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Abstract
Kriging is a widely employed technique, in particular for computer experiments, in machine learning or in

geostatistics. An important challenge for Kriging is the computational burden when the data set is large. This
article focuses on a class of methods aiming at decreasing this computational cost, consisting in aggregating
Kriging predictors based on smaller data subsets. It proves that aggregation methods that ignore the covariance
between sub-models can yield an inconsistent final Kriging prediction. In contrast, a theoretical study of the
nested Kriging method shows additional attractive properties for it: First, this predictor is consistent, second
it can be interpreted as an exact conditional distribution for a modified process and third, the conditional
covariances given the observations can be computed efficiently. This article also includes a theoretical and
numerical analysis of how the assignment of the observation points to the sub-models can affect the prediction
ability of the aggregated model. Finally, the nested Kriging method is extended to measurement errors and to
universal Kriging.
Keywords: Gaussian processes, model aggregation, consistency, error bounds, Nested Pointwise Aggregation
of Experts, NPAE.

1 Introduction
Kriging (Krige (1951), Matheron (1970), see also (Cressie 1993, Stein 2012, Santner et al. 2013)) consists in inferring
the values of a Gaussian random field given observations at a finite set of observation points. It has become a popular
method for a large range of applications, such as geostatistics (Matheron 1970), numerical code approximation (Sacks
et al. 1989, Santner et al. 2013, Bachoc et al. 2016), global optimization (Jones et al. 1998) or machine learning
(Rasmussen and Williams 2006).

Let Y be a centered Gaussian process on D ⊂ Rd, with covariance function k : D × D → R (ie k(x, x′) =
Cov [Y (x), Y (x′)]), and let x1, ..., xn ∈ D be n points in the input space where Y is observed (exactly). The
assumptions that Y is zero-mean (simple Kriging, corresponding to a known mean) and that it is observed without
observation noise are common in the literature and they will be used in throughout the paper for conciseness. These
two assumptions will however be relaxed in Sects. 5.1 and 5.2 to ensure the method under study can be applied in
more practical case studies.

Let X be the n× d matrix with row i equal to xit. For any functions f : D → R, g : D ×D → R and for any
matrices A = (a1, . . . , an)t and B = (b1, . . . , bm)t, with ai ∈ D for i = 1, ..., n and bi ∈ D for i = 1, ...,m, f(A)
denotes the n×1 real valued vector with components f(ai) and g(A,B) denotes the n×m real valued matrix with
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components g(ai, bj), i = 1, . . . , n, j = 1, . . . ,m. With this notation, the conditional distribution of Y given the
n× 1 vector of observations Y (X) is Gaussian with mean, covariance and variance:

Mfull(x) = E [Y (x)|Y (X)] = k(x,X)k(X,X)−1Y (X) ,
cfull(x, x′) = Cov [Y (x), Y (x′)|Y (X)] = k(x, x′)− k(x,X)k(X,X)−1k(X,x′) ,
vfull(x) = cfull(x, x) .

(1)

Computing the terms on the right hand side of (1) requires to invert the n×n covariance matrix k(X,X), which
leads to a O(n2) storage requirement and O(n3) computational complexity. In practice, this posterior distribution
is hence difficult to compute when the number of observation points exceeds a few thousands. The challenge of
a large number of observation points for Kriging is for instance acknowledged in Section 5 of Davis and Curriero
(2019).

Many methods have been proposed in the literature to approximate the conditional distribution (1), without
incurring a large computational cost. These methods include low rank approximations (see Stein 2014, and the
references therein for a review), sparse methods (Hensman and Fusi 2013), covariance tapering (Furrer et al. 2006,
Kaufman et al. 2008), Gaussian Markov Random Fields (Rue and Held 2005, Datta et al. 2016), and aggregation-
based approximations (Deisenroth and Ng 2015). This paper focuses on the later approach, which consists of building
sub-models based on subsets of the data before aggregating their predictions. More precisely, these methods first
construct p sub-models M1, ...,Mp : D → R, where Mi(x) is a predictor of Y (x) built from a subset Xi of size
ni× d of the observation points in X. The rationale is that when ni is small compared to n, Mi(x) can be obtained
efficiently with a small computational cost. The sub-models M1, ...,Mp are then combined to obtain the aggregated
predictor MA : D → R. Examples of aggregation techniques for Gaussian processes are (generalized) products of
experts and (robust) Bayesian committee machines (Hinton 2002, Tresp 2000, Cao and Fleet 2014, Deisenroth and
Ng 2015, van Stein et al. 2015), as well as the nested Kriging predictor (or Nested Pointwise Aggregation of Experts
(NPAE)) (Rullière et al. 2018). It must be noted that nested Kriging relies on a particular aggregation of several
predictors; a review of probability aggregation methods in Geoscience can be found in Allard et al. (2012).

Aggregation methods can be of particular interest in a geoscience context. As it is well known, the origins of
Kriging are directly linked to mining and geostatistics (Cressie 1990, Chilès and Desassis 2018), and it is common
to encounter large datasets in such context. As an example, imagine a measurement (say, radioactivity) at several
locations on the ground. The measures can be done with simple movable devices at many locations, eventually
repeated at several times, so that the number of measurements can be important, and each measure may come
with a measurement error. There is a necessity to handle a large amount of potentially noisy measures, which is
not possible with classical Kriging techniques, but becomes possible with aggregation techniques such as nested
Kriging. Despite its novelty, the nested Kriging predictor has already been used in several application fields,
including earth and geostatistical sciences: see Sun et al. (2019) for the study of air pollution, Bacchi et al. (2020)
for tsunami analysis and Krityakierne and Baowan (2020) for contaminant source localization in the ground. This
also emphasizes the importance of aggregation methods in a geostatistical context.

Benchmarks of different spatial interpolation methods are also of importance, in particular when dealing with
big data. Among recent ones, a general benchmark on some other methods applicable with big data can be found in
Heaton et al. (2019). It is worth noting that nested Kriging often appears among the two or three best competitors
(typically among around 12 methods) in the numerical studies that include it into the benchmark (Rullière et al.
2018, Liu et al. 2018, He et al. 2019, Liu et al. 2020, Van Stein et al. 2020). These good empirical performances
are supported by the theoretical properties of nested Kriging which guaranty some optimal performances under a
correct estimation of the underlying hyperparameters and under stationarity.

This paper provides additional theoretical insights into aggregation methods, with an emphasis on nested Kriging
(Rullière et al. 2018). A distinction is introduced between aggregation techniques that only rely on the conditional
variances v1(x), ..., vp(x) of the sub-models (such as products of expert and Bayesian committee machines), and the
ones, like nested Kriging, where the aggregation accounts for the covariance between the sub-models. As shown in
Proposition 1, techniques based only on the sub-model variances can lead to inconsistent estimators of Y (x) in the
infill (fixed-domain) asymptotic setting (Cressie 1993, Stein 2012). On the other hand, Proposition 2 guaranties the
consistency, again in the infill (fixed-domain) asymptotic setting, of the nested Kriging predictor. In addition, the
nested Kriging predictor can be interpreted as an exact conditional expectation, for a slightly different Gaussian
process prior.

Furthermore, the paper introduces two extensions of the nested Kriging methodology which broaden the use
cases where the approach can be applied. The first one is to make nested Kriging amenable to observation noise
corrupting the measurements (the initial exposition in Rullière et al. (2018) focused on the noiseless setting). The
second is to generalise the method to universal Kriging, where the Gaussian process prior includes an unknown
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mean function that must be estimated. Note that both generalisations result in similar storage or computational
requirements as the original approach.

The structure of the article is as follows. Section 2 introduces covariance-free aggregation techniques and
present the non-consistency result. Section 3 summarizes the aggregation method of Rullière et al. (2018), gives
its consistency property, shows how it can be interpreted as an exact conditional expectation and provides some
error bounds for the nested Kriging approximation. It also provides a numerical illustration of the consistency and
inconsistency properties shown in this paper. Section 4 studies the impact of the assignment of the observation
points to the sub-models. Finally, Sect. 5 provides the extensions to measurement errors and universal Kriging
and concluding remarks are given in Sect. 6. For the sake of the clarity of the exposition, most of the proofs are
postponed to the appendix.

