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Abstract: In this paper we investigate the problem of optimal games played over networks and
focus our attention on the importance of the topology of communication between the agents.
We consider a set of agents which are connected via a directed communication graph: each agent
in the network has to optimize a local cost function which depends on the agent’s decision and
on the decision taken by the set of its neighbors, giving rise to a Network Game. We show that,
by condensing the strongly connected components of the control graph into super-nodes, it is
possible to give a hierarchical interpretation to the Network Game. Then we apply the proposed
architecture to the case of a large scale network which takes inspiration by traffic networks
application.
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1. INTRODUCTION

Control and optimization over large population networks
have become a popular topic within the control commu-
nity. The main reason is that modern applications re-
quire multiple systems to communicate and interact with
each other to fulfill the desired task. For instance power
networks, sensor networks and social networks are solid
examples in which is fundamental to control different parts
of the network to achieve a global desired behavior.

In the recent years, the control community has largely
focused on cooperative approaches to networks. In this
framework the agents in the network are willing to col-
laborate and find an agreement between each other in
such a way that they coordinate their motion. This ap-
proach is represented by the huge literature of consen-
sus/synchronization problems (Isidori et al. (2014), Arcak
(2007)) and its application to robot-swarm coordination
(Sepulchre et al. (2008), Olfati-Saber (2006)), power net-
works (Dhople et al. (2014), Xiang and Hill (2014)) and
social networks (Mirtabatabaei and Bullo (2012), Blondel
et al. (2010)). However, not in all the frameworks and not
in all the situations, it is possible to consider a cooperative
approach. In several scenarios, the nodes are selfish and
in competition with the others to pursue their goal. This
leads to a non-cooperative interaction between the agents
and thus to games played over networks. Notable exam-
ples of this scenario can be found in traffic networks and
more in general in network congestion control (Pisarski
and Canudas de Wit (2015), Barrera and Garcia (2015))
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and smart grids (Ma et al. (2014), Mohsenian-Rad et al.
(2010)).

When the number of nodes in the network is large, it
becomes analytically impossible to use conventional game
theoretic tools to find a solution to the problem. This mo-
tivated researchers to define a new type of games, named
aggregative, where the response of an agent depends, rather
than on each other players decision, on the aggregation
of all the other agents action (see Jensen (2006), Jensen
(2010)). The problem of games over networks can be seen
as an extension of aggregative game, where the aggregation
map depends indeed on the topology of a communica-
tion graph. In other words the payoff of each players
depends only on the set of neighbors (see Jackson and
Zenous (2014) for an overview on the topic). In Parise
et al. (2015), the authors considered a refined typology
of networks games in which the aggregate information is
depending on a directed communication graph and showed
that under a certain number of conditions the players
reach a Nash Equilibrium. In this paper we consider a
similar game setting, where a certain number of nodes
representing physical systems are influencing each other
through a graph. First, we study the influence of this
graph topology on the structure of the game and show
that the condensation of the graph leads to a hierarchical
interpretation of the game and thus to a quasi-sequential
architecture of optimization. Then, we introduce the con-
cept of physical graph and control graph in flow networks,
and show that the condensation of the control graph helps
in determining the equilibrium the agents will reach.

The paper is organized as follows. In Section 2, we present
the theoretical problem we aim to solve. In Section 3, we
analyze the graph topology and provide a level-of-priority
interpretation of the game. Then, in Section 4 we specify
the problem to a generic large scale flow networks and



introduce the notion of control graph. In Section 5 we
present some interesting simulation results.

1.1 Notation and basic concept on Graph Theory

Denoting by V = {v1, v2, . . . , vN} the set of N nodes
of the network, a topology is described by a directed
communication graph given by the following objects:

• E ⊂ V × V is a set of edges that models the inter-
connection between nodes, according to the following
convention: (vk, vj) belongs to E if there is a flow of
information from node j to node k. It is assumed that
there are no self-loops, i.e. that (vk, vk) /∈ E .
• for each (vk, vj) ∈ E the flow of information from

node j to node k in the i-th topology is weighted by
the (k, j)-th entry akj ≥ 0 of the so-called adjacency
matrix A ∈ RN×N .

