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Controllability of a one-dimensional fractional heat equation:
theoretical and numerical aspects

Umberto Biccari ∗† Vı́ctor Hernández-Santamarı́a ∗ †

Abstract

We analyze the controllability problem for a one-dimensional heat equation involving the fractional Laplacian
(−d 2

x )s on the interval (−1, 1). Using classical results and techniques, we show that, acting from an open subset
ω ⊂ (−1, 1), the problem is null-controllable for s > 1/2 and that for s ≤ 1/2 we only have approximate controllability.
Moreover, we deal with the numerical computation of the control employing the penalized Hilbert Uniqueness Method
(HUM) and a finite element (FE) scheme for the approximation of the solution to the corresponding elliptic equation.
We present several experiments confirming the expected controllability properties.

1 Introduction and main results
Let ω ⊂ (−1, 1) be an open and nonempty subset. In this work, we consider the following nonlocal one-dimensional
heat equation defined on the domain (−1, 1) × (0,T )

zt + (−d 2
x )sz = g1ω, (x, t) ∈ (−1, 1) × (0,T )

z = 0, (x, t) ∈ [R \ (−1, 1) ] × (0,T )
z(x, 0) = z0(x), x ∈ (−1, 1),

(1.1)

where z0 ∈ L2(−1, 1) is a given initial datum. In (1.1), for all s ∈ (0, 1), (−d 2
x )s denotes the one-dimensional fractional

Laplace operator, which is defined as the following singular integral

(−d 2
x )su(x) = c1,s P.V.

∫
R

u(x) − u(y)
|x − y|1+2s dy. (1.2)

Here, c1,s is a normalization constant given by

c1,s =
s22sΓ

(
1+2s

2

)
√
πΓ(1 − s)

,

where Γ is the usual Gamma function. Moreover, we have to mention that, for having a completely rigorous definition
of the fractional Laplace operator, it is necessary to introduce also the class of functions u for which computing (−d 2

x )su
makes sense. We postpone this discussion to the next section.

The analysis of non-local operators and non-local PDEs is a topic in continuous development. A motivation for this
growing interest relies in the large number of possible applications in the modeling of several complex phenomena for
which a local approach turns up to be inappropriate or limiting. Indeed, there is an ample spectrum of situations in
which a non-local equation gives a significantly better description than a PDE of the problem one wants to analyze.
Among others, we mention applications in turbulence ([5]), anomalous transport and diffusion ([8, 37]), elasticity
([19]), image processing ([27]), porous media flow ([48]), wave propagation in heterogeneous high contrast media
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([49]). Also, it is well known that the fractional Laplacian is the generator of s-stable processes, and it is often used in
stochastic models with applications, for instance, in mathematical finance ([35, 42]).

One of the main differences between these non-local models and classical Partial Differential Equations is that the
fulfillment of a non-local equation at a point involves the values of the function far away from that point.

In the present paper, we are interested in studying control properties for equation (1.1). In more detail, we aim to
give an answer to the following question:

given any T > 0 and any initial datum z0 ∈ L2(−1, 1), can we find a control function g ∈ L2(ω×(0,T ))
such that the corresponding solution to (1.1) satisfies z(x,T ) = 0?

It is well-known that the classical local heat equation (as well as many other general variants) is null-controllable
for any time T > 0 (see, e.g., [21, 24, 33]). Nevertheless, to the best of our knowledge, there are few results in the
literature on the null-controllability of the fractional heat equation, and none of them is for a problem involving the
fractional Laplacian in its integral form (1.2). The existing results ([39, 40]), instead, deal with the so-called spectral
fractional Laplace operator, whose definition will be given later.

In this paper, we deal with the controllability of (1.1), both from the theoretical and the numerical point of view.
Employing spectral analysis techniques based on the works [31, 32], the first main result that we obtain is the following

Theorem 1.1. Given any z0 ∈ L2(−1, 1), the parabolic problem (1.1) is null-controllable at time T > 0 with a control
function g ∈ L2(ω × (0,T )) if and only if s > 1/2.

Furthermore, even if for s ≤ 1/2 null controllability for (1.1) fails, we still have the following result of approximate
controllability, as a consequence of unique continuation properties for the fractional Laplace operator ([20]).

Theorem 1.2. Let s ∈ (0, 1). Given any z0 ∈ L2(−1, 1), there exists a control function g ∈ L2(ω × (0,T )) such that the
unique solution z to the parabolic problem (1.1) is approximately controllable at time T > 0.

Theorems 1.1 and 1.2 will then find a confirmation in the study of the corresponding numerical control problem.
For this purpose, we will employ the penalized Hilbert Uniqueness Method, which relies in the classical works of
Glowinski and Lions ([28, 29]). This method is very general and it can be applied to a broad class of PDE control
problems, see, for instance, [12, 13, 15, 30]. However, all of the previous works have one thing in common: they are
devoted to the study of equations of local nature. Here, we will see that, when dealing with a nonlocal equation as (1.1),
new issues arise during the numerical implementation.

In this context, for the resolution of the numerical control problem, we will need a finite element (FE) approximation
of the solution to the following non-local Poisson equation(−d 2

x )su = f , x ∈ (−1, 1)
u ≡ 0, x ∈ R \ (−1, 1).

(1.3)

In the recent past, the fractional Laplacian has been widely analyzed also from the point of view of numerical
analysis. We refer, for instance, to the works [2, 3, 11]. There, the authors present a FE scheme for implementing
the solution of (1.3) in a bounded domain Ω ⊂ R2. In particular, they provide appropriate quadrature rules in order
to solve numerically the variational formulation associated to the problem. Moreover, in [3, 11] it is also developed
an accurate analysis of the efficiency of the FE method, employing several existing results. The techniques of the
aforementioned works have then been applied in [1], combined with a convolution quadrature approach, for solving
evolution equations involving the fractional Laplacian. For the sake of completeness, we also mention [10], where it is
presented a discretization of the spectral fractional Laplacian and its application to the evolutionary case [9], and [41],
where the same problem is treated applying the well known extension of Caffarelli and Silvestre ([16]).

In the present paper, we propose a FE approximation for the fractional Poisson equation (1.3) which does not
require any quadrature rule. Indeed, exploiting the one-dimensional nature of the problem, each entry of the stiffness
matrix can be computed explicitly in terms of its position, the parameter s and the mesh size. This, in particular, allows
a quick and simple implementation of the control problem.

This paper is organized as follows. In Section 2, we briefly present the functional setting and some existing theory
related to the problems that we are going to analyze. In particular, we give a more accurate definition of the fractional
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Laplace operator, we discuss the known results on the controllability of fractional parabolic equations and we introduce
the variational formulation associated to (1.3) (needed for the development of the FE scheme). Section 3 is devoted to
the proof of Theorems 1.1 and 1.2. In Section 4, we describe the penalized HUM with its application to our control
problem. Moreover, we present our FE method for the elliptic equation (1.3), that then will be employed for the
numerical control of (1.1). In Section 5 we present and comment the results of our numerical simulations. Finally, in
Appendix A we include the complete details for computing the stiffness matrix associated to our FE scheme.

2 Preliminary results on the fractional Laplace operator
In this Section, we introduce some preliminary result that will be useful in the remainder of the paper.

We start by giving a more rigorous definition of the fractional Laplace operator, as we have anticipated in Section 1.
Let

L1
s(R) :=

{
u : R −→ R : u measurable ,

∫
R

|u(x)|
(1 + |x|)1+2s dx < ∞

}
.

For any u ∈ L1
s and ε > 0 we set

(−d 2
x )s
ε u(x) = c1,s

∫
|x−y|>ε

u(x) − u(y)
|x − y|1+2s dy, x ∈ R.

The fractional Laplacian is then defined by the following singular integral

(−d 2
x )su(x) = c1,s P.V.

∫
R

u(x) − u(y)
|x − y|1+2s dy = lim

ε→0+
(−d2

x)s
εu(x), x ∈ R, (2.1)

provided that the limit exists.
We notice that if 0 < s < 1/2 and u is a smooth function, for example bounded and Lipschitz continuous on R, then

the integral in (2.1) is in fact not really singular near x (see e.g. [18, Remark 3.1]). Moreover, L1
s(R) is the right space

for which v := (−d 2
x )s
ε u exists for every ε > 0, v being also continuous at the continuity points of u.

It is by now well-known (see, e.g., [18]) that the natural functional setting for problems involving the Fractional
Laplacian is the one of the fractional Sobolev spaces. Since these spaces are not as familiar as the classical integral
order ones, for the sake of completeness, we recall here their definition.

