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Résumé – Cet article présente une nouvelle représentation parcimonieuse des images inspirée de la rétine. Cette représentation consiste en

un filtrage inspiré par le fonctionnement de la rétine qui imite la transformation du stimulus visuel en un signal spatio-temporel fortement

redondant. Nous proposons d’utiliser un codage du type “Intègre-et-Tire” parfait pour réduire la redondance de cette transformation en mimant

la génération des potentiels d’action neuronaux. L’encodage “Intègre-et-Tire” parfait est équivalent à un seuillage basé sur une zone morte

dépendante du temps d’observation de l’image. Les résultats numériques montrent l’efficacité de cette représentation parcimonieuse qui fournit

des résultats de reconstruction presque équivalents à ceux de la représentation redondante.

Abstract – This paper introduces a novel retina-inspired sparse representation which is applied to temporally constant 2D inputs. This

architecture consists of the recently released retina-inspired filtering which mimics the transformation of the visual stimulus into current as it

takes place in the retina. This transform is very redundant. As a result, we propose the Perfect Leaky Integrate and Fire (Perfect-LIF) as a model

which sparsifies the over-complete retina-inspired decomposition mimicking the spike generation mechanisms of the neurons. The Perfect-LIF

is a thresholding function based on a time-depended deadzone. Numerical results show the efficiency of our architecture which provides almost

equivalent reconstruction results between the over-complete and the sparse representation of the input image.

1 Introduction

Compression has been one of the most challenging research

fields over the last few decades. There are several reasons why

the performance of compression algorithms needs to be impro-

ved. The most important of these reasons is the resolution of

the multimedia devices which continues to dramatically grow

(High Definition (HD), Ultra High Definition (UHD), 4K and

8K cameras, etc. ) resulting in high spatiotemporal redundancy.

As a result, the compression systems should be more efficient

to be able to discard the repetitive data and encode only the

informative ones.

The visual system is an efficient candidate to mimic because

it selects very expeditiously the information of the visual sti-

mulus which needs to be encoded and propagated to the brain.

The encoding mechanism of neurons which are considered as

analog to digital converters [1] generate a sparse code of spikes

depending on the variations of their input stimulus. We are in-

terested in proposing a novel retina-inspired coding principle

for images which performs according to the visual system and

the brain. Recently, we introduced the novel retina-inspired fil-

tering which approximates the innest retina layer where the in-

put stimulus is captured and transformed into electrical cur-

rent. This filter is of a high redundancy which is mandatory

to be eliminated. In our previous work, we have proposed an

event-based code which is generated according to the beha-

vior of neurons [2]. However, the Non-Leaky Integrate and

Fire (NLIF) model is a very rough approximation of the neu-

ral mechanism. In this paper, we are interested in using a more

reliable model, the Leaky Integrate and Fire (LIF) model to

sparsify this redundant representation of an image because it

describes in a better way how the neurons fire.

Section 2 is a brief introduction to the LIF model and the ne-

cessary assumptions to achieve a perfect reconstruction. Sec-

tion 3 presents the Perfect-LIF which is the characteristic func-

tion that corresponds to the LIF model. We also introduce the

sparse representation which adopts the Perfect-LIF. In section

4, we illustrate some numerical results and in the last section,

we conclude this paper with a small discussion about the ex-

tension of this work.