The set of neighbors of node vk is the set Nk = {vj ∈ V :
akj 6= 0}. A path from node vj to node vk is a sequence of
r distinct nodes {v`1 , . . . , v`r} with v`1 = vj and v`r = vk
such that (vi+1, vi) ∈ E .
Theorem 1. A graph G is said to be connected if there is a
node v such that, for any other node vk ∈ V\{v}, there is a
path from v to vk. A graph is said to be strongly connected
if for every node vi ∈ V, there exists a path from vi to all
vk ∈ V \ {vi}.

The property of connectedness just introduced can be
formulated also for portion of the graph, namely sub-
graphs.
Definition 1. A strongly connected component
(SCC) of a di-graph G = {V, E , A} is a maximal subgraph
G̃ = {Ṽ, Ẽ , Ã} subject to being strongly connected.

2. PROBLEM FORMULATION

In this paper we investigate the problem of games over
networks. Our main goal is to give an immediate under-
standing of the hierarchical dependency between different
parts of the network.

A N -player game is defined as Γ = (Ji, Ui) with Ui ⊆ Rn

the finite dimensional convex strategy set of player i,
U =

∏
i Ui the joint strategy set and Ji : S → R the

upper semi-continuous utility function of player i. Given
a strategy profile u−i ∈ U−i for all agents except agent i,
the best-response correspondence for agent i is

R(u−i) = arg min
ui

{Ji(ui, u−i)}

In the aggregative games scenario, the utility function of
each agent can be written as Ji

(
ui, σi(u−i)

)
where σi is the

so-called aggregate information. The aggregate function is
in general defined as

σi =
∑
j 6=i

uj

so as the sum of all other players decision. In our set-
ting, we are interested in considering a different class of
aggregative games in which the interaction term depends
only on the set of neighbors: in particular, given a graph
G = {V, E , A}, we define σi : UNi → R, with Ni the set of
neighbors of agent i, as

σi =

N∑
j=1

aijuj (1)

where aij are the elements of the adjacency matrix A ∈
RN×N describing the communication between the players.
In accordance with the definition of σi in (1), we consider
a set of local utility functions defined as

Ji
(
ui, σi

)
= uTi Q

iui + (σT
i + ci)Riui (2)

with Qi, Ri ∈ Rn×n matrices of weights. The cost function
is indeed composed by two terms: the first is a quadratic
term in ui while the second term penalizes the interaction
with the neighbors through σi. The local optimization
problem is formulated as

u?i = arg min
ui∈Ui

Ji
(
ui, σi

)
(3)

One of the most important concepts in games is the Nash
equilibrium. A Nash equilibrium is a strategy set {u?i }Ni=1
in which no agent has any advantage in deviating from its
own strategy given the other players’. In this framework,
the aggregative Nash equilibrium can be formulated as
follows.
Definition 2. Given a N -player game Γ = (Ji, Ui) and a
communication graph G, a set of strategies {u?i ∈ Ui}Ni=1
is said to be a Nash equilibrium for Γ if

J
(
ui, σi(uNi

)
)

= min
ui∈Ui

Ji
(
ui, σi(uNi

)
)

(4)

for all i = 1, . . . , N .

3. CONDENSATION OF THE GRAPH: A
SEQUENTIAL ARCHITECTURE

In general, solving an optimization problem over a complex
graph is a really difficult task. In case of loops, for instance,
a trade between the various agents has to take place.
Furthermore, the agents might take decisions in different
moments (i.e not being synchronous). One could wonder if
there are nodes with high priority from which to start the
computation and then propagate the result to the others.

In this section we introduce a methodology to interpret
the network and obtain a hierarchical representation of
the graph. Through this hierarchy, it will be possible to
understand clearly the inter-dependence of the nodes and
to set a sequential procedure of optimization. First, we
introduce the concept of condensation of a graph.
Definition 3. The condensation G? of a graph G is a
reduced graph in which:

• strongly connected components (SCC) of G are con-
tracted to a single node
• (SCCi, SCCj) is an edge in G? if and only if there
exists a vi ∈ SCCi and a vj ∈ SCCj such that (vi, vj)
is and edge in G

Furthermore, we recall a fundamental result about di-
rected graphs.
Theorem 2. (Th. 3.6, Harary et al. (1965)). For any
directed graph G, the condensation G? of G is a directed
acyclic graph (DAG).

As a matter of fact G? can be seen as hierarchical represen-
tation of the optimization problem over the original graph



G. In graph theory, a level assignment is a procedure in
which for every node vi, we define an integer ni: a level
ordering is a level assignment in which for every edge
connecting vi to vj , either we have ni < nj or ni > nj

(ascending and descending level assignment respectively).
In the following, we consider only ascending level assign-
ment without loss of generality.