2 Covariance-free aggregation techniques
For i = 1, ..., p, let Xi be a ni × d matrix composed of a subset of the lines of X, such that n1 + · · · + np = n
and X1, ..., Xp constitute a partition of X. For i = 1, ..., p, let Mi(x) = k(x,Xi)k(Xi, Xi)−1Y (Xi) and vi(x) =
k(x, x) − k(x,Xi)k(Xi, Xi)−1k(Xi, x) be the conditional mean and variance of Y (x) given Y (Xi). This section
focuses on aggregated predictors that only depend on (predicted) variances

MA(x) =
p∑
k=1

αk(v1(x), ..., vp(x), vprior(x))Mk(x), (2)

where vprior(x) = k(x, x) and with αk : [0,∞)p+1 → R. Several aggregation techniques, such as product of
expert (POE), generalized product of expert (GPOE), Bayesian committee machines (BCM) and robust Bayesian
committee machines (RBCM), can be written under the form of (2). For POE (Hinton 2002, Deisenroth and Ng
2015) and GPOE (Cao and Fleet 2014) the weights associated to each sub-model are

αk(v1, ..., vp, vprior) =
βk(x) 1

vk∑p
i=1 βi(x) 1

vi

with βi(x) = 1 for POE and βi(x) = (1/2)[log(vprior(x))− log(vi(x))] for GPOE. For BCM (Tresp 2000) and RBCM
(Deisenroth and Ng 2015) they are

αk(v1, ..., vp, vprior) =
βk(x) 1

vk∑p
i=1 βi(x) 1

vi
+ (1−

∑p
i=1 βi(x)) 1

vprior

with βi(x) = 1 for BCM and βi(x) = (1/2)[log(vprior(x))− log(vi(x))] for RBCM.
The next proposition shows that aggregations given by (2) can lead to mean square prediction errors that do not

go to zero as n→∞, when considering triangular arrays of observation points that become dense in a compact set
D (which is the infill asymptotic setting, Cressie (1993), Stein (2012)). This proposition thus provides a counter-
example, but does not prove that aggregation procedures given by (2) are inconsistent in general. This inconsistency
will however be confirmed in some further simple numerical experiments. The property relies on Gaussian processes
satisfying the no-empty ball (NEB) property, which has been introduced in Vazquez and Bect (2010a).

Definition 1. A Gaussian process Y on D has the NEB property if for any x0 ∈ D and for any sequence (xi)i≥1
of points in D, the following two assertions are equivalent.

1. V [Y (x0)|Y (x1), ..., Y (xn)] goes to 0 as n→∞,

2. x0 is an adherent point of the sequence (xi)i≥1.

Proposition 1 (Non-consistency of some covariance-free aggregations). Let D be a compact subset of Rd with
non-empty interior. Let Y be a Gaussian process on D with mean zero and covariance function k. Assume that k
is defined on Rd, continuous and satisfies k(x, y) > 0 for two distinct points x, y in the interior of D. Assume also
that Y has the NEB property. For n ∈ N and for any triangular array of observation points (xni)1≤i≤n;n∈N, let pn
be a number of Kriging predictors, X be the n× d matrix with row i equal to xtni, and X1, ..., Xpn

be a partition of
X. For n ∈ N let MA,n be defined as in (2) with p replaced by pn. Finally, assume that

αk(v1(x), ..., vpn(x), vprior(x)) ≤ a(vk(x), vprior(x))∑pn

l=1 b(vl(x), vprior(x))
, (3)
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where a and b are given deterministic continuous functions from ∆ = {(x, y) ∈ (0,∞)2;x ≤ y} to [0,∞), with a
and b positive on ∆̊ = {(x, y) ∈ (0,∞)2;x < y}.

Then, there exists a triangular array of observation points (xni)1≤i≤n;n∈N such that
limn→∞ supx∈D mini=1,...,n ||xni − x|| = 0, a triangular array of submatrices X1, ..., Xpn forming a partition of
X, with pn →n→∞ ∞ and pn/n→n→∞ 0, and such that

lim inf
n→∞

∫
D

E
[
(Y (x)−MA,n(x))2

]
dx > 0. (4)

As a consequence, there exists a subset C of D with strictly positive Lebesgue measure so that, for all x0 ∈ C,

E
[
(Y (x0)−MA,n(x0))2

]
6→n→∞ 0. (5)

It is easy to see that the proposition applies to the POE, GPOE, BCM, RBCM methods introduced above.
Hence, Proposition 1 constitutes a significant theoretical drawback for an important class of aggregation techniques
in the literature, which are based solely on conditional variances.

The detailed proof is given in Appendix A. The intuitive explanation is that the aggregation methods for which
the proposition applies ignore the correlations between the different Kriging predictors. Hence, for prediction points
around which the density of observation points is smaller than on average, too much weight can be given to Kriging
predictors based on distant observation points. It is worth noting that, in the proof of Proposition 1, the density
of observation points in the subset of D where the inconsistency occurs is asymptotically negligible compared to
the average density of observation points. Hence, this proof does not apply to triangular arrays of observation
points for which the density is uniform (for instance grids of points or uniformly distributed random points). Thus,
Proposition 1 does not preclude the consistency of the POE, GPOE, BCM, RBCM methods for uniformly dense
observation points. It should be noted that when doing optimization, or when looking for optimal designs for
parameter estimation, see Fig. 4 in Zhu and Zhang (2006), one may naturally end up with strongly non-uniform
densities of observation points, so that unbalanced designs leading to non-consistency are not purely theoretical.

Remark 1. The NEB property holds for many Gaussian processes defined on D ⊂ Rd with zero mean func-
tion and covariance function k. In particular, assume that k has a positive spectral density (defined by k̂(ω) =∫
Rd k(x) exp(−Jxtω)dx with J2 = −1 and for ω ∈ Rd). Assume that there exist 0 ≤ A < ∞ and 0 ≤ T < ∞
such that 1/k̂(ω) ≤ A(1 + ||ω||t), with ||.|| the Euclidean norm. Then Y has the NEB property (Vazquez and Bect
2010a;b). These assumptions are satisfied by many stationary covariance functions, such as Matérn ones, but a
notable exception is the Gaussian covariance function (Proposition 1 in Vazquez and Bect 2010b).

Remark 2. The partitions X1, . . . , Xpn
for which the inconsistency occurs in Proposition 1 can typically be repre-

sentative of outputs of clustering algorithms, in the sense that points in the same group Xi would be close to each
other. This is further discussed in Remark 6 in Appendix A.

Remark 3. Proposition 1 does not imply that all the aggregation methods based only on the conditional variances
are inconsistent. In particular, consider the aggregation consisting in predicting from the subset of observations
yielding the smallest conditional variance, defined by MA(x) = Mi(x)(x) where i(x) = argminj=1,...,pvj(x). Then,
the aggregated predictor MA(x) can be seen to be consistent from the proof of Proposition 2 below.

3 The nested Kriging prediction
This section assumes that M1(x), ...,Mp(x) have mean zero and finite variance, but not necessarily that they can
be written as Mi(x) = k(x,Xi)k(Xi, Xi)−1Y (Xi). Let M(x) = (M1(x), ...,Mp(x))t be the vector of sub-models,
KM (x) be the p×p covariance matrix of (M1(x), ...,Mp(x)), and kM (x) be the p×1 vector with component i equal
to Cov [Mi(x), Y (x)]. The main assumption that will be required hereafter is:

Assumption 1 (Assumptions on sub-models). For all x ∈ D, the random variables Y (x),M1(x), ...,Mp(x) have
mean zero and finite variance, and the matrix KM (x) = Cov [M(x),M(x)] is invertible. Furthermore, the following
assumptions may be considered separately:

(H1) M is linear in Y (X): for all x ∈ D, there exists a deterministic p × n matrix Λ(x) such that M(x) =
Λ(x)Y (X), i.e. each sub-model is a linear combination of observations Y (X).

4



(H2) M interpolates Y at X: for any component xk of X there is at least one index ik ∈ {1, . . . , p} such that
Mik (xk) = Y (xk), i.e. any observation is interpolated by at least one sub-model.

(H3) (M,Y ) is Gaussian: the joint process (M1(x), ...,Mp(x), Y (x))x∈D is multivariate Gaussian.

These assumptions are not particularly restrictive and they are satisfied in the classical situation where the
sub-models are given by interpolating Kriging models Mi(x) = k(x,Xi)k(Xi, Xi)−1Y (Xi), i ∈ {1, . . . , p}. Note
that the relaxation of (H2) is takled in Section 5 and that several results presented in this section can be extended
to the case where (H3) is not satisfied by using matrix pseudo-inverses.

In Rullière et al. (2018), the aggregated predictor MA(x) is defined as the best linear predictor of Y (x) from
M1(x), ...,Mp(x), which implies{

MA(x) = kM (x)tKM (x)−1M(x) ,
vA(x) = E

[
(Y (x)−MA(x))2] = k(x, x)− kM (x)tKM (x)−1kM (x) .

(6)

Under assumptions (H1), (H2) and (H3), the aggregated predictor MA preserves the linearity, the interpolation
properties, and the conditional Gaussianity. Furthermore, using (H1) one easily gets the expressions of kM (x) and
KM (x) {

kM (x) = Λ(x)k(X,x),
KM (x) = Λ(x)k(X,X)Λ(x)t.

(7)

The aggregated predictor is straightforward to compute in this case, which occurs for example when the submodels
M1(x), ...,Mp(x) are simple Kriging predictors.

Rullière et al. (2018) show that, for n observation points and q prediction points, the complexity of the aggrega-
tion procedure MA can reach simultaneously O(n) in storage requirement and O(n2q) in computational complexity
when q = o(n). This computational complexity is larger than the one of covariance-free aggregation procedures
but much smaller than the standard Kriging complexity (see Sect. 5.1 for more details). This makes possible the
use of this aggregation method with a large number of observations (up to one million points in Rullière et al.
(2018)). The calculation of the nested Kriging predictor can also benefit from parallel computing, both for building
the sub-models and for predicting at different prediction points. A public implementation using parallel com-
putation and allowing measurement errors (see Sect. 5.1) and universal Kriging (see Sect. 5.2) is available at
https://github.com/drulliere/nestedKriging.