Given s ∈ (0, 1), the fractional Sobolev space Hs(−1, 1) is defined as

Hs(−1, 1) :=

u ∈ L2(−1, 1) :
|u(x) − u(y)|

|x − y|
1
2 +s

∈ L2
(
(−1, 1) × (−1, 1)

) .
It is classical that this is a Hilbert space, endowed with the norm (derived from the scalar product)

‖u‖Hs(−1,1) :=
[
‖u‖2L2(−1,1) + |u|2Hs(−1,1)

] 1
2 ,

where the term

|u|Hs(−1,1) :=
(∫ 1

−1

∫ 1

−1

|u(x) − u(y)|2

|x − y|1+2s dxdy
) 1

2

is the so-called Gagliardo seminorm of u. We set

Hs
0(−1, 1) := C∞0 (−1, 1)

Hs(−1,1)

the closure of the continuous infinitely differentiable functions with compact support in (−1, 1) with respect to the
Hs(−1, 1)-norm. The following facts are well-known.
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• For 0 < s ≤ 1
2 , the identity Hs

0(−1, 1) = Hs(−1, 1) holds. This is because, in this case, the C∞0 (−1, 1) functions
are dense in Hs(−1, 1) (see, e.g., [36, Theorem 11.1]).

• For 1
2 < s < 1, we have Hs

0(−1, 1) = {u ∈ Hs(R) : u = 0 in R \ (−1, 1)} ([23]).

Finally, in what follows we will indicate with H−s(−1, 1) = (Hs(−1, 1))′ the dual space of Hs(−1, 1) with respect to
the pivot space L2(−1, 1).

A more exhaustive description of fractional Sobolev spaces and of their properties can be found in several classical
references (see, e.g., [4, 18, 36]).

Let us now discuss the parabolic equation (1.1). First of all, we mention that the issues of existence, uniqueness and
regularity of the solutions have been studied by several authors. Among others, we mention the works [7, 22, 34]. In
particular, in [34, Theorem 26] it is showed that, assuming z0 ∈ L2(Ω) and g ∈ L2(0,T ; H−s(Ω)), then equation (1.1)
admits a unique weak solution z ∈ L2(0,T ; Hs

0(Ω)) ∩C([0,T ]; L2(Ω)) with zt ∈ L2(0,T ; H−s(Ω)). Notice that taking as
in our case g ∈ L2(ω × (0,T )), the same result holds due to the continuous injection of L2 into H−s.

In this paper we are mainly interested in the study of control properties for the parabolic system (1.1). For the sake
of completeness, we include below the definitions of null and approximate controllability.

Definition 2.1. System (1.1) is said to be null-controllable at time T > 0 if, for any z0 ∈ L2(−1, 1), there exists
g ∈ L2(ω × (0,T )) such that the corresponding solution z satisfies

z(x,T ) = 0.

Definition 2.2. System (1.1) is said to be approximately controllable at time T > 0 if, for any z0, zT ∈ L2(−1, 1) and
any δ > 0, there exists g ∈ L2(ω × (0,T )) such that the corresponding solution z satisfies

‖z(x,T ) − zT ‖L2(−1,1) ≤ δ.

We already mentioned that, to the best of our knowledge, there are no results in the literature concerning the
controllability of the fractional heat equation involving the integral operator (2.1). The existing ones deal with the
spectral definition of the fractional Laplace operator, which is given as follows.

Let {ψk, λk}k∈N ⊂ H1
0(−1, 1) × R+ be the set of normalized eigenfunctions and eigenvalues of the Laplace operator

in (−1, 1) with homogeneous Dirichlet boundary conditions, so that {ψk}k∈N is an orthonormal basis of L2(−1, 1) and−d2
xψk = λkψk, x ∈ (−1, 1),

ψk(−1) = ψk(1) = 0.

Then, the spectral fractional Laplacian (−d 2
x )s

S is defined by

(−d 2
x )s

S u(x) =
∑
k≥1

〈u, ψk〉λ
s
kψk(x), (2.2)

firstly for u ∈ C∞0 (−1, 1) and then for u ∈ Hs
0(−1, 1) employing a density argument.

It is important to notice that the spectral fractional Laplacian and the fractional Laplacian defined as in (2.1) are two
different operators. For instance, definition (2.2) depends on the choice of the domain, while the integral definition
does not. For a complete discussion on the differences of these two operators, we refer to [46].

The control problem for the fractional heat equation involving the operator (−d 2
x )s

S has been analyzed in [39], where
the authors proved null controllability provided that s > 1/2. For s ≤ 1/2, instead, null controllability does not hold,
not even for T large. This negative result is based on the equivalence (consequence of Müntz Theorem, see, e.g., [45,
Page 24]) between the controllability property (more specifically, the possibility of proving an observability inequality),
and the following condition for the eigenvalues of the considered operator∑

k≥1

1
λk

< ∞, (2.3)
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which is clearly not satisfied for the spectral fractional Laplacian when s ≤ 1/2, since in that case the eigenvalues
are λk = (kπ)2s. Finally, in [40], the same result as in [39] is obtained in a multi-dimensional setting, by means of a
spectral observability condition for a negative self-adjoint operator, which allows to prove the null-controllability of
the semi-group that it generates.

As we anticipated in Section 1, the same null controllability result holds for the parabolic equation (1.1). This will be
obtained by means of classical tools ([21]) and by an explicit approximations of the eigenvalues and the eigenfunctions
the fractional Laplacian with homogeneous Dirichlet boundary conditions.

We stress that (1.1) is a different model with respect to the ones analyzed in [38, 40], since the operators (2.1) and
(2.2) are not equivalent.

We conclude this section by introducing the variational formulation associated to equation (1.3), which is at the
heart of our numerical method. That is, find u ∈ Hs

0(−1, 1) such that

a(u, v) =

∫ 1

−1
f v dx,

for all v ∈ Hs
0(−1, 1), where the bilinear form a(·, ·) : Hs

0(−1, 1) × Hs
0(−1, 1)→ R is given by

a(u, v) =
c1,s

2

∫
R

∫
R

(u(x) − u(y))(v(x) − v(y))
|x − y|1+2s dxdy. (2.4)

Since the bilinear form a is continuous and coercive, Lax-Milgram Theorem immediately implies existence and
uniqueness of solutions to the Dirichlet problem (1.3). In more detail, if f ∈ H−s(−1, 1), then (1.3) admits a unique
weak solution u ∈ Hs

0(−1, 1) (see, e.g., [6, Proposition 2.1]). Furthermore, in the literature it is possible to find improved
regularity results for the solution to (1.3), both in Hölder and Sobolev spaces. The interested reader may refer, for
instance, to [3, 6, 34, 43, 44].

3 Proof of the controllability properties
This section is devoted to study the control properties for the parabolic system (1.1). We begin by proving the null
controllability result.

Proof of Theorem 1.1. First of all, for all ϕT ∈ L2(−1, 1), let ϕ(x, t) be the unique weak solution to the adjoint system
−ϕt + (−d 2

x )sϕ = 0, (x, t) ∈ (−1, 1) × (0,T )
ϕ = 0, (x, t) ∈ [R \ (−1, 1) ] × (0,T )
ϕ(x,T ) = ϕT (x), x ∈ (−1, 1).

(3.1)

Multiplying (1.1) by ϕ and integrating over (−1, 1) × (0,T ), it is straightforward to check that z(x,T ) = 0 if and
only if ∫ T

0

∫ 1

−1
ϕ(x, t)g(x, t)1ω(x) dxdt = −

∫ 1

−1
z0(x)ϕ(x, 0) dx, (3.2)

In turn, it is classical that (3.2) is equivalent to the existence of a constant C > 0 such that the following observability
inequality holds

‖ϕ(x, 0)‖2L2(−1,1) ≤ C
∫ T

0

∣∣∣∣∣∣
∫ 1

−1
ϕ(x, t)g(x, t)1ω(x) dx

∣∣∣∣∣∣2 dt, (3.3)

Notice that ϕ can be expressed in the basis of the eigenfunctions of the fractional Laplacian on (−1, 1) with zero
Dirichlet boundary conditions. Namely,

ϕ(x, t) =
∑
k≥1

ϕke−λk(T−t)%k(x), (3.4)
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where ϕk = 〈ϕT , %k〉 and, for k ≥ 1, %k(x) are the solutions to the following eigenvalue problem(−d 2
x )s%k = λk%k, x ∈ (−1, 1), k ∈ N

%k = 0, x ∈ R \ (−1, 1).

Now, plugging (3.4) into (3.3), using the orthonormality of the eigenfunctions %k as a basis of L2(−1, 1) and
employing the change of variables T − t 7→ t, the observability inequality becomes

∑
k≥1

|ϕk |
2e−2λkT ≤ C

∫ T

0

∣∣∣∣∣∣∣∑k≥1

ϕkgk(t)e−λk t

∣∣∣∣∣∣∣
2

dt, (3.5)

where gk = 〈g1ω, %k〉.
By means of the classical moment method ([21]), inequalities of the form (3.5) are well known to be true if and

only if (2.3) holds and the eigenfunctions %k satisfy the following lower bound:

‖%k‖L2(ω) ≥ C > 0, ∀ k ≥ 1, (3.6)

where the constant C is independent of k. The proof of (3.6) is an easy adaptation of the one of [32, Lemma 2].
Moreover, according to [31, 32] we have

λk =

(
kπ
2
−

(1 − s)π
4

)2s

+ O
(

1
k

)
.