The definition of the DAG G? allows us to describe the
optimization over the original network G as a sequential
procedure by sorting the nodes into levels. Hence, we define
a quasi-level assignment (in which nodes belonging to a
strongly connected component have the same level) based
on the longest path to reach a node: given node vi, its
level ni is equal to the length of the the longest path
from any root of G? plus 1. Then, the level assignment
ni ∈ [1, `+ 1] where ` is the length of the longest path in
G?. Based on this level assignment, we define a sequential
procedure for solving the optimization process on the
graph, in which nodes with the smallest level compute first
and then propagate their decision to the higher levels in a
cascade-fashion. This recursive procedure is illustrated in
Table 1.

Algorithm for the DAG
Initialize set k = 1

Iterate all nodes vj ∈ level k, compute
their optimum value based on
the result of the previous level
u(k−1)

?

:
• if vj ∈ lev k is simple node,

u?j = arg min
uj∈Uj

Jj
(
uj , σj

)
• if vj ∈ lev k belongs to a
super node, iterate
u?j = arg min

uj∈Uj

Jj
(
uj , σj

)
Then

uk
?

(k) = col{u?j}
for all j : vj ∈ lev k

If k = `+ 1 stop

Table 1. Sequential procedere of optimization: a
hierarchical stracture.

In order to solve the problem of optimization inside the
super-nodes we make use of game-theory tools and show
that, given the information from the father-nodes (namely
the nodes belonging to a previous level, if present), each
super-node eventually reaches a Nash-equilibrium.

Suppose that the condensation procedure results in c super
nodes. Then, for each node vi belonging to SNj (j =
1, . . . , c), it is possible to split the aggregate information σi
in two parts: σf

i that comes from the upper levels and thus
is a constant, and σsn

i that is the aggregate information
from the nodes that belongs to the super-node. In other
words, we write

Ji
(
ui, σi(uNi)

)
= uTi Q

iui + σSNT

i Riui + σfT

i Riui (5)

Suppose that the super-node has a level assignment nj and
that the nodes belonging to SNj are vh, . . . , vk. Given a

set of of initial strategies {ui}ki=h for the nodes belonging
to SNj and the aggregate information from the father-
nodes (i.e. the nodes with a level assignment nf < nj), it
is possible to define the super-node best response as

u?
j (σj) = [uh(σf

h , σ
sn
h ), . . . , uk(σf

k , σ
sn
k )] (6)

which collects the strategies computed by each node be-
longing to SNj . To describe the aggregate information
available at the nodes in SNj after each round of optimiza-
tion, we introduce the aggregation mapping Uj : RNn →
RNn

Uj(σj) =



N∑
i=1

ahiu
?
i (σf

h , σ
sn
h )

...
N∑
i=1

akiu
?
i (σf

k , σ
sn
k )


(7)

Proposition 1. The aggregation mapping (7) admits at
least one fixed point. For each fixed point σ̄, the set of
strategies {u?i (σ̄f

i , σ̄
sn
i )}ki=h is a Nash equilibrium for the

game in SNj .

Proof: The mapping Uj(σj) is continuous and com-
pact valued, so it possesses at least one fixed point. The
fact that this point is a Nash equilibrium is a direct
consequence of the definition of a Nash equilibrium in
aggregative games in Definition 2 (see Smart (1974)). /

Proposition 1 is valid for all c super-nodes SNj in the net-
work. To guarantee convergence to a Nash equilibrium one
might consider an iterative myopic best response policy, in
which each agent plays its best response to the neighbors
aggregate information at each round. More in general,
every strategy that is a contraction and a non-expansive
mapping guarantees that the agents reach a Nash equi-
librium (a detailed analysis of the conditions and the
techniques to ensure that the Nash equilibrium or a near-
Nash equilibrium is reached can be found in Jensen (2006),
Jensen (2010), Voorneveld and Norde (1997), Kukushkin
(2004)).

As far as the full game is concerned, we replicate the result
in Proposition 1. We reorder the nodes and super-nodes
belonging to the same level so that they are consecutive
and define

ui = col{uj} for j : vj ∈ lev i

Accordingly, the adjacency matrix A reads as

A =


A1

A1,2 A2

...
...