Although this article focuses on the case where the covariance function k of the Gaussian process Y is known,
the parameters of the covariance function often need to be estimated in practice (Roustant et al. 2012, Abrahamsen
1997, Stein 2012). In a big data context where the aggregated predictor of (6) is relevant, classical parameter
estimation methods like maximum likelihood (Stein 2012) or cross validation (Bachoc 2013, Bachoc et al. 2017,
Zhang and Wang 2010) are too computationally prohibitive to be carried out directly. Rullière et al. (2018) suggest
to apply cross validation to the aggregated predictor in (6) rather than to the full Kriging predictor in (1), and to
use stochastic gradient for optimization with respect to the covariance parameters. This results in a procedure that
is applicable to a large data set. One could also use a smaller subset of a large data set specifically for covariance
parameter estimation by classical maximum likelihood or cross validation. Finally, one could also optimize, with
respect to the covariance parameters, the sum of the logarithms of the likelihoods (or of cross validation scores) from
each of the subsets X1, Y (X1), . . . , Xn, Y (Xn). This enables to exploit the entire data set for covariance parameter
estimation, while keeping a manageable computational complexity.

The rest of the section focuses on the theoretical properties of this particular aggregation method: it contains the
consistency results under infill asymptotics, reinterprets the nested Kriging approximation as the exact conditional
expectation for a modified Gaussian process, and provides bounds on the errors MA(x) −Mfull(x) and vA(x) −
vfull(x).

3.1 Consistency
The next proposition provides the consistency result in the case where Y is a Gaussian process on D with mean
zero and Mi(x) = k(x,Xi)k(Xi, Xi)−1Y (Xi), which implies (H1), (H2), (H3). The proof is given in Appendix B.

Proposition 2 (Consistency). Let D be a compact nonempty subset of Rd. Let Y be a Gaussian process on D with
mean zero and continuous covariance function k. Let (xni)1≤i≤n,n∈N be a triangular array of observation points so
that xni ∈ D for all 1 ≤ i ≤ n, n ∈ N and so that for all x ∈ D, limn→∞mini=1,...,n ||xni − x|| = 0.
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For n ∈ N, let X = (xn1, ..., xnn)t, let M1(x), ...,Mpn(x) be any collection of pn Kriging predictors based on
respective design points X1, . . . , Xpn , where Xi is a subset of X, with Mi(x) = k(x,Xi)k(Xi, Xi)−1Y (Xi) for
i = 1, ..., pn. Assume that each row of X is a row of at least one Xi, 1 ≤ i ≤ pn. Then, for MA(x) defined as in (6):

sup
x∈D

E
[
(Y (x)−MA(x))2

]
→n→∞ 0. (8)

Proposition 2 shows that, contrary to several aggregation techniques, taking into account the correlations be-
tween the predictors enables the aggregation method of Rullière et al. (2018) to have a guaranteed consistency.

Numerical illustration of the consistency results. Propositions 1 and 2 are now illustrated on simple
examples where the test functions are given by random samples of a centered Gaussian Process Y with Matérn
3/2 covariance (see Rasmussen and Williams 2006). The observation points x1, . . . , xn ∈ [0, 1] are ordered and
gathered into groups of

√
n consecutive points to build

√
n sub-models. These sub-models are then aggregated

following the various methods presented earlier in order to make predictionsMA(xt) at xt = 0.8. The criterion used
to assess the quality of a prediction is the mean square error: MSE = E

[
(Y (xt)−MA(xt))2]. Since the prediction

methods that are benchmarked all correspond to linear combinations of the observed values, this expectation can
be computed analytically and there is no need to generate actual samples from the test functions.

Two different settings are considered for the input point distribution and the kernel parameters: (A) a uniform
distribution and a lengthscale equal to 0.1 (Fig. 1.a) and (B), a beta distribution β(10, 10) and a lengthscale of
0.2 (Fig. 1.b). In both case the variance of Y is set to one. A small nugget effect (10−9 for A and 10−10 for B)
is also included in the sub-models to ensure their computations are numerical stable. Finally, the experiments are
repeated 100 times with different input locations x1, . . . , xn.

The results of the experiments are shown in panels (c) and (d) of Fig. 1. First of all, the non-consistency of the
methods POE, GPOE, BCM and RBCM is striking: the MSE does not only fail to converge to zero but it actually
increases when the number of observation points is greater than 5. 103 (Exp. A) or 20. 104 (Exp. B). Note that
Proposition 1 only shows the existence of a training set where the variance based aggregation methods under study
are non consistent: it is thus of significant practical interest to observe this behavior on these simple examples with
reasonable settings. On the other hand, the nested Kriging aggregation does converge toward zero as guaranteed
by Proposition 2.

3.2 The Gaussian process perspective
This section introduces an alternative construction of the aggregated predictor where the prior process Y is replaced
by another process YA for which MA(x) and vA(x) correspond exactly to the conditional expectation and variance
of YA(x) given YA(X). As discussed in Quinonero-Candela and Rasmussen (2005), this construction implies that
the proposed aggregation is not only as an approximation of the full model but also as an exact method for a
slightly different prior (as illustrated in the further commented Fig. 3). This type of decomposition can naturally
occur in the context of predictive processes or low-rank Kriging models, see Finley et al. (2009), Banerjee et al.
(2008), Cressie and Johannesson (2008). As a consequence, it also provides conditional cross-covariances and
samples for the aggregated models. In particular, all the methods developed in the literature based on Kriging
predicted covariances, such as Marrel et al. (2009) for sensitivity analysis and Chevalier and Ginsbourger (2013) for
optimization, may hence be applied to the aggregated model in Rullière et al. (2018). Recall that (M1, . . . ,Mp, Y )t
is a centered process with finite variance on the whole input space D. The p× 1 cross-covariance vector is defined
as kM (x, x′) = Cov [M(x), Y (x′)] and the p × p cross-covariance matrix KM (x, x′) = Cov [M(x),M(x′)], for all
x, x′ ∈ D. These definitions result in a minor notation overloading with the definitions introduced in Sect. 3
(KM (x, x) = KM (x) and kM (x, x) = kM (x)), but context should be sufficient to avoid confusion. The following
definition introduces YA which is a Gaussian process for which MA and vA are the conditional mean and variance
of YA given YA(X):

Definition 2 (Aggregated process). YA is defined as YA = MA + ε′A where ε′A is an independent replicate of
Y −MA and with MA as in (6).

As Y = MA+ (Y −MA), the difference between Y and YA is that YA neglects the covariances between MA and
the residual Y −MA.

6



0.0 0.2 0.4 0.6 0.8 1.0
3

2

1

0

1

2

3

(a) Experiment A settings.

0.0 0.2 0.4 0.6 0.8 1.0
3

2

1

0

1

2

3

(b) Experiment B settings.

10
0

25
00

50
41

73
96

10
00

0
12

32
1

14
88

4

10 9

10 7

10 5

10 3

10 1

101

POE

10
0

25
00

50
41

73
96

10
00

0
12

32
1

14
88

4

10 9

10 7

10 5

10 3

10 1

101

GPOE

10
0

25
00

50
41

73
96

10
00

0
12

32
1

14
88

4

10 9

10 7

10 5

10 3

10 1

101

BCM

10
0

25
00

50
41

73
96

10
00

0
12

32
1

14
88

4

10 9

10 7

10 5

10 3

10 1

101

RBCM

10
0

25
00

50
41

73
96

10
00

0
12

32
1

14
88

4

10 9

10 7

10 5

10 3

10 1

101

Nested

(c) Experiment A: MSE as a function of the number of observation points n.
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(d) Experiment B: MSE as a function of the number of observation points n.

Figure 1: Illustration of the (non)-consistency of the various methods discussed in this paper. (a, b): Details
of the experiment settings: Samples of the test functions and distribution of the input points (histogram in the
background). The vertical dashed line denotes the test point where MSE is computed. (c, d) Prediction accuracy
(MSE) versus the number of observation points.
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Proposition 3 (Gaussian process perspective). If MA is a deterministic and interpolating function of Y (X),
i.e. if for any x ∈ D there exists a deterministic function gx : Rn → R such that MA(x) = gx(Y (X)) and if
MA(X) = Y (X), or in particular under linearity and interpolation assumptions (H1) and (H2) then{

MA(x) = E [YA(x)|YA(X)] ,
vA(x) = V [YA(x)|YA(X)] .