Therefore, we easily see that the condition (2.3) is satisfied if and only if s > 1/2. If s ≤ 1/2, instead, the series
diverges, since it behaves like an harmonic series. In conclusion, the observability inequality (3.3) holds true when
s > 1/2, but it is false when s ≤ 1/2. This concludes the proof. �

Even if for s ≤ 1/2 null controllability for (1.1) fails, Theorem 1.2 ensures that, for all s ∈ (0, 1), we still have
approximate controllability. This is consequence of a unique continuation property for the fractional Laplacian, which
has been obtained in [20].

Proof of Theorem 1.2. It is classical (see, e.g., [38, Theorem 5.2]) that the result is true as soon as one has the following
unique continuation property for the solution to the adjoint equation (3.1).

Given s ∈ (0, 1) and ϕT ∈ L2(−1, 1), let ϕ be the unique solution to the system (3.1).
Let ω ⊂ (−1, 1) be an arbitrary open set. If ϕ = 0 on ω × (0,T ), then ϕ = 0 on
(−1, 1) × (0,T ).

(P)

Therefore, we are reduced to the proof of the property (P). To this end, let us recall that ϕ can be expressed in the
form (3.4) and let us assume that

ϕ = 0 in ω × (0,T ). (3.7)

Let {ψk j }1≤k≤mk be an orthonormal basis of ker(λk − (−d 2
x )s). Then, (3.4) can be rewritten as

ϕ(x, t) =
∑
k≥1

 mk∑
j=1

ϕk jψk j (x)

 e−λk(T−t), (x, t) ∈ (−1, 1) × (−∞,T ).

Let z ∈ C with η := <(z) > 0 and let N ∈ N. Since the functions ψk j , 1 ≤ j ≤ mk, 1 ≤ k ≤ N are orthonormal, we
have that ∥∥∥∥∥∥∥∥

N∑
k=1

 mk∑
j=1

ϕk jψk j (x)

 ez(t−T )e−λk(T−t)

∥∥∥∥∥∥∥∥
2

L2(−1,1)

≤

N∑
k=1

 mk∑
j=1

|ϕk j |
2

 e2η(t−T )e−2λk(T−t)
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≤
∑
k≥1

 mk∑
j=1

|ϕk j |
2

 e2η(t−T )e−2λk(T−t) ≤ Ce2η(t−T )
∥∥∥ϕT

∥∥∥2
L2(−1,1).

Hence, letting

wN(x, t) :=
N∑

k=1

 mk∑
j=1

ϕk jψk j (x)

 ez(t−T )e−λk(T−t),

we have shown that ‖wN(x, t)‖L2(−1,1) ≤ Ceη(t−T )
∥∥∥ϕT

∥∥∥
L2(−1,1). Moreover, we have∫ T

−∞

eη(t−T )
∥∥∥ϕT

∥∥∥
L2(−1,1) dt =

1
η

∥∥∥ϕT
∥∥∥

L2(−1,1)

∫ +∞

0
e−τ dτ =

1
η

∥∥∥ϕT
∥∥∥

L2(−1,1).

Therefore, we can apply the Dominated Convergence Theorem, obtaining

lim
N→+∞

∫ T

−∞

wN(x, t) dt =

∫ T

−∞

lim
N→+∞

wN(x, t) dt =

∫ T

−∞

ez(t−T )
∑
k≥1

 mk∑
j=1

ϕk jψk j (x)

 e−λk(T−t) dt

=

+∞∑
k≥1

mk∑
j=1

ϕk jψk j (x)
∫ T

−∞

ez(t−T )e−λk(T−t) dt =

+∞∑
k≥1

mk∑
j=1

ϕk jψk j (x)
∫ +∞

0
e−(z+λk)τ dτ

=

+∞∑
k≥1

mk∑
j=1

ϕk j

z + λk
ψk j (x), x ∈ (−1, 1), <(z) > 0. (3.8)

It follows from (3.7) and (3.8) that

+∞∑
k≥1

mk∑
j=1

ϕk j

z + λk
ψk j (x) = 0, x ∈ ω, <(z) > 0.

This holds for every z ∈ C \ {−λk}k∈N, using the analytic continuation in z. Hence, taking a suitable small circle
around −λ` not including {−λk}k,` and integrating on that circle we get that

w` :=
m∑̀
j=1

ϕ` jψ` j (x) = 0, x ∈ ω.

According to [20, Theorem 1.4], (−d 2
x )s has the unique continuation property in the sense that if λk is an eigenvalue

of (−d 2
x )s on (-1,1) with Dirichlet boundary conditions, and ((−d 2

x )s − λk)%k = 0 in (−1, 1) with %k = 0 in ω, then %k = 0
in (−1, 1). This can applied to w`, in order to conclude w` = 0 in (−1, 1) for every `. Since {ψ` j }1≤ j≤m`

are linearly
independent in L2(−1, 1), we get ϕ` j = 0, 1 ≤ j ≤ mk, ` ∈ N. It follows that ϕT = 0 and hence, ϕ = 0 in (−1, 1) × (0,T ),
meaning that ϕ enjoys the property (P). As an immediate consequence, we have that our original equation (1.1) is
approximately controllable. Our proof is then concluded. �

Remark 3.1. According to [20], the elliptic unique continuation property for the fractional Laplacian holds in any
space dimension. In view of that, Theorem 1.2 may be extended also to the case N > 1. On the other hand, the same
does not applies to Theorem 1.1. Indeed, the proof of this result use arguments that are designed specifically for
one-dimensional problems ([21]). If one would like to analyze the null-controllability in a general multi-dimensional
setting, other tools (for instance Carleman estimates) are needed. As far as we know, these techniques have not been
fully developed yet for problems involving the fractional Laplacian on a domain.

Remark 3.2. For the sake of simplicity, in the results presented above we focused on the interval (−1, 1). Nevertheless,
everything that we did in this section actually holds in the more general case x ∈ (−L, L) and the extension is immediate.
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4 The penalized HUM and its implementation
We devote this Section to the description of the numerical scheme that we are going to employ for solving the control
problem. Let us start with a brief description of the so called penalized Hilbert Uniqueness Method (HUM in what
follows) that we shall employ for computing the controls for equation (1.1). Here, we will mostly refer to the work of
Boyer [12].

Let (E, 〈·, ·〉) be a Hilbert space whose norm is denoted by ‖·‖. Let (A,D(A)) be an unbounded operator in E such
that −A generates an analytic semi-group in E that we indicate by t 7→ e−tA. Also, we denote (A∗,D(A∗)) the adjoint of
this operator and by t 7→ e−tA∗ the corresponding semi-group.

Let (U, [·, ·]) be another Hilbert space whose norm is denoted by ~·�. Let B be an unbounded operator from U to
D(A∗)′ and let B∗ : D(A∗) → U be its adjoint. Let T > 0 be given and, for any y0 ∈ E and v ∈ L2(0,T ; U), let us
consider the non-homogeneous evolution problemyt + Ay = Bv, t ∈ [0,T ]

y(0) = y0.
(4.1)

The well posedness of (4.1) is guaranteed by [17, Theorem 2.37]. From now on, we will denote the solution at time
T corresponding to the initial datum y0 and the control v by

yv,y0 (T ) = LT (v, y0). (4.2)

The linear operator LT (·, ·) is then continuous from L2(0,T ; U) × E into E.
In the framework of both controllability notions that we introduced in Section 2, if one control exists it is certainly

not unique. In the penalized version of the HUM, we look for a control that is solution to a suitable optimization
problem. In particular, for any ε > 0, we shall find

vε = min
v∈L2(0,T ;U)

Fε(v) (4.3)

where

Fε(v) :=
1
2

∫ T

0
~v(t)�2 dt +

1
2ε
‖LT (v, y0)‖2, ∀v ∈ L2(0,T ; U).

Observe that, for any ε > 0, the functional Fε has a unique minimizer in L2(0,T ; U) that we denote by vε. This is
due to the fact that Fε is strictly convex, continuous and coercive.

However, the space L2(0,T ; U) in which one has to minimize Fε is a quite big one and it depends on the time
variable. This makes the optimization problem computationally expensive. This issue can be circumvented by
considering the following problem, defined on the smaller space E. Namely, we consider the minimization problem

qT
ε = min

q∈E
Jε(qT ) (4.4)

where

Jε(qT ) :=
1
2

∫ T

0
~B∗e−(T−t)A∗qT�2 dt +

ε

2

∥∥∥qT
∥∥∥2

+ 〈LT (y0, 0), qT 〉, ∀qT ∈ E. (4.5)

In fact, it is classical to prove that (4.3) and (4.4) are equivalent since, for any ε > 0, the minimizers vε and qT
ε of

the functionals Fε and Jε, respectively, are related through the formula

vε = B∗e−(T−t)A∗qT
ε , for a.e. t ∈ (0,T ).

Notice also that we can express the approximate and null controllability properties of the system, for a given initial
datum y0, in terms of the behavior of the penalized HUM approach described above. In particular, we have
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Theorem 4.1 (Theorem 1.7 of [12]). Problem (4.1) is approximately controllable from the initial datum y0 if and only
if we have

LT (vε, y0) = yvε,y0 (T )→ 0, as ε→ 0.