. . .
A1,` · · · A`−1,` A`

 = blkdiag(A1, . . . , A`) +Ajunc

Then, we can write the aggregate information by levels as

σi =

i−1∑
j=1

Aj,iuj

and define the best response mapping
u(σ) = col

(
u1, u2(σ2), . . . , u`(σ`)

)
As a consequence, the aggregation mapping for the entire
game U : RNn → RNn as



U(σ) =



0
A1,2u1

?

...
`−1∑
j=1

Aj,`uj
?

 = (Ajunc ⊗ In)u(σ) (8)

Corollary 1. The aggregation mapping (8) admits at lest
one fixed point. For each fixed point σ̄, the set of strategies
{ui?(σ̄i)}`i=1 is a Nash equilibrium for the entire game.

The proof is an straightforward consequence of Proposition
1. After each iteration of the algorithm in Table 1, we can
express the update of the aggregate information as

σ(k + 1) = U
(
σ(k)

)
which, through the junction matrix Ajunc, clearly shows
the cascade propagation of decision between nodes with
higher priority to nodes with lower priority in the structure
of the equilibrium.

4. APPLICATION TO LARGE SCALE FLOW
NETWORKS

In this section we apply the analysis presented in Section
3 to the case of large scale flow networks. Flow networks
are of particular interest because they represent several
field of application, such as pipe networks, power networks
and traffic networks. A fundamental aspect about flow net-
works is to distinguish between two possible interpretation
of the network itself:

• on one hand, the physical representation stands for
the real connection between the nodes of the network
in terms of flow
• on the other, the control representation stands for
the dependence of the nodes on the others from the
control point of view

The two representation do not necessarily coincide in
the sense that the control directionality might not be
the same as the physical directionality of the network.
With P-Graph GP = {V, E , A} we represent the physical
interconnection between the N nodes in the network and
thus the physical flow of information. Traffic networks can
be seen as flow networks where the goal is to control the
density of cars and avoid congestion. In this framework,
when the density of vehicles is low, a certain section is
considered in free flow, while when the density is high,
the same section is in congestion. By partitioning the road
into sections, the state of each section has two admissible
configuration, namely:

• F (green): representing a free evolution of the section
• C (red): representing a congested evolution of the
section

Based on the P-Graph GP , we also define a some limitation
on the nodes state evolution. First, the nodes are allowed
to change at discrete time instants T1, T2, . . ., with peri-
odicity T . Furthermore, given a certain configuration of
free and congested nodes, the nodes are allowed to change
configuration according to the following Assumption.
Assumption 1. Given a P-Graph GP , we assume that:

i) nodes which are free and have no outgoing edge
towards congested node cannot change

ii) nodes which are congested and have no incoming edge
from free nodes are not allowed to change

To each node vi which is allowed to change, we associate
a probability which is associated to the result of the
optimization problem

P
(
vi(Tn+1) = C|vi(Tn) = F

)
= Pi(ui)

P
(
vi(Tn+1) = F |vi(Tn) = C

)
= 1− Pi(ui)

(9)

with Pi(ui) to be specified later.

As mentioned before, the control graph is an abstraction
of the control dirctions and its derived from the physical
graph, based on the state of each node in the network. As
pointed out in Pisarski and Canudas de Wit (2015), traffic
networks control is highly influenced by the congested/free
configuration of the road. Based on the configuration of
each section, namely congested/free, the congestion waves
can propagate upstream or downstream. When a certain
section is congested, in order to control the downstream
propagation of the traffic wave, we have to act in the
upstream direction: on the other hand, when a section is in
free-flow, the control is applied following the downstream
flow of the physical graph. The rules to determine the C-
Graph GC in case of traffic networks (note that they are
equivalent to the case of pipe networks) are summarized
in Tab 2.

State GP GC
FF → →
CC → ←
FC → ↔
CF →

Table 2. Table of rules to define the C-Graph.

In our framework, nodes can be seen as sections of roads
which can be controlled. As a consequence, the local
optimization problem (3) is formulated according to the
control graph, as

u?i = arg min
ui∈Ui

Ji
(
ui, σi

)
, σi(u−i) =

N∑
j=1

acijuj

with acij element of the Adjacency matrix AC ∈ RN×N of
GC .