(9)

As already stated, given the observations YA(X), the conditional process YA is interesting since its conditional
mean and variance, at any point x, correspond to the approximated conditional mean and variance of the process
Y obtained by the nested Kriging technique. It is thus natural to consider sample paths of this conditional process
YA. In the Gaussian setting, studying the unconditional (prior) distribution of the centred process YA and the
conditional (posterior) distribution of YA given the observations YA(X) boils down to studying the prior and
posterior covariances of YA. The covariance kA of the process YA can be calculated and shown to coincide with the
one of the process Y at several locations, in particular, denoting kA(x, x′) = Cov [YA(x), YA(x′)], one can show that
for all x ∈ D, Y (x) and YA(x) have the same variance: kA(x, x) = k(x, x). Furthermore, under the interpolation
assumption (H2), kA(X,X) = k(X,X). Figure 2 illustrates the difference between the covariance functions k and
kA, using the same settings as in Fig. 3. Each panel of the figure deserves some specific comments:

(a) the absolute difference between the two covariance functions k and kA is small. Furthermore, the identity
kA(X,X) = k(X,X) is illustrated : as 0.3 is a component of X, kA(0.3, xk) = k(0.3, xk) for any of the five
components xk of X.

(b) the contour lines for kA are not straight lines, as it is the case for stationary processes. In this example, Y is
stationary whereas YA is not. However, the latter only departs slightly from the stationary assumption.

(c) the difference kA − k vanishes at some places, among which are the places of the bullets points and the
diagonal which correspond respectively to kA(X,X) = k(X,X) and kA(x, x) = k(x, x). Furthermore, the
absolute differences between the two covariances functions are again quite small. It also shows that the
pattern of the differences is quite complex.
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(a) Covariance functions kA(a, ·)
(solid lines) and k(a, ·) (dashed
lines) with a = 0.3 ∈ X and a =
0.85 /∈ X.
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(b) Contour plot of the modified
covariance function kA.
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(c) Image plot of the difference be-
tween covariance functions kA−k.

Figure 2: Comparisons of the modified covariance kA and the initial covariance k. The horizontal and vertical dotted
lines correspond to the locations of the observation points xi for i ∈ {1, . . . , 5}. The bullets indicate locations where
kA(xi, xj) = k(xi, xj).

The previous considerations may help understanding the differences between Y and YA, and thus the approxi-
mation that is made by the nested Kriging technique. Another interest of YA is that one can introduce conditional
cross-covariances and sample paths. The following proposition shows that conditional (posterior) cross-covariances
of YA can be easily computed. In particular, it enables the computation of conditional sample paths of YA. The
proposition also gives some simplifications that make computations tractable even in the case where the number of
observations is large.
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Proposition 4 (Posterior covariances of YA). Define the conditional (posterior) cross-covariances of the process
YA given YA(X) as

cA(x, x′) = Cov [YA(x), YA(x′)|YA(X)] , (10)

with x, x′ ∈ D. Assume that (M,Y ) is Gaussian, then YA is also Gaussian and the following results hold:

(i) The posterior covariance function cA writes, for all x, x′ ∈ D,

cA(x, x′) = kA(x, x′)− kA(x,X)kA(X,X)−1kA(X,x′). (11)

(ii) Denote αA(x) = KM (x)−1kM (x). Under linear and interpolation assumptions (H1) and (H2),

cA(x, x′) = k(x, x′)− αA(x)tkM (x, x′)− kM (x′, x)αA(x′) + αA(x)tKM (x, x′)αA(x′) , (12)

(iii) Under linear and interpolation assumptions (H1) and (H2),

cA(x, x′) = E [(Y (x)−MA(x)) (Y (x′)−MA(x′))] . (13)

In other words, conditional covariances can be understood as prior covariances between residuals.

It should be noted that computing cA or generating conditional samples of YA by using Eq. (11) requires
to inverse the n × n matrix kA(X,X) which is computationally costly for large n. On the contrary, computing
cA by using Eq. (12) does only require the computation of covariances between predictors and is tractable even
with large datasets. Consider the prediction problem with n observation points and q prediction points where
both n and q can be large, with q = o(n). Consider a reasonable dimension d ≤ O(q) and a typical number of
sub-models p =

√
n. The complexity for obtaining the nested Kriging mean and variance {MA(x), vA(x)} for all

prediction points is C = O(qn2) in computational complexity and S = O(nq) in storage requirement for the fastest
implementations (see Rullière et al. 2018). This storage requirement can be reduced to S = O(n) when recalculating
some quantities. When computing {MA(x), vA(x)} together with output covariances {cA(x, x′)} for all prediction
points, using Eq. (12), one can show that the reachable computational complexity is unchanged and is C = O(qn2)
when pq ≤ n, or becomes C = O(q2pn) otherwise. The associated storage requirement becomes S = O(nq2). At
last, in the more general case where O(n1/2) ≤ p ≤ O(n2/3) and q ≤ O(n2/3), one can show that computational
complexity is C = O(qn2) without computing the covariances cA(x, x′) or C = O(q2p2) when computing these
covariances.

This Gaussian Process perspective and Proposition 4 can be combined to define unconditional and conditional
sample paths. This is illustrated in Fig. 3 which displays prior and posterior samples of a process YA based on a
process Y with squared exponential covariance k(x, x′) = exp

(
−12.5(x− x′)2). In this example, the test function is

f(x) = sin(2πx) + x, and the input X = (0.1, 0.3, 0.5, 0.7, 0.9)t is divided into p = 2 subgroups X1 = (0.1, 0.3, 0.5)t
and X2 = (0.7, 0.9)t.

Proposition 4 can be used to draw similarities between nested Kriging and low-rank Kriging (see Stein 2014, and
references therein). In both cases, the predictions can be seen as a tractable approximation of an initial model, but
they also correspond to an exact posterior for their stated covariance models (which is not stationary, in general,
see Figure 2). The main difference between the two methods is that contrarily to low-rank Kriging, nested Kriging
remains a non-parametric approach. This however comes with an additional computational cost which comes from
matrix inverse that need to be computed at prediction time.

Knowing that the predictor MA is a conditional expectation for the process YA can be used to analyze its error
for predicting Y (x), by studying the differences between the distributions of Y and YA, in the same vein as in Stein
(2012) or Putter et al. (2001). The next section provides more details on the prediction errors made by choosing
YA in place of Y as a prior.

3.3 Bounds on aggregation errors
This section aims at studying the differences between the aggregated model MA, vA and the full one Mfull, vfull.
This section focuses on the case where M(x) is linear in Y (X), i.e. there exists a p × n deterministic matrix Λ(x)
such that M(x) = Λ(x)Y (X). This results in{

MA(x)−Mfull(x) = −k(x,X)∆(x)Y (X) ,
vA(x)− vfull(x) = k(x,X)∆(x)k(X,x) ,

(14)
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Figure 3: Illustration of the modified process YA. (a) Unconditional sample paths from the modified Gaussian
process YA, with mean 0 and covariance kA. (b) Conditional sample paths of YA given YA(X) = f(X), with mean
MA and covariance cA. The thick lines and the blue areas correspond to the means and 95% confidence intervals
for YA. The dashed red lines are the mean and 95% confidence intervals for the full model with the original prior
Y .

where ∆(x) = k(X,X)−1 − Λ(x)t
(
Λ(x)k(X,X)Λ(x)t

)−1Λ(x), as soon as Λ(x)k(X,X)Λ(x)t is invertible.
As illustrated in Fig. 2, the covariance functions k and kA are very similar. The following proposition shows

that the difference between these covariances can be linked to the aggregation error and can provide a bounds for
the absolute errors.

Proposition 5 (Errors using covariance differences). Under the linear and interpolation assumptions (H1) and (H2),
the differences between the full and aggregated models write as differences between covariance functions:{

E
[
(MA(x)−Mfull(x))2] = ‖k(X,x)− kA(X,x)‖2K ,

vA(x)− vfull(x) = ‖k(X,x)‖2K − ‖kA(X,x)‖2K .
(15)

The absolute differences can be bounded:{
|MA(x)−Mfull(x)| ≤ ‖k(X,x)− kA(X,x)‖K‖Y (X)‖K ,
|vA(x)− vfull(x)| ≤ ‖k(X,x)‖2K ,

(16)

where ‖u‖2K = utk(X,X)−1u. Assuming that the smallest eigenvalue λmin of k(X,X) is non zero, this norm
can be bounded by ‖u‖2K ≤

1
λmin
‖u‖2 where ‖u‖ denotes the Euclidean norm. Furthermore, since vfull(x) =

E
[
(Y (x)−Mfull(x))2], then

0 ≤ vA(x)− vfull(x) ≤ min
k∈{1,...,p}

E
[
(Y (x)−Mk(x))2]− vfull(x) . (17)

Note that previous result is provided for a given number n of observations, for a finite a dimensional n × n
matrix X. The asymptotic of the bounds as n grows to infinity depends on the design sequence and the nature of
the asymptotic setting (e.g., expansion domain or fixed domain). It would require further developments that are
not considered here.

Proposition 5 implies that the nested Kriging aggregation has two desirable properties that are detailed in
Remarks 4 and 5 (with proofs in Appendix).

Remark 4 (Far prediction points). For a given number of observations n and a given design X, if one can choose
a prediction point x far enough from the observation points in X, in the sense ‖k(X,x)‖ ≤ ε for any given ε > 0,
then |MA(x)−Mfull(x)| and |vA(x)− vfull(x)| can be as small as desired.