Problem (4.1) is null-controllable from the initial datum y0 if and only if we have

M2
y0

:= 2 sup
ε>0

(
inf

L2(0,T ;U)
Fε

)
< +∞.

In this case, we have

~vε�L2(0,T ;U) ≤ My0 ,

‖LT (vε, y0)‖ ≤ My0

√
ε.

Observe that the fractional Laplacian (−d 2
x )s satisfies the properties required for the operator A (see, e.g., [25,

Theorem 2.14]). Therefore, the penalized HUM approach that we just described can be applied to the control problem
(1.1). Following the discussion in [12], we expect that, under discretization, the solution z to (1.1) retains the properties
of controllability stated in Theorem 4.1. This will be in accordance with the theoretical results obtained in Theorems
1.1 and 1.2.

To this end, let us study the fully-discrete version of (1.1). For any given meshM and any integer M > 0, we set
δt = T/M and we consider an implicit Euler method, with respect to the time variable. More precisely, we considerMh

zn+1 − zn

δt
+ Ahzn+1 = vn+1

h 1ω, ∀n ∈ {1, . . . ,M − 1}

z0 = z0,
(4.6)

where z0 ∈ R
M, Mh is the classical mass matrix and Ah is a suitable stiffness matrix approximating the fractional

Laplacian. We are going to present more details on the construction of (4.6) in the next section.
In system (4.6), vh,δt = (vn

h)1≤n≤M is a fully-discrete control function whose cost, that is the discrete L2
δt(0,T ;RM)-

norm, is defined by

‖vδt‖L2
δt(0,T ;RM) :=

 M∑
i=1

δt|vn|2L2(RM)

1/2

,

and where | · |L2(RM) stands for the norm associated to the L2-inner product on RM

(u, v)L2(RM) = h
N∑

i=1

uivi.

With the above notation and according to the penalized HUM strategy, we introduce, for some penalization
parameter ε > 0, the following primal fully-discrete functional

Fε,h,δt(vδt) =
1
2
‖vδt‖2L2

δt(0,T ;RM) +
1
2ε
|Lh

T (vδt, y0) |2L2(RM), ∀ vδt ∈ L2
δt(0,T ;RM),

that we wish to minimize onto the whole fully-discrete control space L2
δt(0,T ;RM) and where zM is the final value of

the controlled problem (4.6). Here Lh
T (·, ·) stands for the discrete version of the operator (4.2).

We can apply Fenchel-Rockafellar theory results to obtain the corresponding dual functional, which reads as follows

Jε,h,δt(ϕT ) =
1
2

∥∥∥Lh
T (·, 0)? ϕT

∥∥∥2
L2
δt(0,T ;RM) +

ε

2
|ϕT |2L2(RM) +

(
ϕT ,Lh

T (0, y0)
)

L2(RM)
, ∀ϕT ∈ L2

h,δt(−1, 1) (4.7)
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where Lh
T (·, ·)? is the adjoint of Lh

T (·, ·) and

Lh
T (·, 0)? ϕT = (1ωϕn)1≤n≤M+1

with ϕ = (ϕn)1≤n≤M+1 solution to the adjoint systemMh
ϕn − ϕn+1

δt
+ Ahϕ

n = 0, ∀n ∈ {1, . . . ,M}

ϕM+1 = ϕT .
(4.8)

Notice that (4.7) is the fully-discrete approximation of (4.5). Moreover, it can be readily verified that this functional
has a unique minimizer without any additional assumption on the problem. Therefore, by minimizing (4.7), and from
duality theory, we obtain a control function

vε,h,δt =
(
1ωϕn

ε,h,δt

)
1≤n≤M

,

where ϕε is the solution to (4.8) evaluated in the optimal datum ϕT
ε .

Thus, the optimal penalized control always exists and is unique. Deducing controllability properties amounts to
study the behavior of this control with respect to the penalization parameter ε, in connection with the discretization
parameters.

It is well known that, in general, we cannot expect for a given bounded family of initial data that the fully-discrete
controls are uniformly bounded when the discretization parameters h, δt and the penalization term ε tend to zero
independently. Instead, we expect to obtain uniform bounds by taking the penalization parameter ε = φ(h) that tends
to zero in connection with the mesh size not too fast (see [12]) and a time step δt verifying some weak condition of
the kind δt ≤ ζ(h) where ζ tends to zero logaritmically when h → 0 (see [14]). This fact will be confirmed by the
numerical simulations that we are going to present in Section 5.1 below, by observing the behavior of the norm of the
control, the optimal energy inf Fε, and the norm of the solution at time T . In this way, with the help of Theorem 4.1,
we obtain numerical evidences of the properties of null and approximate controllability for equation (1.1), which are in
accordance with the theoretical results in Section 2.

4.1 Finite element approximation
According to the formulation of systems (4.6) and (4.8), in order to solve numerically our control problem, a proper
approximation Ah of the operator (−d 2

x )s is needed. Furthermore, observe that, for every every time step n, (4.6) and
(4.8) are actually discrete equations of the form(

I + δtM−1
h Ah

)
uh = fh.

The matrices appearing in the above equation will be computed employing a finite element scheme on a uniform
mesh.

Computation of the stiffness matrix Ah.

First of all, we recall the variational formulation associated to the elliptic equation (1.3): find u ∈ Hs
0(−1, 1) such that

a(u, v) =

∫ 1

−1
f v dx, (4.9)

for all v ∈ Hs
0(−1, 1), where a(u, v) is the bilinear form introduced in (2.4).

Let us take a partition of the interval (−1, 1) as follows:

−1 = x0 < x1 < . . . < xi < xi+1 < . . . < xN+1 = 1 ,
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with xi+1 = xi + h, i = 0, . . .N. We callM the mesh composed by the points {xi : i = 1, . . . ,N}, while the set of the
boundary points is denoted ∂M := {x0, xN+1}. Now, define Ki := [xi, xi+1] and consider the discrete space

Vh :=
{
v ∈ Hs

0(−1, 1)
∣∣∣ v |Ki

∈ P1
}
, (4.10)

where P1 is the space of the continuous and piece-wise linear functions. Hence, we approximate (4.9) with the following
discrete problem: find uh ∈ Vh such that

c1,s

2

∫
R

∫
R

(uh(x) − uh(y))(vh(x) − vh(y))
|x − y|1+2s dxdy =

∫ 1

−1
f vh dx,

for all vh ∈ Vh. If now we indicate with
{
φi

}N
i=1 a basis of Vh, it will be sufficient that the above equality is satisfied for

all the functions of the basis, since any element of Vh is a linear combination of them. Therefore the problem takes the
following form

c1,s

2

∫
R

∫
R

(uh(x) − uh(y))(φi(x) − φi(y))
|x − y|1+2s dxdy =

∫ 1

−1
f vh dx, i = 1, . . . ,N. (4.11)

Clearly, since uh ∈ Vh, we have

uh(x) =

N∑
j=1

u jφ j(x),

where the coefficients u j are, a priori, unknown. In this way, (4.11) is reduced to solve the linear system Ahu = F,
where the stiffness matrix Ah ∈ R

N×N has components

ai, j =
c1,s

2

∫
R

∫
R

(φi(x) − φi(y))(φ j(x) − φ j(y))
|x − y|1+2s dxdy, (4.12)

while the vector F ∈ RN is given by F = (F1, . . . , FN) with

Fi = 〈 f , φi〉 =

∫ 1

−1
fφi dx, i = 1, . . . ,N.

Moreover, the basis
{
φi

}N
i=1 that we will employ is the classical one in which each φi is the tent function with

supp(φi) = (xi−1, xi+1) and verifying φi(x j) = δi, j. In particular, for x ∈ {xi−1, xi, xi+1} the ith function of the basis is
explicitly defined as (see Figure 1)

φi(x) = 1 −
|x − xi|

h
. (4.13)

•

•

•
(xi−1, 0)

(xi, 1)

(xi+1, 0)(xi, 0)

y

x

φi(x)

Figure 1: Basis function φi(x) on its support (xi−1, xi+1).

Let us now describe our algorithm for computing the coefficients ai, j. Before that, we shall make the following
preliminary comments.
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Remark 4.1. The following fact are worth noticing.

1. The constant c1,s in the definition (2.1) of the fractional Laplacian is common for all the entries of the matrix.
For the sake of simplicity, we will drop this constant in the following computations.

2. It is evident from the definition (4.12) that Ah is symmetric. Therefore, in our algorithm we will only need to
compute the values ai, j with j ≥ i.

3. Due to the non-local nature of the problem, the matrix Ah is full. However, while computing its components, we
will encounter many simplifications, due to the fact that supp(φi) ∩ supp(φ j) = ∅ for j ≥ i + 2.