5. IMPLEMENTATION OF THE PROPOSED
ARCHITECTURE AND SIMULATION RESULTS

Following the probelm setting introduced in Section 4,
we now display the fundamental steps to implement the
approach presented in Section 3. The first step to be
performed is the condensation of the graph described
in Section 3. For large scale networks, one may think
that the computation of the condensation GC? can be
critical: however, it is important to stress that such a
task can be computed in linear time. Several algorithms
have been proposed in literature, for instance the Tarjan’s
strongly connected components algorithm, whose complex-
ity is indeed proportional to the number of nodes and



(a) (b) (c)

Figure 1. Example of the evolution of the graph with 100 nodes: from the control graph we obtain the direct acyclic
graph determining the structure of the game and the associated Nash equilibrium.

edges, i.e. O(|V|, |E|) 1 (see Tarjan (1972)). On the other
hand, the computation payload substantially consists in
the sequential optimization/game described in Table 1. In
our framework, the optimization problem is decomposed
into a sequential father-to-son best-response architecture:
in other words, the optimization is a sequence of ` + 1
optimization problems in which, the agents belonging to
a certain level i compute in parallel their best response to
level i− 1 and then pass their result to level i+ 1.

We consider a network composed by 100 nodes. The
physical network is randomly generated and the initial
congested/free configuration is assigned arbitrarily to each
nodes. The cost function at each node is defined according
to (2) as

Ji(ui, σi) = (ui − ūi)2 +
( N∑

j=1

`ijui

)2
(10)

where ūi ∈ R is a local target value and `ij are elements of
the Laplacian matrix associated to the control graph GC .
In other words, (10) is composed by a term which penalizes
the displacement with respect to the local target value
ūi and by another term which penalizes the displacement
with respect to the aggregate information σi. The N local
target values are chosen such that ūi ∈ [0, 1] according
to a pseudo-normal distribution with mean µ = 0.5 and
standard deviation ε = 0.2. Then, the probability to switch
between the two configurations Pi(ui) in (9) is defined
as Pi = |u?i − ūi|, namely the distance between the local
target value ūi and the result of the optimization u?i . This
implies that the agents who are capable of getting closer
to their target are more likely to become free. In Figure 1,

1 Here |A| stands for the cardinality of the set A.

three possible configurations of the network are considered
and the relative condensation is shown. Starting from
the control graph configuration 1(a), we derive the corre-
sponding condensed graph: then, at T = 5 sec, the nodes
evolves according to the result of the optimization. We
obtain the control graph in 1(b) and its associated DAG,
and in a similar fashion 1(c). Videos of various examples
of the evolution of the nodes and of the optimization
procedure is available at the following link: http://scale-
freeback.eu/wp-content/uploads/2017/04/videos.zip.

We also compare the case in which agents are sorted by
levels and the case in which the agents computes in par-
allel. With parallel we mean the case in which the agents
are thought to be synchronous and thus compute their
optimum all at the same time, without being reorganized:
nevertheless, for computational constraints the computa-
tion is not fully decentralized, in the sense that there is not
a separate computational facility for each node. We stress
however that, for a large scale network, it is unfeasible to
think that all the agents are synchronous.

In order to compare the two results, in the implementa-
tion of our architecture, we take into account the time
necessary to perform the condensation of the graph and
the level assignment. Despite the necessary delay to per-
form this computation, the architecture takes advantage of
this reordering to compute in a hierarchical sequence the
optimal solution to the local problems. Simulation results
are shown in Figure 2(a) and 2(b), for a network of 100
and 10000 nodes respectively. The two procedure converge
indeed to the same equilibrium, but with rather different
computation times. For our architecture, it is possible to
see the level-by-level decrements of the cost functions while
in the case the of the parallel computation the decrements



(a)

(b)

Figure 2. Game over a network and comparison between
parallel computation and computation by hierarchy
levels with: (a) with 100 nodes, (b) with 10000 nodes.

are relative to a full round of optimization over all the
nodes.

6. CONCLUSION

In this paper we considered a class of network games
and studied the influence of the networks topology in
the equilibrium the nodes reach. Based on the topology,
we defined a hierarchical architecture which solves the
optimization problem in a cascade fashion. The approach
has been tested on a simplified scenario mimicking flow
networks. The first natural extension of this paper is to
apply the proposed architecture to a real case scenario,
in particular for controlling complex traffic networks. The
idea of clusterizing certain parts of the networks has
promising perspective in this direction. Furthermore, the
analysis of the topology in network games allows also
to consider different aspects to the problem: for instance
one could think to treat the super-nodes problem with a
different approach than simple nodes, or to consider the
condensation of the graph as a controllability property of
the game .
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