One consequence of the previous remark is that when the covariances between the prediction point x and the
observed ones X become small, both models tend to predict the unconditional distribution of Y (x). This is a natural
property that is desirable for any aggregation method but it is not always fulfilled. For example, aggregating two
sub-models with POE leads to overconfident models with wrong variance as discussed in Deisenroth and Ng (2015).
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Figure 4: Comparisons of the full and aggregated model. The dashed lines correspond to the bounds given in
Proposition 5: ±λ−1/2

min ‖k(X,x)− kA(X,x)‖ on panel (a) and bounds of (17) on panel (b).

The difference between the full model and the aggregated one of Fig. 3 is illustrated in Fig. 4. Various remarks
can be made on this figure. First, the difference between the aggregated and full model is small, both on the
predicted mean and variance. Second, the error tends toward 0 when the prediction point x is far away from the
observations X. This illustrates Proposition 5 in the case where ‖k(X,x)‖ is small. Third, it can be seen that the
bounds on the left panel are relatively tight on this example, and that both the errors and their bounds vanish at
observation points. At last, the right panel shows vA(x) ≥ vfull(x). This is because the estimator MA is expressed
as successive optimal linear combinations of Y (X), which have a quadratic error necessarily greater or equal than
Mfull which is the optimal linear combination of Y (X). Panel (b) also illustrates that the bounds given in (17) are
relatively loose. This means that the nested aggregation is more informative than the most accurate sub-model.

At last, the following remark gives another very natural optimality property that is however not satisfied by
other aggregation methods such as POE, GPOE, BCM and RBCM (see Sect. 2): if the sub-models contain enough
information, the aggregated model corresponds to the full one.

Remark 5 (Fully informative sub-models). Assume (H1) that M(x) is linear in Y (X): M(x) = Λ(x)Y (X) and
that Λ(x) is a n× n matrix with full rank, then{

MA(x) = Mfull(x) ,
vA(x) = vfull(x) .

(18)

Furthermore, if (H3) also holds,

YA
law= Y and thus YA|YA(X) law= Y |Y (X). (19)

In other words, there is no difference between the full and the approximated models when Λ(x) is invertible.

Note that there is of course no computational interest in building and merging fully informative sub-models
since it requires computing and inverting a matrix that has the same size as k(X,X) so there is no complexity gain
compared to the full model.

4 Analysis of the impact of the group choice
This section studies the impact of the choice of the partition X1, . . . , Xp of a set of n two-by-two distinct observation
points {x1, . . . , xn}, on the quality of the predictor obtained by aggregating p Gaussian process models based on
X1, . . . , Xp.

4.1 Theoretical results in dimension 1
This section focuses on the univariate case d = 1 where with the input locations x1, . . . , xn ∈ R are fixed and
distinct points and where Y is a centered Gaussian process with exponential covariance function k defined by

k(t1, t2) = σ2 exp(−|t1 − t2|/θ), t1, t2 ∈ R (20)
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for fixed (σ2, θ) ∈ (0,∞)2. This choice of covariance function makes Y a Markovian GP (Ying 1991), which will
prove useful to derive theoretical properties on the influence of clustering. More precisely, the idea is to assess
whether selecting the groups X1, . . . , Xp based on distances (i.e., placing observation points close to each other
in the same group) is beneficial for the approximation accuracy or not. In dimension 1, the concept of perfect
clustering can be defined as follows.

Definition 3 (Perfect clustering). A partition X1, . . . , Xp of {x1, . . . , xn}, composed of non-empty groups, is a
perfect clustering if there does not exist any triplet u, v, w, with u, v ∈ Xi and w ∈ Xj with i, j ∈ {1 . . . , p}, i 6= j,
and so that u < w < v.

The above definition means that the groups X1, . . . , Xp are constituted of consecutive points. A partition
X1, . . . , Xp is a perfect clustering if and only if it can be reordered as Xi1 , . . . , Xip with {i1, . . . , ip} = {1, . . . , p}
and so that for any u1 ∈ Xi1 , . . . , up ∈ Xip , the ui are ordered u1 < . . . < up.

The next proposition shows that the nested Kriging predictor coincides with the predictor based on the full
Gaussian process model, if and only if X1, . . . , Xp is a perfect clustering. It thus provides a theoretical confirmation
that placing observations points close to each other in the same group is beneficial to the nested Kriging procedure.

Proposition 6 (Nested Kriging and perfect clustering). Consider an exponential covariance function k in dimen-
sion d = 1, as in (20). Let Mfull(x) be the full predictor as in (1) and let MA(x) be the nested Kriging predictor
as in (6), where M1, . . . ,Mp are the Gaussian process predictors based on the individual groups X1, . . . , Xp, as in
Sect. 2, that is assumed to be non-empty. Then, E[(Mfull(x)−MA(x))2] = 0 for all x ∈ R if and only if X1, . . . , Xp

is a perfect clustering.

Proof. Let (x, v1, . . . , vr) be r + 1 two-by-two distinct real numbers. If x < min(v1, . . . , vr), then the conditional
expectation of Y (x) given Y (v1), . . . , Y (vr) is equal to exp(−|min(v1, . . . , vr)−x|/θ)Y (min(v1, . . . , vr)) (Ying 1991).
Similarly, if x > max(v1, . . . , vr), then the conditional expectation of Y (x) given Y (v1), . . . , Y (vr) is equal to
exp(−|max(v1, . . . , vr) − x|/θ)Y (max(v1, . . . , vr)). If min(v1, . . . , vr) < x < max(v1, . . . , vr), then the conditional
expectation of Y (x) given Y (v1), . . . , Y (vr) is equal to aY (x<)+bY (x>) where x< and x> are the left-most and right-
most neighbors of x in {v1, . . . , vr} and where a, b are non-zero real numbers (Bachoc et al. 2017). Finally, because
the covariance matrix of Y (v1), . . . , Y (vr) is invertible, two linear combinations

∑r
i=1 aiY (vi) and

∑r
i=1 biY (vi) are

equal almost surely if and only if (a1, . . . , ar) = (b1, . . . , br).
Assume that X1, . . . , Xp is a perfect clustering and let x ∈ R. It is known from Rullière et al. (2018) that

MA(x) = Mfull(x) almost surely if x ∈ {x1, . . . , xn}. Consider now that x 6∈ {x1, . . . , xn}.
If x < min(x1, . . . , xn), then for i = 1, . . . , p, Mi(x) = exp(−|xji − x|/θ)Y (xji) with xji = min{x;x ∈ Xi}. Let

i∗ ∈ {1, . . . , p} be so that min(x1, . . . , xn) ∈ Xi∗ . Then Mfull(x) = exp(−|xji∗ − x|/θ)Y (xji∗ ). As a consequence,
the linear combination λtxM(x) minimizing E[(λtM(x)− Y (x))2] over λ ∈ Rp is given by λx = ei∗ with er the r-th
base column vector of Rp. This implies that Mfull(x) = MA(x) almost surely. Similarly, if x > max(x1, . . . , xn),
then Mfull(x) = MA(x) almost surely.

Consider now that there exists u ∈ Xi and v ∈ Xj so that u < x < v and (u, v) does not intersect with
{x1, . . . , xn}. If i = j, then Mi(x) = Mfull(x) almost surely because the left-most and right-most neighbors of
x are both in Xi. Hence, also MA(x) = Mfull(x) almost surely in this case. If i 6= j, then u = max{t; t ∈
Xi} and v = min{t; t ∈ Xj} because X1, . . . , Xp is a perfect clustering. Hence, Mi(x) = exp(−|x − u|)Y (u),
Mj(x) = exp(−|x− v|)Y (v) and Mfull(x) = aY (u) + bY (v) with a, b ∈ R. Hence, there exists a linear combination
λiMi(x)+λjMj(x) that equalsMfull(x) almost surely. As a consequence, the linear combination λtxM(x) minimizing
E[(λtM(x) − Y (x)]2) over λ ∈ Rp is given by λx = λiei + λjej . Hence Mfull(x) = MA(x) almost surely. All the
possible sub-cases have now been treated, which proves the first implication of the proposition.

Assume now that X1, . . . , Xp is not a perfect clustering. Then there exists a triplet u, v, w, with u, v ∈ Xi and
w ∈ Xj with i, j = 1 . . . , p, i 6= j, and so that u < w < v. Without loss of generality it can further be assumed that
there does not exits z ∈ Xi satisfying u < z < v.

Let x satisfies u < x < w and so that (u, x) does not intersect {x1, . . . , xn}. Then Mfull(x) = aY (u) + bY (z)
with a, b ∈ R\{0} and z ∈ {x1, . . . , xn}, z 6= v. Also,Mi(x) = αY (u)+βY (v) with α, β ∈ R\{0}. As a consequence,
there can not exist a linear combination λtM(x) with λ ∈ Rp so that λtM(x) = aY (u) + bY (w). Indeed a linear
combination λtM(x) is a linear combination of Y (x1), . . . , Y (xn) where the coefficients for Y (u) and Y (v) are λiα
and λiβ, which are either simultaneously zero or simultaneously non-zero. Hence, MA(x) is not equal to Mfull(x)
almost surely. This concludes the proof.