2 Leaky Integrate and Fire (LIF) model

The LIF model [3] is a very well known model which has

been widely used in literature [4, 5, 6, 7, 8, 9]. It approximates

the neural spiking mechanism assuming that the cell is an elec-

trical circuit given by :

I(t) =
V (t)

R
+ C

dV

dt
, (1)

where I(t) = I01[0≤t≤T ](t) is assumed to be a temporally

constant input current, C the membrane capacitor of a neuron

which is in parallel with the resistor R and V (t) is the voltage

across the resistor. If we multiply eq. (1) by R, we introduce



the time constant τm = RC of the “leaky integrator”. This

leakage term is the main difference between the LIF and the

NLIF which was used in our previous work [2]. This yields the

standard form :

τm
dV

dt
= V (t) +RI(t). (2)

While the current I(t) flows into the circuit, the capacitor

has the ability to integrate the voltage V (t) until the membrane

potential reaches a threshold θ. At that moment, the neuron is

excited and it emits a spike. As a result, the LIF model is a

time coder which allows us to compute and encode the time

arrival of the spikes. At time tk ∈ [0, T ], when the kth spike is

emitted, the membrane potential is given by :

Vk(t) = RI0

[

1− exp(−
t− tk

τm
)

]

. (3)

We should remark that at time tk+1 the membrane potential

is set to zero and the integration of the membrane potential

starts all over again until the next spike k + 1 will be emitted :

Vk+1(t
k+1) = Vref = 0. (4)

We have introduced in [10] that, under the assumption of the

temporally constant input, we are able to compute the delay

between two spikes as a function of voltage v and threshold θ

which is given by :

d(v) =







+∞, if v < θ,

h(v; θ) = −τm ln

[

1−
θ

v

]

, if v ≥ θ,
(5)

where v = v(I0) = RI0 is a function of the input constant in

time current I0.

v1 = RI1

v2 = RI2
v3 = RI3

where I3 > I2d(v3) d(v2)

tobs t

θ

FIGURE 1 – Spike generation mechanism according to the LIF

model.

Figure 1 shows the neural activity for different input values

I1 < I2 < I3. The amplitude of I1 is too low resulting in

v1 < θ. Consequently, no spike will be emitted. On the other

hand, v2, v3 ≥ θ meaning that there neuron will fire. The higher

the value of I0 is the smaller the delay d(v) which is required

for the spike arrival. Hence, the spike train which is generated

due to I3 is more dense comparing to the spike train of I2.

If we know the delay, we are able to use the inverse function

h−1(d(v); θ) and perfectly reconstruct the input value :

ṽ =















0 if v < θ,

v = h−1(d(v); θ) =
θ

1− exp
(

−
d(v)

τm

)

if v ≥ θ.

(6)

3 Proposed Image Coder

The neurons are able to dynamically encode their input si-

gnal and propagate the code of spikes to the visual cortex which

is the analysis center. The neural code is not used to recons-

truct the input signal but to learn and take decisions. However,

our goal is to build a bio-inspired coding/decoding system for

images. Figure 2 shows the proposed coding/decoding archi-

tecture we aim to build.
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FIGURE 2 – Retina-inspired image coder. The figure des-

cribes the decomposition of the input image f using the retina-

inspired filter φ into several layers Atj each one of which

is sparsified by the LIF quantizer Q. Based on the quantized

layers, one is able to reconstruct f̃ and compute the distortion

comparing to f .

The input image f is filtered by the retina-inspired filtering

φ(x, t) that we proposed in [11]. This filter is a novel Weighted

Difference of Gaussian (WDoG) kernel that mimics the beha-

vior of the retina transform :

φ(x, t) = a(t)GσC
(x) − b(t)GσS

(x), (7)

where a(t) and b(t) are two time-varying weights which tune

the shape of the DoG, σc and σc are the standard deviations of

the center and the surround Gaussians respectively with σc <

σs. The retina-inspired filtering, which is a frame, is applied to

temporally constant input signals f(x, t) = f(x)1[0≤t≤T ](t)
resulting in high redundancy :

A(x, t) = φ(x, t)
x
∗ f(x), (8)

where
x
∗ is a spatial convolution. For each time instant tj there

is a different decomposition layer Atj = A(x, tj). This re-

dundancy is sufficient to perfectly reconstruct the input signal

f̃ using the dual frame φ∗. We are interested in reducing this



redundancy and discard all the coefficients of low energy kee-

ping only the most informative ones for the reconstruction. To

achieve this goal we propose in this section a thresholding func-

tion which is inspired by the LIF model. This function is cal-

led Perfect-LIF and its output is a sparse decomposition layer

A∗
tj

that consists of some zero and non-zero values. The cha-

racteristic function which describes the LIF encoder/decoder is

illustrated in Fig. 3 (black solid line). This is a thresholding

function which is called Perfect-LIF. It is able to discard all the

input values v < θ while it perfectly restores the values v ≥ θ.