4. While computing the values ai, j, we will only work on the meshM, not considering the points of the set ∂M. In
this way, we will ensure that the basis functions φi satisfy the zero Dirichlet boundary conditions. In other words,
in our FE approximation we are considering only the functions from φ1 to φN . Instead, if we considered the
points x0 and xN+1, then we would need to introduce in our discretization also the basis functions φ0 and φN+1,
which take value one at the boundary, and this would not be consistent with the continuous problem. Figure 2
provides a graphical explanation of this last discussion.

x0 = −1

φ1

x2x1

φ2

x3

φ3

x4 xN−1

φN

xN+1 = 1xN

y

x

1

. . . . . . . . .

• •

Figure 2: Basis functions φi(x) on the whole interval (−L, L).

We now start building the stiffness matrix Ah. This will be done it in three steps, since the values of the matrix
can be computed differentiating among three well defined regions: the upper triangle, corresponding to j ≥ i + 2, the
upper diagonal corresponding to j = i + 1 and the diagonal, corresponding to j = i (see Figure 3). In fact, as it will be
clear during our computations, in each of these regions the intersections among the support of the basis functions are
different, thus generating different values of the bilinear form. In what follows, we will briefly present which will be
the contributions to the matrix in each of these three steps, including the complete computations as an appendix at the
end of the paper.

Step 1: j ≥ i + 2

As we mentioned in Remark 4.1(3), in this case we have supp(φi) ∩ supp(φ j) = ∅ (see also Figure 4). Hence, (4.12) is
reduced to computing only the integral

ai, j = −2
∫ x j+1

x j−1

∫ xi+1

xi−1

φi(x)φ j(y)
|x − y|1+2s dxdy. (4.14)

Taking into account the definition of the basis function (4.13), from (4.14) we obtain

ai, j = −2
∫ x j+1

x j−1

∫ xi+1

xi−1

(
1 − |x−xi |

h

) (
1 − |y−x j |

h

)
|x − y|1+2s dxdy.

Finally, this last integral can be computed explicitly employing the following change of variables:

x − xi

h
= x̂,

y − xi

h
= ŷ. (4.15)
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a1,1 a1,2 a1,3 . . . . . . . . . . . . a1,N

a2,2 a2,3 a2,4 . . . . . . a2,N

. . .
. . .

. . .
...

. . .
. . . aN−2,N

aN−1,N−1 aN−1,N

aN,N




Figure 3: Structure of the stiffness matrix Ah.

(xi−1, 0)

(xi, 1)

(xi+1, 0)(xi, 0) (x j−1, 0)

(x j, 1)

(x j+1, 0)(x j, 0)

y

x

φi(x) φ j(x)

Figure 4: Basis functions φi(x) and φ j(x) for j ≥ i + 1. In this case, the supports are disjoint.

In this way, for the elements ai, j, j ≥ i + 2, we get the following values:

ai, j =



−h1−2s 4(k + 1)3−2s + 4(k − 1)3−2s − 6k3−2s − (k + 2)3−2s − (k − 2)3−2s

2s(1 − 2s)(1 − s)(3 − 2s)
, k = j − i, s ,

1
2

−4( j − i + 1)2 log( j − i + 1) − 4( j − i − 1)2 log( j − i − 1) s =
1
2
, j > i + 2

+6( j − i)2 log( j − i) + ( j − i + 2)2 log( j − i + 2) + ( j − i − 2)2 log( j − i − 2),

56 ln(2) − 36 ln(3), s =
1
2
, j = i + 2.

Step 2: j = i + 1

This is the most cumbersome case, since it is the one with the most interactions between the basis functions (see Figure
5). According to (4.12), and using the symmetry of the integral with respect to the bisector y = x, we have

ai,i+1 =

∫
R

∫
R

(φi(x) − φi(y))(φi+1(x) − φi+1(y))
|x − y|1+2s dxdy

=

∫ +∞

xi+1

∫ +∞

xi+1

. . . dxdy + 2
∫ +∞

xi+1

∫ xi+1

xi

. . . dxdy + 2
∫ +∞

xi+1

∫ xi

−∞

. . . dxdy

+

∫ xi+1

xi

∫ xi+1

xi

. . . dxdy + 2
∫ xi+1

xi

∫ xi

−∞

. . . dxdy +

∫ xi

−∞

∫ xi

−∞

. . . dxdy
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:=Q1 + Q2 + Q3 + Q4 + Q5 + Q6.

These contributions will be calculated separately, employing changes of variables analogous to (4.15). After several

(xi−1, 0)

(xi, 1)

(xi+1, 0)(xi, 0)
(x j−1, 0)

(x j, 1)

(x j+1, 0)(x j, 0)

y

x

φi(x) φ j(x)

Figure 5: Basis functions φi(x) and φi+1(x). In this case, the intersection of the supports is the interval [xi, xi+1].

computations, we obtain

ai,i+1 =


h1−2s 33−2s − 25−2s + 7

2s(1 − 2s)(1 − s)(3 − 2s)
, s ,

1
2

9 ln 3 − 16 ln 2, s =
1
2
.

Step 3: j = i

As a last step, we fill the diagonal of the matrix Ah, which collects the values corresponding to the case φi(x) = φ j(x)
(see Figure 6). We have

ai,i =

∫
R

∫
R

(φi(x) − φi(y))2

|x − y|1+2s dxdy

=

∫ +∞

xi+1

∫ +∞

xi+1

. . . dxdy + 2
∫ +∞

xi+1

∫ xi+1

xi−1

. . . dxdy +

∫ +∞

xi+1

∫ xi−1

−∞

. . . dxdy

+

∫ xi+1

xi−1

∫ xi+1

xi−1

. . . dxdy + 2
∫ xi−1

−∞

∫ xi+1

xi−1

. . . dxdy + +

∫ xi−1

−∞

∫ +∞

xi+1
. . . dxdy

+

∫ xi−1

−∞

∫ xi−1

−∞

. . . dxdy := R1 + R2 + R3 + R4 + R5 + R6 + R7.

(xi−1, 0)

(xi, 1) = (x j, 1)

(xi+1, 0)(xi, 0)

(x j−1, 0) (x j+1, 0)(x j, 0)
q qq

y

x

φi(x) = φ j(x)

•

•

•

•

•

•

•

•

•

•

•

Figure 6: Basis functions φi(x) and φ j(x). In this case, the two functions coincide.
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Once again, the terms Ri, i = 1, . . . , 7 will be computed separately, and summing them we will obtain

ai,i =


h1−2s 23−2s − 4

s(1 − 2s)(1 − s)(3 − 2s)
, s ,

1
2

8 ln 2, s =
1
2
.

Conclusion

Summarizing, we have the following values for the elements of the stiffness matrix Ah: for s , 1/2

ai, j = −h1−2s



4(k + 1)3−2s + 4(k − 1)3−2s − 6k3−2s − (k + 2)3−2s − (k − 2)3−2s

2s(1 − 2s)(1 − s)(3 − 2s)
, k = j − i, k ≥ 2

33−2s − 25−2s + 7
2s(1 − 2s)(1 − s)(3 − 2s)

, j = i + 1

23−2s − 4
s(1 − 2s)(1 − s)(3 − 2s)

, j = i.

For s = 1/2, instead, we have

ai, j =



−4( j − i + 1)2 log( j − i + 1) − 4( j − i − 1)2 log( j − i − 1)
+6( j − i)2 log( j − i) + ( j − i + 2)2 log( j − i + 2) + ( j − i − 2)2 log( j − i − 2), j > i + 2

56 ln(2) − 36 ln(3), j = i + 2.

9 ln 3 − 16 ln 2, j = i + 1

8 ln 2, j = i.

Remark 4.2. We point out the following facts:

1. The matrix Ah has the structure of a N-diagonal matrix, meaning that value of its elements remain constant
along its diagonals. This is in analogy with the tridiagonal matrix approximating the classical Laplace operator.
Notice, however, that in our case we obtain a full matrix. This is consistent with the nonlocal nature of the
operator that we are discretizing.

2. The value of each element ai, j is given explicitly, and it only depends on i, j, s and h. In other words, when
approximating the left hand side of (4.11), no numerical integration is needed.

3. For s = 1/2, the elements ai, j do not depend on the value of h which, in turn, is a function of N. This implies that,
in this particular case, no matter how many points we consider in our mesh, the matrix Ah will always have the
same entries.

4. A quick computation shows that taking the limit s→ 1− in Ah we recover the tridiagonal matrix of the classical
FE approximation of the local Poisson equation. This is in accordance with the same behavior of the continuous
operator, as shown, for instance, in [18, Proposition 4.4].
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Computation of the mass matrix Mh.

The matrix Mh appears when deriving the FE scheme for the parabolic problem (1.1). Adapting the same construction
that we presented before for the elliptic equation (1.3), the approximate solution zh shall be written in the form

zh(x, t) :=
N∑

j=1

z j(t)φ j(x),

where the basis functions {φ j}
N
j=1 are the same as before while the coefficients {z j(t)}Nj=1 have to be computed. Then, the

corresponding variational formulation reads as

N∑
j=1

z′j(t)
∫ 1

−1
φ jφi dx︸       ︷︷       ︸
mi, j

+z j(t) a(φ j, φi)︸   ︷︷   ︸
ai, j

 =

∫
ω

gφi dx︸     ︷︷     ︸
gi(t)

, i = 1, . . . ,N.

