𝑐𝑣𝑥 𝜎𝑥𝑥
𝜏𝑥𝑦 𝜏𝑥𝑧

𝜌𝑐𝑣𝑦

𝜌𝑐𝑣𝑧

𝜏𝑦𝑥

𝜏𝑧𝑥

𝜎𝑦𝑦

𝜏𝑧𝑦

𝜏𝑦𝑧

𝜎𝑧𝑧 ]
 
 
 
 

       

Tableau 2 – Comparison of the different relations between energy and curvature in function of the 
number of dimensions considered – 
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Conclusions 

We have showed on several examples that the strength of materials allows to understand at our 

scale certain fundamental principles of the quantum mechanics: 

- The eigen mode of a beam on two simple supports correspond at the different shape of the 

wave function connected with the jump energy of a particle in a quantum well, 

- The natural circular frequencies of a beam on two simple supports correspond at the 

quantification of the energy of a particle in a potential well. 

We have showed that the general relativity is a generalization in 4 dimensions (space time) of the 

relation curvature/energy equally present in strength of materials for the beam and for the thin 

plates  

Finally, we have showed the stress energy tensor written at low speed give the stress tensor of the 

elasticity theory. 

Extension of this article, next steps: 

We have equally shown that in strength of material 2 main equations are necessary. One in static 

(curvature = K energy density) and one in dynamic (natural frequencies and eigen modes). So if the 

analogy between the beam (or plate) in strength of material and the space time is total; two equations 

should be also necessary at large scale. The first is the Einstein Equation connecting the curvature and 

the energy. The second remain to find. 

If the analogy with the strength of the materials is exact we have some clues about this second equation. 

This second equation would allow to quantify the space time (analogy with the natural frequency and 

eigen mode of the beam that represent also the energy quantification and shape of the wave function 

ψ in quantum mechanics).see table 3 in annex A. 

Notice that this equation should be in 4th derivative of the space metric and 2th derivative of the 

time metric, and of course tensorial written to be valid in all the referential (covariant derivative). 
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Annex A - Synthesis of the results – 

Table 3 – Basic evidence of one equation is missing at the space time scale by analogy with the 2 
main equations in strength of material – 

 

Principle Quantum mechanic 
Space (1-3) dimensions 

Strength of material 
Space (1-3 dimensions) or time 

General relativity 
Space-time (4 dimensions) 

What is 
distorted 

Wave function 𝜓(𝑥) Deflection of the beam 𝑦(𝑥,𝑡) Metric 𝑔𝜇𝜈 with𝜇𝜈 =

0(𝑡) 𝑡𝑜 3(𝑥, 𝑦, 𝑧) 
Simplified 
/symbolic 
drawing of 

the case 
studied 

   

Curvature = 
K energy 

Curvature of the wave 
function 
Example in 1 dimension 
 
 
 
 
 

𝒅𝟐
(𝒙)

𝒅𝒙𝟐
= −(

𝟐𝒎

ħ𝟐


(𝒙)
)𝑬𝒎 

 

Curvature and energy density 
 
Example in 1 dimension 

𝑑2𝑦

𝑑𝑥2
= −

𝑀(𝑥)

𝐸𝐼
=

1

𝑅 
 

𝑈 =
1

2
∫

𝑀(𝑥)
2

𝐸𝐼
𝑑𝑥     

𝐿

0

 

∫
𝟏

𝑹𝟐
𝒅𝒙 = 

𝟐

𝑬𝑰
 𝑼

𝑳

𝟎

 

If R  constant => 
1

𝑅2 =
2

𝐸𝐼
(
𝑈

𝐿
) 

Curvature and energy density 
 
Example in 4 dimensions 
 
 
 
 

𝑹𝝁𝝂 −
𝟏

𝟐
𝒈𝝁𝝂𝑹 + 𝜦𝒈𝝁𝝂 =

𝟖𝝅𝑮

𝒄𝟒
𝑻𝝁𝝂      

Eigen value 
(natural 
frequency) 
and eigen 
mode 

Example of a particle in a 
well potential in 1 dimension 

 
 
 
 
 

 

 =
𝑛²²

𝐿²
(
ħ

2m
) 

 

E =
𝑛²²

𝐿²
(

ħ2

2m
) 

 
 
 

 


𝑛(𝑥)

= √
2

𝐿
𝑠𝑖𝑛 (

𝑛𝑥

𝐿
) 

 
 
𝑑2

(𝑥)

𝑑𝑥2
+ (

2𝑚𝐸𝑚

ħ2
)

(𝑥)
= 0 

 

Example  of a beam simply supported in 
1 dimension (natural frequencies) 

𝟒𝒚(𝒙,𝒕)

𝝏𝒙𝟒
+ (

𝒎

𝑬𝑰
)
𝝏²𝒚(𝒙,𝒕)

𝝏𝒕²
= 𝟎       

𝑦(𝑥,𝑡) = 𝑞(𝑡)(𝑥)
 

𝒚𝒏(𝒙,𝒕) = 𝒂√
𝟐

𝑳
𝒔𝒊𝒏 (

𝒏𝒙

𝑳
) 𝐜𝐨𝐬(𝝎𝒕) 

 =
𝑛²²

𝐿²
(√

𝐸𝐼

𝑆
) 


𝐼𝑉


= −

𝑆

𝐸𝐼
×

𝑞̈

𝑞
=

𝛼4

𝐿4
 


(𝑥)
𝐼𝑉 −

𝛼4

𝐿4
(𝑥) = 0 

In space : 
𝑑4(𝑥)

𝑑𝑥4
−

𝛼4

𝐿4
(𝑥) = 0 


𝑛(𝑥)

= √
2

𝐿
𝑠𝑖𝑛 (

𝑛𝑥

𝐿
) 

 
In time : 

𝑑2𝑞(𝑡)

𝑑𝑡²
+ (

𝛼4𝐸𝐼

𝐿4𝑆
)𝑞(𝑡) = 0 

To be developed… 
In 4 dimensions 
In 4th derivative of the space metric 
and 2th derivative of the time metric, 
and of course tensorial written to be 
valid in all the referential (covariant 
derivative)? 
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