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1 Introduction

In the seminal work of Symanzik [9], Poisson ensembles of Brownian loops
were implicitly used.

Since the work of Lawler and Werner [2] on ”loop soups”, these ensem-
bles have also been the object of many investigations. Their properties can
be studied in the context of rather general Markov processes, in particular
Markov chains on graphs (Cf [1], [3], [4], [6] ) .

The purpose of the present work is to explore their topological properties.

2 Geodesics and loops on graphs

We consider a finite connected graph G “ pX,Eqq.
The set of oriented edges is denoted

ÝÑ
E . We also set, for any oriented edge

ÝÑe “ pe´, e`q, ´ÝÑe “ pe`, e´q.
Recall that on graphs, geodesics are defined as non backtracking paths:
px0, x1, ..., xnq with txi, xi`1u in E and xi´1 ‰ xi`1.
Fundamental groups Γx are defined by geodesics from x to x equipped with
concatenation with erasure of backtracking subarcs. They are all isomorphic
to the free group with |E| ´ |X| ` 1 generators, in a non canonical way. The
isomorphisms, as well as a set of generators for the free group, can be defined
by the choice of a spanning tree of the graph.
However, geodesic loops are in canonical bijection with the conjugacy classes
of all Γx.
Each loop l is homotopic to a unique geodesic loop lg.
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Figure 1: Loop Ñ Geodesic Loop

3 Markov loops

We attach a positive conductance Ce to each edge e P E and a killing rate
κx to each vertex x P X, then define the duality measure λx “ κx `

ř

y Cx,y

and the λ-symmetric transition matrix P x
y “

Cx,y
λx

, P x
∆ “ κxλx. The energy

functional is:

εpf, fq “
1

2

ÿ

x,y

Cx,ypfpxq ´ fpyqq
2
`
ÿ

x

κxfpxq
2

We define a measure µ on (discrete time, unbased) loops:

µplq “
1

multplq

ź

edges of l

´

P e´

e`

¯multplq

.

Here multplq denotes the multiplicity of the loop l. Note that

|µ| “ µp1q “ ´ logpdetpI ´ P qq

Recall ([3]) that this measure is induced by the restriction to non-trivial
discrete loops of the measure

ř

xPX

ş8

0
1
t
Px,xt λxdt defined on continuous time

based loops, Px,xt being the non-normalized bridge measure defined by the
transition semigroup expptrI ´ P sq associated with the energy functional.
A probability measure ν is defined on spanning trees (Cayley):

0Key words and phrases: Markov Loops, Holonomy
0AMS 2000 subject classification: 60K99, 60J55, 60G60.
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νpT q “

ś

edges of T P
e´

e`

detpI ´ P q

Recall that Wilson’s algorithm, based on loop erasure can be extended
to provide samples pT,Lq:
T is a sample of ν and L is a sample of a Poisson point process of intensity µ,
i.e. N samples of µ

µp1q
, where N is an independent Poisson variable of mean

µp1q.
The algorithm follows the following steps:
- Order X
- Run a P -Markov chain from the first vertex x0 to the added cemetery point
∆ .
- Erase all loops (starting from x0) to obtain a self avoiding path γ.
- Restart the chain from the first point R γ, until the path hits γ.
- Erase loops and iterate until X is covered. We have obtained a spanning
tree T and a set of based loops tlx, x P Xu.
- Divide each lx at its base point x: If lx visits x nx times,

partition it into tn1, n2..., nku with probability
śk

1pni´1q!

nx!
and define L to be

the associated set of (unbased) loops .

4 DISTRIBUTION OF GEODESIC LOOPS

If px, yq is an edge, let us denote rx,y the probability that the Markov chain
starting at y returns to y without visiting x and following a tree-contour
subloop (cf Figure 1). Note that:

rx,y “
ÿ

z‰x

P y
z P

z
y

8
ÿ

n“0

rry,zsn

Clearly, if γ varies in the set of geodesic loops (conjugacy classes), |tl P
L, lg “ γu| are independent Poisson r.v. with mean values

µpγq “
1

multpγq
p
ź

ÝÑe Pγ

P e´
e` ρ

e´,e`
q
multpγq

with ρx,y “
ř8

n“0rr
x,ysn

Note that ρ satisfies the relation:
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ρx,y “ 1`
ÿ

z‰x

P y
z P

z
xρ

x,yρy,z

Let us now denote rx,y,k the probability that the Markov chain starting at
y returns to y for the first time in 2k steps following a tree-contour subloop
and without visiting x. Set rx,ypsq “