Therefore, denoting g(t) := (g1(t), . . . , gN(t))T , the unknown vector z(t) := (z1(t), . . . , zN(t))T is obtained by solving
the following linear system

Mhz′(t) + Ahz(t) = g(t), (4.16)

where Mh is the mass matrix with entries mi, j and Ah is the stiffness matrix composed by the entries ai, j previously
computed.

Solving (4.16) by means of an implicit Euler method in time, we obtain exactly the formulation (4.6). Moreover,
(4.8) is obtained with the same procedure, taking into account that this time, the original problem being homogeneous,
the vector g is actually zero.

5 Numerical results
In this Section, we present the numerical simulations corresponding to the algorithm previously described, and we
provide a complete discussion of the results obtained.

First of all, we test numerically the accuracy of our method for the resolution of the elliptic equation (1.3), by
applying it to the following problem {

(−d 2
x )su = 1, x ∈ (−1, 1)

u ≡ 0, x ∈ R \ (−1, 1). (5.1)

In this particular case, the unique solution to (5.1) can be computed exactly and it is given in [26]. It reads as
follows,

u(x) =
2−2s √π

Γ
(

1+2s
2

)
Γ(1 + s)

(
1 − x 2

)s
· 1(−1,1). (5.2)

In Figure 7, we show a comparison for different values of s between the exact solution (5.2) and the computed
numerical approximation. Here we consider N = 50. One can notice that when s = 0.1 (and also for other small values
of s), the computed solution is to a certain extent different from the exact solution. However, one should be careful with
such result and a more precise analysis of the error should be carried.

In the same spirit as in [2], the computation of the error in the space Hs
0(−1, 1) can be readily done by using the

definition of the bilinear form, namely

‖u − uh‖
2
Hs

0(−1,1) = a(u − uh, u − uh) = a(u, u − uh) =

∫ 1

−1
f (x) (u(x) − uh(x)) dx,
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Figure 7: Plot for different values of s.

where have used the orthogonality condition a(vh, u − uh) = 0 ∀vh ∈ Vh.
For this particular test, since f ≡ 1 in (−1, 1), the problem is therefore reduced to

‖u − uh‖Hs
0(−1,1) =

(∫ 1

−1
(u(x) − uh(x)) dx

)1/2

where the right-hand side can be easily computed, since we have the closed formula∫ 1

−1
u dx =

π

22sΓ(s + 1
2 )Γ(s + 3

2 )

and the term corresponding to
∫ 1
−1 uh can be carried out numerically.

In Figure 8, we present the computational errors evaluated for different values of s and h.
The rates of convergence shown are of order (in h) of 1/2. This is in accordance with the following result:

Theorem 5.1 ([2, Theorem 4.6]). For the solution u of (4.9) and its FE approximation uh given by (4.11), if h is
sufficiently small, the following estimates hold

‖u − uh‖Hs
0(−1,1) ≤ Ch1/2|ln h| ‖ f ‖C1/2−s(−1,1), if s < 1/2,

‖u − uh‖Hs
0(−1,1) ≤ Ch1/2|ln h| ‖ f ‖L∞(−1,1), if s = 1/2

‖u − uh‖Hs
0(−1,1) ≤

C
2s−1 h1/2

√
|ln h| ‖ f ‖Cβ(−1,1), if s > 1/2, β > 0
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Figure 8: Convergence of the error.

where C is a positive constant not depending on h.

Moreover, Figure 8 shows that the convergence rate is maintained also for small values of s. This confirms that the
behavior shown in Figure 7a is not in contrast with the known theoretical results. Indeed, since it is well-known that the
notion of trace is not defined for the spaces Hs(−1, 1) with s ≤ 1/2 (see [36, 47]), it is somehow natural that we cannot
expect a point-wise convergence in this case.

5.1 Control experiments
To address the actual computation of fully-discrete controls for a given problem, we use the methodology described, for
instance, in [29]. We apply an optimization algorithm to the dual functional (4.7). Since these functionals are quadratic
and coercive, the conjugate gradient is a natural and quite simple choice.

First of all, starting from the expression (4.7), the gradient of the functional Jε,h,δt(ϕT ) can be easily computed and it
reads as

∇Jε,h,δt(ϕT ) = Lh
T

(
Lh

T (·, 0)? ϕT , 0
)

+ εϕT + Lh
T (0, y0) .

Hence, the computation of this gradient at each iteration amounts to solve first the homogeneous equation (4.8).
Then, set vn = ϕn1ω and finally solve (4.6) with zero initial datum. In this way, the procedure to compute the gradient
of (4.7) basically requires to solve two parabolic equations: a homogeneous backward one associated with the final
data ϕT , and a non-homogeneous forward problem with zero initial data.

We present now some results obtained with the described methodology. In accordance with the discussion in
Section 4, we use the finite-element approximation of (−d 2

x )s for the space discretization and the implicit Euler scheme
in the time variable. We denote by N the number of points in the mesh and by M the number of time intervals. As
discussed in [14], the results in this kind of problems does not depend too much in the time step, as soon as it is chosen
to ensure at least the same accuracy as the space discretization. The same remains true here, and therefore we always
take M = 2000 in order to concentrate the discussion on the dependency of the results with respect to the mesh size h
and the parameter s.

As we mentioned, we choose the penalization term ε as a function of h. A reasonable practical rule ([12]) is to
systematically choose ε = φ(h) ∼ h2p where p is the order of accuracy in space of the numerical method employed for
the discretization of the spatial operator involved (in this case the fractional Laplacian (2.1)).

We recall that the solution z to (1.1) belongs to the space L2(0,T ; Hs
0(−1, 1)) ∩C([0,T ]; L2(−1, 1)). In view of that,

we immediately have that z(·,T ) ∈ L2(−1, 1). Therefore, we shall choose the value of p as the convergence rate in the
L2-norm for the discretization of the elliptic problem (1.3). This convergence rate is given by the following result.

18



Theorem 5.2 ([11, Proposition 3.3.2]). Let s ∈ (0, 1), f ∈ L2(−1, 1) and u be the solution to (1.3). Given a uniform
meshM with mesh size h, and the space Vh defined as in (4.10), let uh be the finite element solution to the corresponding
discrete problem. Then, it holds that

‖u − uh‖L2(−1,1) ≤ C(s, α)h2α‖ f ‖L2(−1,1),

where α := min{s, 1/2 − ε}, for all ε > 0.

By virtue of Theorem 5.2, the appropriate value of p that we shall employ is

p = 2α =

2s, for s < 1
2

1 − 2ε, for s ≥ 1
2 .

We present below the numerical experiments obtained applying our method. We begin by plotting on Figure 9 the
time evolution of the uncontrolled solution as well as the controlled solution. Here, we set s = 0.8, ω = (−0.3, 0.8) and
T = 0.3, and as an initial condition we take z0(x) = sin(πx). The control domain is represented as highlighted zone on
the plane (t, x). As expected, we observe that the uncontrolled solution is damped with time, but does not reach zero at
time T , while the controlled solution does.

−1

1

T = 0.3

(a) Uncontrolled solution

−1

1

T = 0.3

(b) Controlled solution ( =control domain)

Figure 9: Time evolution of system (4.6).

In Figure 10, we present the computed values of various quantities of interest when the mesh size goes to zero.
More precisely, we observe that the control cost ‖vδt‖L2

δt(0,T ;RM) and the optimal energy remain bounded as h→ 0. On
the other hand, we see that

|yM |L2(RM) ∼ C
√
φ(h) = Ch1/2. (5.3)

We know that, for s = 0.8, system (1.1) is null controllable. This is now confirmed by (5.3), according to Theorem
4.1. In fact, the same experiment can be repeated for different values of s > 1/2, obtaining the same conclusions.

According to the discussion in Section 2, one can prove that null controllability does not hold for system (1.1) in
the case s ≤ 1/2. However approximate controllability can be proved by means of the unique continuation property of
the operator (−d 2

x )s. We would like to illustrate this property in Figure 11.
We observe that the results are different from what we obtained in Figure 10. In fact, the cost of the control and the

optimal energy increase in both cases, while the target yM tends to zero with a slower rate than h1/2. This seems to
confirm that a uniform observability estimate for (1.1) does not hold and that we can only expect to have approximate
controllability (see Theorem 4.1).

A Explicit computations of the elements of the matrix Ah

We present here the explicit computations for each element ai, j of the stiffness matrix, completing the discussion that
we started in Section 4.
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Figure 10: Convergence properties of the method for the controllability of the fractional heat equation for s = 0.8.

Step 1: j ≥ i + 2

We recall that, in this case, the value of ai, j is given by the integral

ai, j = −2
∫ x j+1

x j−1

∫ xi+1

xi−1

φi(x)φ j(y)
|x − y|1+2s dxdy. (A.1)

In Figure 12, we give a scheme of the region of interaction (marked in gray) between the basis functions in this case.
These are the only regions in which (A.1) will be different than zero.