The next proposition shows that the aggregation techniques that ignore the covariances between sub-models can
never recover the full Gaussian process predictor, even in the case of a perfect clustering. This again highlights the
additional quality guarantees brought by the nested Kriging procedure.
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Proposition 7 (Non-perfect other aggregation methods). Consider an exponential covariance function k in di-
mension d = 1, as in (20). Let p ≥ 3 and let X1, . . . , Xp be non-empty. Let MA be a covariance-free aggregation
method defined as in (2), with αk(v1, . . . , vp, v) ∈ R \ {0} for v1, . . . , vp, v ∈ (0,∞) and v1 < v, . . . , vp < v. Then,
for all x ∈ R \X, E[(Mfull(x)−MA(x))2] > 0.

Proof. Let x ∈ R \ X. For i = 1, . . . , p, 0 < vi(x) < vprior(x), so that αi(v1(x), . . . , vp(x), vprior(x)) ∈ R \
{0}. Hence, the linear combination MA(x) =

∑p
k=1 αk(v1(x), ..., vp(x), vprior(x))Mk(x) is a linear combination of

Y (x1), . . . , Y (xn) with at least p non-zero coefficients (since eachMk(x) is a linear combination of one or two elements
of Y (x1), . . . , Y (xn), all these elements being two-by-two distinct, see the beginning of the proof of Proposition 6).
Hence, because the covariance matrix of Y (x1), . . . , Y (xn) is invertible, MA(x) can not be equal to Mfull(x) almost
surely, since Mfull(x) is a linear combination of Y (x1), . . . , Y (xn) with one or two non-zero coefficients.

The above Proposition applies to the POE, GPOE, BCM and RBCM procedures presented in Sect. 2.

4.2 Empirical results
The aim of this section is to illustrate Proposition 6, and to study the influence of the allocation of the observation
points to the sub-models. Two opposite strategies are indeed possible: the first one consists in allocating all the
points in one region of the input space to the same sub-model (which is then accurate in this region but not
informative elsewhere). The second is to have, for each sub-model, points that are uniformly distributed among the
set of observations which leads to having a lot of sub-models that are weekly informative. This section illustrates
the impact of this choice on the nested Kriging MSE.

The experiment is as follow. A set of 322 = 1024 observation points are distributed on a regular grid in one
dimension and two methods are considered for creating 32 subsets of points: a k-means clustering and the optimal
clustering which consists in grouping together sets of 32 consecutive points. These initial grouping of points can
be used to build sub-models that are experts in their region of the space. In order to study the influence of the
quality of the clustering is, the clusters are perturbed by looping over all observations points and for each of them
the group is swapped with another random observation point with probability p. The value p can then be used as
a measure of the disorder in the group assignment: for p = 0 the groups are perfect clusters and for p = 1, each
observation is assigned a group at random.

Figure 5 (top) shows the MSE of one dimensional nested Kriging models as a function of p, for test functions
that correspond to samples of Gaussian processes and a test set of 200 uniformly distributed points. The covariance
functions of the Gaussian processes are either the exponential or the Gaussian (i.e. squared exponential) kernels,
with unit variance and a lengthscale such that the covariance between two neighbour points is 0.5. As predicted
by Proposition 6, the error is null for p = 0 (which corresponds to a perfect clustering) when using an exponential
kernel. Although this is not supported by theoretical guaranties, one can see that the prediction error is also the
smallest for at p = 0 for a Gaussian kernel. Finally, one can note that the choice of the initial clustering method
does not have a strong influence on the MSE. This can probably be explained by the good performance of the
k-means algorithm in one dimension.

For the sake of completeness, the experiment is repeated with the same settings as above except for the input
space dimension that is changed from one to five, and the locations of the 1024 = 45 input points that are now
given by the grid {1/8, 3/8, 5/8, 7/8}5. With such settings, the optimal clustering of the observations can be
obtained analytically with the 32 = 25 cluster centers located at {1/4, 3/4}5. As previously, the models that
perform the best are obtained with p = 0. Furthermore, the difference between the two clustering methods is now
more pronounced and the MSE obtained with k-means is always higher than the one with the optimal clustering.

These two experiments, together with the theoretical result in dimension one, suggest it is good practice to
apply a clustering algorithm to decide how to assign the observation points to the sub-models.

5 Extensions of the nested Kriging prediction
This section extends nested Kriging to the cases where the Gaussian process Y is observed with measurement errors,
and where Y has a parametric mean function. It also provides theoretical guaranties similar to Propositions 1 and
2 on the (non-)consistency of various aggregation methods in the noisy setting.
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Figure 5: Nested Kriging MSE as a function of how clustered the inputs of the sub-models are. For small values
of p, sub-models are built on points that tend to form clusters whereas they do not for large values of p. The
horizontal dashed line corresponds to the optimal MSE, which is obtained with full Kriging model.

5.1 Measurement errors
This section assumes that the vector of observation is given by Y (X) + ξX where the vector of measurement errors
ξX = (ξ1, . . . , ξn)t has independent components, independent of Y , and where ξi ∼ N (0, ηi) for i = 1, . . . , n, with
the error variances η1 > 0, . . . , ηn > 0. Consider a partition X1, . . . , Xp of X, where X1, . . . , Xp have cardinalities
n1, . . . , np. For i = 1, . . . , p, write ξXi

as the subvector of ξX corresponding to the submatrix Xi. Write also
Di = Cov [ξXi

]. Then, for x ∈ D, the Kriging sub-model based on the noisy observations of Y (Xi) is

Mη,i(x) = k(x,Xi)(k(Xi, Xi) +Di)−1(Y (Xi) + ξXi
). (21)

Note that Mη,i(x) is the best linear unbiased predictor of Y (x) from Y (Xi) + ξXi . Then, the best linear unbiased
predictor of Y (x) from Mη,1(x), . . . ,Mη,p(x) is

MA,η(x) = kM,η(x)tKM,η(x)−1Mη(x). (22)

In (22), Mη(x) = (Mη,1(x), . . . ,Mη,p(x))t is the vector of sub-models, KM,η(x) is the covariance matrix of Mη(x)
and kM,η(x) is the p× 1 covariance vector between Mη(x) and Y (x). For i, j = 1, . . . , p, their entries are

(kM,η(x))i = k(x,Xi)(k(Xi, Xi) +Di)−1k(Xi, x) , (23)
(KM,η(x))i,j = k(x,Xi)(k(Xi, Xi) +Di)−1k(Xi, Xj)(k(Xj , Xj) +Dj)−1k(Xj , x) . (24)

The mean square error can also be computed analytically

vA,η(x) = E
[
(Y (x)−MA,η(x))2] = k(x, x)− kM,η(x)tKM,η(x)−1kM,η(x). (25)

Equations (22) and (25) follow from the same standard proof as in the case where there are no measurement
errors, see for instance Rullière et al. (2018). The computational complexity and storage requirement of these
expressions are the same as their counterpart without measurement errors. In order to analyse more finely the cost
of computing MA,η(x) and vA,η(x), the computations is broken down in four steps: (1) computing and storing the
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vectors (k(x,Xi)(k(Xi, Xi) +Di)−1)i=1,...,p, (2) computing and storing (Mη,i(x))i=1,...,p, (3) computing and storing
KM,η(x) and (KM,η(x))−1 and (4) computing MA,η(x) and vA,η(x).

Assume that X1, . . . , Xp have cardinalities of order n/p for simplicity. Then the computational complexity of
steps (1-4) are respectively O(p(n/p)3), O(p(n/p)), O(p2(n/p)2 + p3) and O(p(n/p) + p2). The total computational
cost is thus O(n3/p2 + n2 + p3), which boils down to O(n2) by taking p of order nβ with β ∈ [1/2, 2/3] (as opposed
to O(n3) for the full Kriging predictor). The storage requirement (including intermediary storage) of steps (1) to
(4) is O((n/p)2 + p(n/p) + p2). This cost becomes minimal for p of order n1/2, reaching O(n) (as opposed to O(n2)
for the full Kriging predictor).

The remaining of this section focuses on consistency results when observations are corrupted with noise. Similarly
to Prop. 2, the following results considers infill asymptotics and a triangular array of observation points.
Proposition 8 (Sufficient condition for nested Kriging consistency with measurement errors). Let D be a fixed
nonempty subset of Rd. Let Y be a Gaussian process on D with mean zero and continuous covariance function
k. Let (xni)1≤i≤n,n∈N be a triangular array of observation points such that xni ∈ D for all 1 ≤ i ≤ n, n ∈ N.
For n ∈ N, let X = (xn1, . . . , xnn)t and let Y (X) + ξX be observed, where ξX = (ξ1, . . . , ξn)t has independent
components, with ξi ∼ N (0, ηi), where (ηi)i∈N is a bounded sequence. Let also ξX be independent of Y . Let x ∈ D
be fixed. For n ∈ N, let Mη,1(x), ...,Mη,pn(x) be defined from (21), for a partition X1, . . . , Xpn of X.

Assume the following sufficient condition: for all ε > 0, there exists a sequence (in)n∈N, such that in ∈ {1, . . . , pn}
for n ∈ N and such that the number of points in Xin at Euclidean distance less than ε from x goes to infinity as
n→∞.