ř

rx,y,ksk. Set ρx,ypsq “
ř8

n“0rr
x,ypsqsn

Note that:
rx,ypsq “ s

ÿ

z‰x

P y
z P

z
y ρ

y,z

Note that ρx,ypsq satisfies the relation:

ρx,ypsq “ 1` s
ÿ

z‰x

P y
z P

z
xρ

x,y
psqρy,zpsq

Let us now denote rx,k the probability that the Markov chain starting at
x returns to x for the first time in 2k steps following a tree-contour subloop.
Set rxpsq “

ř

rx,ksk Note that:

rxpsq “ s
ÿ

y

P x
y P

y
x ρ

x,y
psq

Let denote ρx,k the probability that the Markov chain starting at x returns
to x in 2k steps following a tree-contour subloop. Set ρxpsq “

ř8

0 ρ
x,ksk.

Note that: ρxpsq “ 1
1´rxpsq

and the number of loops of L based at x, homo-

topic to a point is a Poisson r.v. with expectation |X|
ş1

0
ρxpsq´1

s
ds

If G is a d-regular graph, with Ce “ 1, κ constant, we see that

ρx,ypsq “
pd` κq2

2spd´ 1q
p1´

d

1´
4spd´ 1q

pd` κq2
q

ρxpsq “
2pd´ 1q

d´ 2` d
b

1´ 4spd´1q
pd`κq2

q

and recover the result of [8] :

µpγq “
1

multpγq

˜

d` κ

2pd´ 1q
p1´

d

1´
4pd´ 1q

pd` κq2
q

¸|γ|
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From the expression of ρx, we deduce that number of loops homotopic to
a point is a Poisson r.v. of expectation

4
d´ 1

d
|X|pdplnp2q ´ lnpb` 1qq ` pd´ 2qplnpb`

d´ 2

d
q ´ lnp1`

d´ 2

d
qqq

with b “
b

1´ 4 d´1
pd`κq2

.

5 CONNEXIONS AND HOLONOMIES

Recall that free groups are conjugacy separable: Two conjugacy classes are
separated by a morphism in some finite group G.

For the fundamental groups Γx morphisms are obtained from maps A,
assigning to each oriented edge ÝÑe an element ApÝÑe q P G with Ap´ÝÑe q “
ApÝÑe q´1.
A based loop is mapped to the product of the image by A of its oriented edges
and the associated loop l to the conjugacy class of this image, denoted HAplq.
Moreover HAplq “ HApl

oq A gauge equivalence relation between assignment
maps is defined as follows: A1 „ A2 iff there exists Q: X ÞÑ G such that:

A1p
ÝÑe q “ Qpe`qA1p

ÝÑe qQ´1
pe´q

Equivalence classes are G-connexions. They define G- Galois coverings of G
(cf [6]). Obviously, holonomies depend only on the connection defined by A.
Given a spanning tree T , there exists a unique AT „ A such that AT peq “ I
for every edge e of T .
For any unitary representation π of G, denote χπpCq the normalized trace of
the image of any element in the conjugacy class C.
As G, π and A vary, functions γ ÞÑ χπpHApγqq span an algebra and separate
geodesic loops.

Define an extended transition matrix PA,π with entries inXˆt1, 2, ... dimpπqu
by rPA,πs

x,i
y,j “ P x

y rπpApx, yqqs
i
j. Then:

ÿ

χπpHAplqµplq “ ´
1

dimpπq
logpdetpI ´ PA,π

qq

and |tl P L, HAplq “ Cu| are independent Poisson r.v. with expectations:

µptl, HAplq “ Cuq “ ´
ÿ

πPR
χπpCq

|C|

|G|
dimpπq logpdetpI ´ PA,π

q, q

R denoting the set of irreducible unitary representations of G.
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6 IN THE CONTINUUM

Some aspects of the theory extend to manifolds after proper rescaling and
renormalisation).
We consider a Riemannian manifold M of dimension n with metric tensor
gi,j, and a potential (killing rate) k on it. The energy functional is:

εpf, fq “
1

2

ż

gi,jpxq
Bf

Bxi

Bf

Bxj
detpgq´

1
2dx`

ż

kpxqfpxq2 detpgq´
1
2dx

The heat semigroup Pt is associated with the infinitesimal generator

1

2
∆x ´ κpxq

Its kernel is denoted ptpx, yq.