Now, taking into account the definition of the basis function (4.13), the integral (A.1) becomes

ai, j = −2
∫ x j+1

x j−1

∫ xi+1

xi−1

(
1 − |x−xi |

h

) (
1 − |y−x j |

h

)
|x − y|1+2s dxdy.

Let us introduce the following change of variables:

x − xi

h
= x̂,

y − xi

h
= ŷ.

Then, rewriting (with some abuse of notations since there is no possibility of confusion) x̂ = x and ŷ = y, we get

ai, j = −2h1−2s
∫ 1

−1

∫ 1

−1

(1 − |x | )(1 − |y | )
|x − y + i − j |1+2s dxdy. (A.2)

The integral (A.2) can be computed explicitly in the following way. First of all, for simplifying the notation, let us
define k = j − i. We have

ai, j = − 2h1−2s
∫ 1

−1

∫ 1

−1

(1 − |x | )(1 − |y | )
|x − y + i − j |1+2s dxdy = −2h1−2s

∫ 1

−1

∫ 1

−1

(1 − |x | )(1 − |y | )
|x − y − k |1+2s dxdy

= − 2h1−2s
∫ 1

0

∫ 1

0

(1 − x)(1 − y)
(y − x + k)1+2s dxdy − 2h1−2s

∫ 1

0

∫ 0

−1

(1 + x)(1 − y)
(y − x + k)1+2s dxdy

− 2h1−2s
∫ 0

−1

∫ 1

0

(1 − x)(1 + y)
(y − x + k)1+2s dxdy − 2h1−2s

∫ 0

−1

∫ 0

−1

(1 + x)(1 + y)
(y − x + k)1+2s dxdy
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Figure 11: Convergence properties of the method for s < 1/2. Same legend as in Figure 10

= − 2h1−2s(B1 + B2 + B3 + B4).

These terms Bi, i = 1, 2, 3, 4, can be computed integrating by parts several times. In more detail, we have

B1 =
1

4s(1 − 2s)

[
2k1−2s −

(k + 1)2−2s − (k − 1)2−2s

1 − s
−

2k3−2s − (k + 1)3−2s − (k − 1)3−2s

(1 − s)(3 − 2s)

]
B2 =

1
4s(1 − 2s)

[
−2k1−2s +

2(k + 1)2−2s − 2k2−2s

1 − s
+

2(k + 1)3−2s − k3−2s − (k + 2)3−2s

(1 − s)(3 − 2s)

]
B3 =

1
4s(1 − 2s)

[
−2k1−2s +

2k2−2s − 2(k − 1)2−2s

1 − s
+

2(k − 1)3−2s − k3−2s − (k − 2)3−2s

(1 − s)(3 − 2s)

]
B4 =

1
4s(1 − 2s)

[
2k1−2s −

(k + 1)2−2s − (k − 1)2−2s

1 − s
−

2k3−2s − (k + 1)3−2s − (k − 1)3−2s

(1 − s)(3 − 2s)

]
.

Therefore, we obtain

ai, j = −h1−2s 4(k + 1)3−2s + 4(k − 1)3−2s − 6k3−2s − (k + 2)3−2s − (k − 2)3−2s

2s(1 − 2s)(1 − s)(3 − 2s)
. (A.3)

We notice that, when s = 1/2, both the numerator and the denominator of the expression above are zero. Hence, in
this particular case, it would not be possible to introduce the value that we just encountered in our code. Nevertheless,
this difficulty can be overcome at least in two ways:

1. by setting s = 1/2 in Bi, i = 1, 2, 3, 4, before computing these integrals;

2. by computing the limit s→ 1/2 in (A.3).

However, since we already have the expressions of Bi, i = 1, 2, 3, 4, for a general s, the second approach is actually
straightforward and quicker. Indeed, we can easily compute

lim
s→ 1

2

− h1−2s 4(k + 1)3−2s + 4(k − 1)3−2s − 6k3−2s − (k + 2)3−2s − (k − 2)3−2s

2s(1 − 2s)(1 − s)(3 − 2s)

= −4(k + 1)2 log(k + 1) − 4(k − 1)2 log(k − 1) + 6k2 log(k) + (k + 2)2 log(k + 2) + (k − 2)2 log(k − 2),
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Figure 12: Interactions between the basis function φi and φ j when j ≥ i + 2.

if k , 2. When k = 2, instead, since

lim
k→2

(k − 2)2 log(k − 2) = 0,

the corresponding value ai, j = ai,i+2 is given by ai,i+2 = 56 ln(2) − 36 ln(3).

Step 2: j = i + 1

This is the most cumbersome case, since it is the one with the most interactions between the basis functions (see Figure
5). According to (4.12), and using the symmetry of the integral with respect to the bisector y = x, we have

ai,i+1 =

∫
R

∫
R

(φi(x) − φi(y))(φi+1(x) − φi+1(y))
|x − y|1+2s dxdy

=

∫ +∞

xi+1

∫ +∞

xi+1

. . . dxdy + 2
∫ +∞

xi+1

∫ xi+1

xi

. . . dxdy + 2
∫ +∞

xi+1

∫ xi

−∞

. . . dxdy

+

∫ xi+1

xi

∫ xi+1

xi

. . . dxdy + 2
∫ xi+1

xi

∫ xi

−∞

. . . dxdy +

∫ xi

−∞

∫ xi

−∞

. . . dxdy

:=Q1 + Q2 + Q3 + Q4 + Q5 + Q6.

In Figure 13, we give a scheme of the regions of interactions between the basis functions φi and φi+1 enlightening
the domain of integration of the Qi. The regions in grey are the ones that produce a contribution to ai,i+1, while on the
regions in white the integrals will be zero.

Le us now compute the terms Qi, i = 1, . . . , 6, separately.

Computation of Q1

Since φi = 0 on the domain of integration we have

Q1 =

∫ +∞

xi+1

∫ +∞

xi+1

φi+1(x) − φi+1(y)
|x − y|1+2s dxdy
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Figure 13: Interactions between the basis function φi and φi+1.

=

∫ +∞

xi+1

∫ +∞

xi+1

φi+1(x)
|x − y|1+2s dxdy −

∫ +∞

xi+1

∫ +∞

xi+1

φi+1(y)
|x − y|1+2s dxdy = 0.

The fact that this integral is zero is, actually, not surprising since, according to Figure 13, the region of integration
for Q1 is outside of the region of interaction of the basis functions.

Computation of Q2

We have

Q2 = 2
∫ +∞

xi+1

∫ xi+1

xi

φi(x)(φi+1(x) − φi+1(y))
|x − y|1+2s dxdy.

Now, using Fubini’s theorem we can exchange the order of the integrals, obtaining

Q2 = 2
∫ xi+1

xi

φi(x)φi+1(x)
(∫ +∞

xi+1

dy
|x − y|1+2s

)
dx − 2

∫ xi+2

xi+1

∫ xi+1

xi

φi(x)φi+1(y)
|x − y|1+2s dxdy

=
1
s

∫ xi+1

xi

φi(x)φi+1(x)
(xi+1 − x)2s dx − 2

∫ xi+2

xi+1

∫ xi+1

xi

φi(x)φi+1(y)
|x − y|1+2s dxdy

=
1
s

∫ xi+1

xi

(
1 − |x−xi |

h

) (
1 − |x−xi+1 |

h

)
(xi+1 − x)2s dx − 2

∫ xi+2

xi+1

∫ xi+1

xi

(
1 − |x−xi |

h

) (
1 − |y−xi+1 |

h

)
|x − y|1+2s dxdy := Q1

2 + Q2
2.

The two integrals above can be computed explicitly. Indeed, employing the change of variables

xi+1 − x
h

= x̂,

and then renaming x̂ = x, Q1
2 becomes

Q1
2 =

h1−2s

s

∫ 1

0
x1−2s(1 − x) dx =

h1−2s

s(2 − 2s)(3 − 2s)
.
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For computing Q2
2, instead, we introduce the change of variables

xi − x
h

= x̂,
y − xi+1

h
= ŷ, (A.4)

and we obtain

Q2
2 = −2h1−2s

∫ 1

0

∫ 1

0

(1 − x)(1 − y)
(y − x + 1)1+2s dxdy = h1−2s 21−2s + s − 2

s(1 − s)(3 − 2s)
.

Adding the two contributions, we get the following expression for the term Q2

Q2 = h1−2s 22−2s + 2s − 3
s(2 − 2s)(3 − 2s)

.

Computation of Q3

In this case, we simply take into account the intervals in which the basis functions are supported, so that we obtain

Q3 = −2
∫ xi+2

xi+1

∫ xi

xi−1

φi(x)φi+1(y)
|x − y|1+2s dxdy = −2

∫ xi+2

xi+1

∫ xi

xi−1

(
1 − |x−xi |

h

) (
1 − |y−xi+1 |

h

)
|x − y|1+2s dxdy.