Then for MA,η(x) defined as in (22),

E
[
(Y (x)−MA,η(x))2

]
→n→∞ 0.

In Proposition 8, the interpretation of the sufficient condition for consistency is that, when n is large, at least
one of the subsets X1, . . . , Xpn contains a large number of observation points close to the prediction point x. If
the minimal size of the subsets X1, . . . , Xpn goes to infinity, and if these subsets are obtained from a clustering
algorithm, that is the points in a subset are close to each other, then the sufficient condition in Proposition 8
typically holds. This can be seen as an additional argument in favor of selecting the subsets from a clustering
algorithm. This is in agreement with Sect. 4, which conclusions also support clustering algorithms.

A particular case where the condition of Proposition 8 always holds (regardless of how the partition into subsets
is made) is when the triangular array of observation points is a sequence of randomly sampled points, with a strictly
positive sampling density, and when the number of subsets is asymptotically smaller than n.
Lemma 1. Let D be fixed, bounded with non-empty interior. Let x in the interior of D be fixed. Consider a
triangular array of observation points (xni)1≤i≤n,n∈N that is obtained from a sequence (xi)i∈N, that is xni = xi for
1 ≤ i ≤ n, n ∈ N. Assume that (xi)i∈N are independently sampled from a distribution with strictly positive density
g on D. Consider any sequence of partitions (X1, . . . , Xpn

)n∈N of x1, . . . , xn. Assume that pn = o(n) as n → ∞.
Then, almost surely with respect to the randomness of (xi)i∈N, the sufficient condition of Proposition 8 holds.

The theoretical setting of Lemma 1 is realistic with respect to situations where the observation points are not
too irregulalry spaced over D. The setting pn = o(n) is particularly relevant for the nested Kriging predictor, since
this setting is necessary to obtain a smaller order of computational complexity than the full Kriging predictor.

The following Proposition shows that there are situations with measurement errors where the nested Kriging
predictor is consistent whereas other aggregation methods that do not use the covariances between the sub-models
are inconsistent. These situations are constructed similarly as in Proposition 1. In particular, Proposition 9 applies
to the extensions of POE, GPOE, BCM and RBCM methods to the case of measurement errors (see the references
given in Sect. 2).
Proposition 9 (non-consistency of some covariance-free aggregations with measurement errors). Consider D, Y
and k satisfying the same conditions as in Proposition 1. Let (ηi)i∈N be a bounded sequence. For any triangular
array of observation points (xni)1≤i≤n,n∈N, let, for n ∈ N, X be the n×d matrix with row i equal to xtn,i. Let ξX be
as in Proposition 8. Then, for any partition X1, . . . , Xpn

of X, for i = 1, . . . , pn, let ni be the cardinality of Xi, let
Mη,i(x) be defined as in (21) and vη,i(x) = k(x, x) − k(x,Xi)(k(Xi, Xi) + Di)−1k(Xi, x), with Di also as in (21).
Let then MA,η,n(x) be defined as MA,n(x) in Proposition 1, with the same assumption (3), with vi(x) replaced by
vη,i(x).

Then there exist a fixed x ∈ D, a triangular array of observation points (xni)1≤i≤n,n∈N, and a sequence of
partitions X1, . . . , Xpn

of X, that satisfy the sufficient condition of Proposition 8, and such that

lim inf
n→∞

E
[
(MA,η,n(x)− Y (x))2

]
> 0.
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5.2 Universal Kriging
Consider here the case where the Gaussian process Z defined with a trend, for x ∈ D,

Z(x) =
m∑
i=1

βihi(x) + Y (x),

where Y is, as above, a centered Gaussian process on D with mean zero and covariance function k, where the
functions h1, . . . , hm : D → R are known and where the vector β = (β1, . . . , βm)t is unknown. This is the setting of
universal Kriging (Chiles and Delfiner 2009).

Consider the partition X1, . . . , Xp of X with cardinalities n1, . . . , np. For i = 1, . . . , p, let Hi be the ni × m
matrix (h1(Xi), . . . , hm(Xi)). Then the best linear unbiased predictor of Z(x) given Z(Xi) is (Sacks et al. 1989)

MUK,i(x) = h(x)tβ̂i + k(x,Xi)k(Xi, Xi)−1
(
Z(Xi)−Hiβ̂i

)
,

with h(x) = (h1(x), . . . , hm(x))t and

β̂i =
(
Ht
ik(Xi, Xi)−1Hi

)−1
Ht
ik(Xi, Xi)−1Z(Xi) .

The predictor MUK,i(x) is a linear function of Z(Xi), satisfies E[MUK,i(x)] = E[Z(x)] (for all the possible values of
β in Rm) and has smallest mean square prediction error among all the predictors with these two properties.

The next proposition provides the linear aggregation of MUK,1(x), . . . ,MUK,p(x) that is unbiased and has the
smallest mean square prediction error. It thus gives an extension of nested Kriging to the universal Kriging case.

Proposition 10. Let MUK(x) = (MUK,1(x), . . . ,MUK,p(x))t. For i = 1, . . . , p let

wi(x)t = h(x)t
(
Ht
ik(Xi, Xi)−1Hi

)−1
Ht
ik(Xi, Xi)−1 − k(x,Xi)k(Xi, Xi)−1Hi

(
Ht
ik(Xi, Xi)−1Hi

)−1
Ht
ik(Xi, Xi)−1

+ k(x,Xi)k(Xi, Xi)−1.

Let KUK,M (x) be the p× p matrix defined by, for i, j = 1, . . . , p,

(KUK,M (x))i,j = wi(x)tk(Xi, Xj)wj(x).

Let kUK,M (x) be the p× 1 vector defined by, for i = 1, . . . , p,

(kUK,M (x))i = wi(x)tk(Xi, x).

Let
m̂UK,M (x) = (1tpKUK,M (x)−11p)−11tpKUK,M (x)−1MUK(x),

with 1p the p× 1 vector with entries equal to one. Let then

MA,UK(x) = m̂UK,M (x) + kUK,M (x)tKUK,M (x)−1 (MUK(x)− m̂UK,M (x)1p) . (26)

Then MA,UK(x) is a linear function of MUK,1(x), . . . ,MUK,p(x), satisfies E[MA,UK(x)] = E[Z(x)] (for all the
possible values of β in Rm) and has smallest mean square prediction error among all the predictors with these two
properties. The vector of aggregation weights is

αA,UK(x)t =(1tpKUK,M (x)−11p)−11tpKUK,M (x)−1

− kUK,M (x)tKUK,M (x)−11p(1tpKUK,M (x)−11p)−11tpKUK,M (x)−1

+ kUK,M (x)tKUK,M (x)−1.

Then MA,UK(x) = αA,UK(x)tMUK(x) and the mean square error is given by

vA,UK(x) = E
[
(MA,UK(x)− Z(x))2

]
= k(x, x) + αA,UK(x)tKUK,M (x)αA,UK(x)− 2αA,UK(x)tkUK,M (x). (27)

The aggregated predictor MA,UK(x) can be interpreted as a universal Kriging predictor of Z(x), with the
“observations” MUK,1(x), . . . ,MUK,p(x), and with a constant unknown mean. This is particularly apparent in
(26), and can be further understood in the proof of Proposition 10. It is worth noting that the “observations”
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MUK,1(x), . . . ,MUK,p(x) are already themselves universal Kriging predictors. Hence, it turns out that there are two
nested steps of universal Kriging predictions when extending the nested Kriging predictor to universal Kriging.

Computing MA,UK(x) and vA,UK(x) can be done similarly to what has been proposed in Sect. 5.1. More
precisely, the four computational steps are (1) to compute and store the vectors (wi(x))i=1,...,p, (2) to compute and
store (MUK,i(x))i=1,...,p, with MUK,i(x) = wi(x)tZ(Xi) for i = 1, . . . , p, (3) to compute and store KUK,M (x) and
(KUK,M (x))−1 and (4) to compute MA,UK(x) and vA,UK(x).

To analyze the computational complexity and storage requirement, assume that X1, . . . , Xp have cardinalities
of order n/p for simplicity. Assume also that m is small compared to n/p and p, which is quite realistic in the
framework of Kriging with big data, since the number of functions h1, . . . , hm is typically moderate. Then the
computational cost of step (1) is O(p(n/p)3), the computational cost of step (2) is O(p(n/p)), the computational
cost of step (3) is O(p2(n/p)2 + p3) and the computational cost of step (4) is O(p(n/p) + p2). As in Sect. 5.1, the
total computational cost is O(n3/p2 + n2 + p3) and can reach O(n2) by taking p of order nβ with β ∈ [1/2, 2/3].
Also as in Sect. 5.1, the storage cost (including intermediary storage) of steps (1) to (4) is O((n/p)2 + p(n/p) + p2)
and reaches O(n) by taking p of order n1/2.