The σ´finite measure µ and the Poisson process of Brownian loops are
defined in the same way as Lawler and Werner ”loop soup” (Cf [2]). More

precisely, µ “
ş

xPX

ş8

0
1
t
Px,xt dt detpgq´

1
2dx where Px,yt denotes the Brownian

bridge distribution multiplied by ptpx, yq.

7 HOMOTOPY CLASSES

In this section we consider only the case of a compact surface with constant
negative curvature and constant κ which can be represented as the quotient
ΓzH of the hyperbolic plane by a discrete group of isometries Γ.
Γ is the fundamental group of the surface and loop homotopy classes are in
one-to one correspondence with closed geodesics. If γ is a closed geodesic,
we set |γ| = length(γ)
It follows from an integration of the correponding term of Selberg’s trace
formula (cf [7]) for to the heat kernel that:

µptl, l homotopic to γuq “

ż

1

t

e´t{4
?

4πt

|γ|

multpγq

e´|γ|
2{4t

2 sinhp|γ|{2q
e´2κt dt

Hence, setting u “

c

1

4
` 2κ, from the expression of the Green function

of ´∆` p1
4
` 2κq in R3, we get that:

µptl, l homotopic to γuq “
1

4
?

2πmultpγq

Kupu |γ|q

sinhp|γ|{2q

.
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8 FLAT CONNEXIONS AND HOLONOMIES

Given a compact Lie group G with Lie algebra g, a g-valued 1-form A in-
ducing a flat connection, a formula can be given for the distribution of the
loop holonomies. For a smooth path η indexed by r0, T s define XA

η psq to be
the solution of the differential equation: dXs “ ApηpsqqXs. Given a unitary
representation π of G, define a matrix-valued heat kernel pA,πt with entries in
t1, 2, ... dimpπqu by rpA,πt px, yqsij “

ş

prπpXA
γ qs

i
jqP

x,y
t pdγq.

The definition of the multiplicative integral XA
γ on a non-smooth path could

be given using Stratonovich integral but we can note instead that we can
take XA

γ “ XA
γ1 if γ1 is a smooth path close enough to γ,with time length

T pγq “ T pγ1q and the same endpoints. Indeed, a smooth loop which is not
homotopic to zero has a minimum positive diameter and if the uniform dis-
tance between two smooth paths γ1 and γ” is small enough, we can cut them
into path segments of small diameter and join the extremities of these seg-
ments by geodesics to produce a chain of loops of null holonomy from which
we can deduce that XA

γ1 “ XA
γ”.

Then, if Cm are disjoint central compact subsets of G, not containing the
identity |tl P L, HAplq P Cmu| are independent Poisson r.v. with expecta-
tions:

µptl, HAplq P Cmuq “ ´
ÿ

πPR
dimpπq2

ż

Cm

χπpgqdg ζ
1
A,πp0q

where dg denotes the normalised Haar measure on G, R the irreducible
unitary representations, χπpgq the normalized trace of πpgq, and ζA,π the
meromorphic extension of the zeta function defined for s ą n

2
by

ζA,πpsq “
1

dimpπqΓpsq

ż 8

0

ts´1TrrpA,πt s dt

. See [5] for references and proof sktech in the Abelian case. The proof
here is similar:

ş

T plqsχπpHAplqq ´ 1qµpdlq is well defined and holomorphic
as loops with non trivial holonomy have a minimal positive diameter, ana-
lytic continuation shows that the holomorphic functions ζA,πpsq ´ ζpsq and

1
Γpsq

ş

T plqsχπpHAplqq ´ 1qµpdlq are equal. Then
ş

pχπpHAplqq´1qµpdlq “
d

ds |s“0

1
Γpsq

ş

T spχπpHAplqq´1qµpdlq “ ζ 1A,πp0q´ζ
1p0q,

as the reciprocal gamma function vanishes and has unit derivative in zero. Fi-
nally we conclude by Peter-Weyl theorem, noting that

ř

πPR dimpπq2
ş

C
χπpgqdg

vanishes as Cm does not contain the identity.
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