This integral can be computed applying again (A.4), and we get

Q3 = −2h1−2s
∫ 1

0

∫ 0

−1

(1 + x)(1 − y)
(y − x + 1)1+2s dxdy = h1−2s 13 − 5 · 23−2s + 33−2s + s(24−2s − 14) + 4s2

2s(1 − 2s)(1 − s)(3 − 2s)
, (A.5)

if s , 1/2. If s = 1/2, instead, we have

Q3 = −2
∫ 1

0

∫ 0

−1

(1 + x)(1 − y)
(y − x + 1)2 dxdy = 1 + 9 ln 3 − 16 ln(2).

Notice that this last value could have been computed directly from (A.5), by taking the limit as s → 1/2 in that
expression, being this limit exactly 1 + 9 ln 3 − 16 ln(2).

Computation of Q4

In this case, we are in the intersection of the supports of φi and φi+1. Therefore, we have

Q4 =

∫ xi+1

xi

∫ xi+1

xi

(φi(x) − φi(y))(φi+1(x) − φi+1(y))
|x − y|1+2s dxdy.

Moreover, we notice that, this time, it is possible that x = y, meaning that Q4 could be a singular integral. To deal
with this difficulty, we will exploit the explicit definition of the basis function. We have (see also Figure 14)

φi(x) = 1 −
x − xi

h
, φi+1(x) =

xi+1 − x
h

, x ∈ (xi, xi+1).

Therefore,

(φi(x) − φi(y))(φi+1(x) − φi+1(y)) =

(y − x
h

) ( x − y
h

)
= −
|x − y|2

h2 ,

and the integral becomes

Q4 = −

∫ xi+1

xi

∫ xi+1

xi

|x − y|1−2s dxdy = −
h1−2s

(1 − s)(3 − 2s)
.

24



(xi, 0)

(xi+1, 1)(xi, 1)

(xi+1, 0)

y

x

φi(x)

φi+1(x)

Figure 14: Functions φi(x) and φi+1(x) on the interval (xi, xi+1).

Computation of Q5

Here the procedure is analogous to the one for Q2 before. Using again Fubini’s theorem we have

Q5 = 2
∫ xi+1

xi

φi(y)φi+1(y)
(∫ xi

−∞

dx
|x − y|1+2s

)
dy − 2

∫ xi+1

xi

∫ xi

xi−1

φi(x)φi+1(y)
|x − y|1+2s dxdy

=
1
s

∫ xi+1

xi

φi(y)φi+1(y)
(y − xi)2s dy − 2

∫ xi+1

xi

∫ xi

xi−1

φi(x)φi+1(y)
|x − y|1+2s dxdy.

Applying again (A.4), it is now easy to check that Q5 = Q2.

Computation of Q6

In analogy with what we did for Q1, we can show that also Q6 = 0.

Conclusion

The elements ai,i+1 are now given by the sum 2Q2 + Q3 + Q4, according to the corresponding values that we computed.
In particular, we have

ai,i+1 =


h1−2s 33−2s − 25−2s + 7

2s(1 − 2s)(1 − s)(3 − 2s)
, s ,

1
2

9 ln 3 − 16 ln 2, s =
1
2
.

Step 3: j = i

As a last step, we fill the diagonal of the matrix Ah. In this case we have

ai,i =

∫
R

∫
R

(φi(x) − φi(y))2

|x − y|1+2s dxdy

=

∫ +∞

xi+1

∫ +∞

xi+1

. . . dxdy + 2
∫ +∞

xi+1

∫ xi+1

xi−1

. . . dxdy +

∫ +∞

xi+1

∫ xi−1

−∞

. . . dxdy

+

∫ xi+1

xi−1

∫ xi+1

xi−1

. . . dxdy + 2
∫ xi−1

−∞

∫ xi+1

xi−1

. . . dxdy + +

∫ xi−1

−∞

∫ +∞

xi+1
. . . dxdy

+

∫ xi−1

−∞

∫ xi−1

−∞

. . . dxdy := R1 + R2 + R3 + R4 + R5 + R6 + R7.
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Figure 15: Interactions between the basis function φi(x) and φi(y).

In Figure 15, we give a scheme of the regions of interactions between the basis functions φi(x) and φi(y) enlightening
the domain of integration of the Ri. The regions in grey are the ones that produce a contribution to ai,i, while on the
regions in white the integrals will be zero.

Le us now compute the terms Ri, i = 1, . . . , 7, separately. First of all, according to Figure 15 we have that
R1 = R3 = R6 = R7 = 0. This is due to the fact that the corresponding regions are all away from the support of the basis
functions.

Computation of R2

Since φi(y) = 0 on the domain of integrations we have

R2 = 2
∫ +∞

xi+1

∫ xi+1

xi−1

φ2
i (x)

|x − y|1+2s dxdy = 2
∫ xi+1

xi−1

φ2
i (x)

(∫ +∞

xi+1

dy
|x − y|1+2s

)
dx =

1
s

∫ xi+1

xi−1

φ2
i (x)

(xi+1 − x)2s dxdy.

This integral is computed employing (4.15), and we obtain

R2 =
h1−2s

s

∫ 1

−1

(1 − |x| )2

(1 − x)2s dx = h1−2s 4s − 6 + 23−2s

s(1 − 2s)(1 − s)(3 − 2s)
,

if s , 1/2. If s = 1/2, instead, we have

R2 = 2
∫ 1

−1

(1 − |x| )2

1 − x
dx = 2 ln 16 − 4.

Computation of R4

In this case, we are in the intersection of the supports of φi(x) and φi(y). Therefore, we have

R4 =

∫ xi+1

xi−1

∫ xi+1

xi−1

(φi(x) − φi(y))2

|x − y|1+2s dxdy.
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In order to compute this integral, we divide it in four components as follows:

R4 =

∫ xi

xi−1

∫ xi

xi−1

. . . dxdy +

∫ xi

xi−1

∫ xi+1

xi

. . . dxdy +

∫ xi+1

xi

∫ xi

xi−1

. . . dxdy +

∫ xi+1

xi

∫ xi+1

xi

. . . dxdy

= R1
4 + R2

4 + R3
4 + R4

4.

Moreover, we notice that, due to symmetry reason, we have R2
4 = R3

4. Therefore, we can compute only one of this
two terms and add its value twice when building the matrix Ah. Also, notice that in these two region it cannot happen
that x = y. On the other hand, R1

4 and R4
4 may be singular integrals, and we shall deal with them as we did before.

Computation of R1
4

Using again the explicit expression of the basis functions we find

(φi(x) − φi(y))2 =
|x − y|2

h2 ,

and the integral becomes

R1
4 =

∫ xi

xi−1

∫ xi

xi−1

|x − y|1−2s dxdy =
h1−2s

(1 − s)(3 − 2s)
.

Computation of R2
4

In this case, we simply have

R2
4 =

∫ xi

xi−1

∫ xi+1

xi

(φi(x) − φi(y))2

|x − y|1+2s dxdy.

Employing (4.15) we obtain

R2
4 = h1−2s

∫ 0

−1

∫ 1

0

(x + y)2

(x − y)1+2s dxdy = h1−2s 2s2 − 5s + 4 − 22−2s

s(1 − 2s)(1 − s)(3 − 2s)
,

if s , 1/2. If s = 1/2, instead, we get

R2
4 =

∫ 0

−1

∫ 1

0

(x + y)2

(x − y)2 dxdy = 3 − 4 ln 2.

Computation of R4
4

Also in this case we can use the explicit expression of the basis functions and the integral becomes

R4
4 =

∫ xi+1

xi

∫ xi+1

xi

|x − y|1−2s dxdy =
h1−2s

(1 − s)(3 − 2s)
= R1

4.

Adding the values that we just computed, we therefore obtain

R4 = 2(R1
4 + R2

4) =


h1−2s 8 − 8s − 23−2s

2s(1 − 2s)(1 − s)(3 − 2s)
, s ,

1
2

8 ln 3 − 8 ln 2, s =
1
2
.

27



Computation of R5

Since, once again, φi(y) = 0 on the domain of integration we have

R5 = 2
∫ xi−1

−∞

∫ xi+1

xi−1

φ2
i (x)

|x − y|1+2s dxdy = 2
∫ xi+1

xi−1

φ2
i (x)

(∫ xi−1

−∞

dy
|x − y|1+2s

)
dx =

1
s

∫ xi+1

xi−1

φ2
i (x)

(x − xi−1)2s dxdy.

Employing one last time (4.15), we get

R5 =
h1−2s

s

∫ 1

−1

(1 − |x| )2

(1 + x)2s dx = h1−2s 4s − 6 + 23−2s

s(1 − 2s)(3 − 2s)(1 − s)
= R2,

if s , 1/2. If s = 1/2, instead, we have

R5 = 2
∫ 1

−1

(1 − |x| )2

1 + x
dx = 8 ln 2 − 4.

Conclusion

The elements ai,i are now given by the sum 2R2 + R4, according to the corresponding values that we computed. In
particular, we have

ai,i =


h1−2s 23−2s − 4

s(1 − 2s)(1 − s)(3 − 2s)
, s ,

1
2

8 ln 2, s =
1
2
.
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