The deadzone of the Perfect-LIF is of length 2θ.

Input v(I0)

Output ṽ = v

θ

λ

FIGURE 3 – Perfect-LIF characteristic function with and wi-

thout any time constraint (black solid and red dash-dot curves

respectively).

3.1 Constrained Perfect-LIF

Based on the initial assumption that the current is constant

for a given time T , we impose a temporal constraint that dis-

cards the group of values which excite the neuron too late.

Within this framework, the observation window is bounded by

tobs = T . Figures 3 (red dash-dot line) and 4 illustrate what is

the impact of the temporal constraint with respect to the length

of the deadzone. It is obvious that the delay d(v) for all the

input values v < θ is infinite. The observation window tobs im-

poses a novel threshold λ ≥ θ eliminating all the values with

d(v) > tobs :

λ = λ(tobs) =
θ

1− exp

(

−
tobs

τm

) . (9)

d(v)

tobs

θ λ

h(v; θ)

v0

FIGURE 4 – The time constraint tobs imposes a novel threshold

λ > θ to discard some input values v.

4 Results

The Perfect-LIF model approximates the LIF model and the

way the neurons generate the spike trains. We have filtered

images using the retina-inspired filter [11] and we apply the

Perfect-LIF to encode each decomposition layer. Of course, we

are aware of the high bitrate cost that the Perfect-LIF provides.

This is due to the fact that the delay values belong to an infinite

set of real values. As a result, we discuss the efficiency of such

a model with respect to the reconstruction error measured by

two different metrics ; Peak Signal to Noise Ratio (PSNR) and

Structure SIMilarity (SSIM).

Figure 5 shows the reconstruction results of a still image

which has been encoded/decoded with the Perfect-LIF for dif-

ferent values of threshold λ. The threshold λ has been tuned in

such a way that it corresponds to a percentage p of the amount

of coefficients which are available at tobs i.e. when p = 100%
all the coefficient are processed. The lower the threshold, the

higher the percentage of neurons which spike. The percentage

p is related to the statistical distribution of each decomposition

layer. The observation window that each subband is allowed to

be encoded is tobs ∈ {0.3, 1, 10} ms.

It is proven in [11] that the spectrum of each layer is time-

varying starting from low-frequency layers which turn into high-

frequency layers. We have also proven in [12] that the degrada-

tion of the image depends on λ when the retina-inspired decom-

position is a frame. This is the case when tobs = T = 150 ms

which means that all the layers participate to the reconstruc-

tion. However, in these experiments, λ is applied to a group

of decomposition layers which appear progressively in time.

When tobs = 0.3 ms the threshold λ concerns only the low

frequency layers which are available. While time increase the

threshold λ is imposed to a larger group of layers but still not to

the whole frame. This is the reason why the degradation does

not decreases while the percentage of active neurons increases.

5 Conclusion
In this paper, we have explored the similarities between a

thresholding function, which is called Perfect-LIF, and the way

the neurons generate the code of spikes. The LIF model allows

us to encode the time each spike arises. We show that we are

able to perfectly reconstruct the input signal if the value is hi-

gher than a threshold value which is imposed by a temporal

constraint.

In the future, we would like to improve the performance of

this model and provide a more efficient compression with a

reasonable bitrate. We are also interested in using this Perfect-

LIF to improve and/or replace the motion estimation which is

used in standards taking advantage of the neurons sensitivity.
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