6 Concluding remarks
This article proposes a theoretical analysis of several aggregation procedures recently proposed in the literature,
aiming at combining predictions from Kriging sub-models constructed separately from subsets of a large data set
of observations. It is shown that aggregating the sub-models based only on their conditional variances can yield
inconsistent aggregated Kriging predictors. In contrasts, the consistency of the nested Kriging procedure (Rullière
et al. 2018), which explicitly takes into account the correlations between the sub-model predictors, has been proved.
The article also shed some light on this procedure, by showing that it provides an exact conditional distribution, for
a different Gaussian process prior, and by obtaining bounds on the differences with the exact full Kriging model.
Further results on the the efficient computation of conditional covariances have also been presented, which make
possible sampling from the posterior distribution. The impact of the observation assignment to the sub-models
has also been investigated, which resulted in some evidence that it is good practice to build them on clusters of
observation points. Finally, the procedure of Rullière et al. (2018) has been extended to measurement errors and
to universal Kriging, while retaining the same computational complexity and storage requirement.

Some perspectives remain open. It would be beneficial to improve the aggregation methods of Sect. 2, in order to
guarantee their consistency while keeping their low computational costs. Finally, the interpretation of the predictor
in Rullière et al. (2018) as an exact conditional expectation could be the basis of further asymptotic studies, as
discussed in Sect. 3.2.
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A Proof of Proposition 1
For v ∈ Rm, we let |v| = maxi=1,...,m |vi| and B(v, r) = {w ∈ Rm, |v − w| ≤ r}.

Let x0, x̄ ∈ D, rx0 > 0 and rx̄ > 0 be fixed and satisfy B(x0, rx0) ⊂ D, B(x̄, rx̄) ⊂ D, B(x0, rx0) ∩B(x̄, rx̄) = ∅
and k(x0, x̄) > 0. [The existence is implied by the assumptions of the proposition.] By continuity of k, rx0 > 0 and
rx̄ > 0 can be selected small enough so that, with some fixed ε2 > 0 and δ1 > 0, for v ∈ B(x0, rx0) and w ∈ B(x̄, rx̄),
|v − w| ≥ δ1, k(x0, x0)/2 ≤ k(v, v) ≤ 2k(x0, x0), k(x̄, x̄)/2 ≤ k(w,w) ≤ 2k(x̄, x̄) and

k(v, v)− k(v, w)2

k(w,w) ≤ k(v, v)− ε2. (28)

For δ > 0, let
V (δ) = inf

n∈N
inf

x0,x1,...,xn∈D;
∀i=1,...,n,|xi−x0|≥δ

V [Y (x0)|Y (x1), ..., Y (xn)] .

Then V (δ) > 0 because of the NEB, by continuity of k and by compacity.
Consider a decreasing sequence δn of non-negative numbers such that δn →n→∞ 0, and which will be specified be-

low. There exists a sequence (un)n∈N ∈ DN, composed of pairwise distinct elements, such that limn→∞ supx∈D mini=1,...,n |ui−
x| = 0, and such that for all n,

inf
1≤i,j≤n
i 6=j

ui,uj∈B(x0,rx0 )

|ui − uj | ≥ 4δn.

Such a sequence indeed exists from Lemma 2 below.
Consider then the sequence (wn)n∈N ∈ DN such that for all n, wn = x̄ − (rx̄/(1 + n))e1 with e1 = (1, 0, ..., 0).

We can assume furthermore that {un}n∈N and {wn}n∈N are disjoint (this holds almost surely with the construction
of Lemma 2 for (un)).

Let us now consider two sequences of integers pn and kn with kn → ∞ and pn → ∞ to be specified later.
Let Cn be the largest natural number m satisfying m(pn − 1) < n. Let X = (X1, ..., Xpn

) be defined by, for
i = 1, ..., kn, Xi = (uj)j=(i−1)Cn+1,...,iCn

; for i = kn + 1, ..., pn − 1, Xi = (wj)j=(i−kn−1)Cn+1,...,(i−kn)Cn
; and

Xpn = (wj)j=(pn−kn−1)Cn+1,...,n−knCn
. With this construction, note that Xpn

is nonempty. Furthermore, the
sequence of vectors X = (X1, ..., Xpn

), indexed by n ∈ N, defines a triangular array of observation points satisfying
the conditions of the proposition.

Let us discuss the construction of (un)n∈N, (wn)n∈N, kn, Cn and pn more informally. The sequence (un)n∈N
is dense in D, and X1, . . . , Xkn are composed by the knCn first points of this sequence. Then, Xkn+1, . . . , Xpn

are composed by the n − Cnkn first points of the sequence (wn)n∈N, which is concentrated around x̄. We will
let kn/pn → 0 so that the majority of the groups in X contain points of (wn)n∈N, so that they do not contain
relevant information on the values of Y on B(x0, rx0) and yield an inconsistency of the aggregated predictor MA,n
on B(x0, rx0).

Coming back to the proof, observe that infi∈N infx∈B(x0,rx0 ) |wi − x| ≥ δ1 and let ε1 = V (δ1) > 0. Then, we
have for all n ∈ N, for all x ∈ B(x0, rx0), and for all k = kn+ 1, ..., pn, since then Xk is nonempty and only contains
elements wi ∈ B(x̄, r), from (28),

ε1 ≤ vk(x) ≤ k(x, x)− ε2. (29)

Let En = {x ∈ B(x0, rx0); mini=1,...,n |x − ui| ≥ δn} and let x ∈ En. Since x is not a component of X, we have
vk(x) > 0 for all k. Also vpn

(x) < k(x, x) from (29). Hence, MA,n(x) is well-defined.
For two random variables A and B, we let ||A−B|| = (E

[
(A−B)2])1/2. Let, for x ∈ En,

R(x) =

∣∣∣∣∣
∣∣∣∣∣
kn∑
k=1

αk,n(v1(x), ..., vpn
(x), vprior(x))Mk(x)

∣∣∣∣∣
∣∣∣∣∣ .

Then, from the triangular inequality, and since, from the law of total variance, ||Mk(x)|| ≤ ||Y (x)|| = vprior(x)1/2

we have, with V = {k(x, x);x ∈ B(x0, r(x0))},

R(x) ≤
∑kn

k=1 a(vk(x), vprior(x))
√
vprior(x)∑pn

l=1 b(vl(x), vprior(x))

≤
kn supv∈V,V (δn)≤s2≤v a(s2, v)

√
v

(pn − kn) infv∈V,ε1≤s2≤v−ε2 b(s2, v) ,
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where the last inequality is obtained from (29) and the definition of δn and V (δ).
Let now for δ > 0, s(δ) = supv∈V,V (δ)≤s2≤v a(s2, v). Since a is continuous and since V (δ) > 0, we have that

s(δ) is finite. Hence, we can choose a sequence δn of positive numbers such that δn →n→∞ 0 and s(δn) ≤
√
n (for

instance, let δn = inf{δ ≥ n−1/2; s(δ) ≤ n1/2}). Then, we can choose pn = n4/5 and kn = n1/5. Then, for n large
enough

kn
pn − kn

s(δn) ≤ 2n−3/5√n→n→∞ 0.

Hence, since
supv∈V

√
v

infv∈V,ε1≤s2≤v−ε2 b(s2, v)

is a finite constant, as b is positive and continuous on ∆̊, we have that supx∈En
R(x) →n→∞ 0. As a consequence,

we have from the triangular inequality, for x ∈ En

||Y (x)−MA,n(x)|| ≥||Y (x)−
pn∑

k=kn+1
αk,n(v1(x), ..., vpn(x), vprior(x))Mk(x)||

− ||
pn∑

k=kn+1
αk,n(v1(x), ..., vpn(x), vprior(x))Mk(x)−MA,n(x)||

≥ inf
x∈En

∣∣∣∣∣
∣∣∣∣∣Y (x)−

pn∑
k=kn+1

αk,n(v1(x), ..., vpn
(x), vprior(x))Mk(x)

∣∣∣∣∣
∣∣∣∣∣

− sup
x∈En

R(x).

Since Xkn+1, ..., Xpn
are composed only of elements of {wi}i∈N, we obtain

lim inf
n→∞

inf
x∈En

||Y (x)−MA,n(x)|| ≥ V (δ1) > 0.

Hence, there exist fixed n0 ∈ N and A > 0 so that for n ≥ n0, ||Y (x)−MA,n(x)|| ≥ A. Hence, we have, for n ≥ n0∫
D

E
[
(Y (x)−MA,n(x))2

]
dx ≥

∫
En

E
[
(Y (x)−MA,n(x))2

]
≥
∫
En

A2dx.

Hence, it remains to show that the limit inferior of the volume of En is not zero in order to show (4). Let Nn be
the integer part of rx0/4δn. Then, the ball B(x0, rx0) contains (2Nn)d disjoint balls of the form B(a, 4δn) with
a ∈ B(x0, rx0). If one of these balls B(a, 4δn) does not intersect with (ui)i=1...,n, then we can associate to it a ball
of the form B(sa, δn) ⊂ B(a, 4δn)∩En. If one of these balls B(a, 4δn) does intersect with one uj ∈ {ui}i=1...,n, then
we can find a ball B(sa, δn/2) ⊂ (B(uj , 2δn)\B(uj , δn)) ∩ B(a, 4δn) ∩ En. Hence, we have found (2Nn)d disjoint
balls with radius δn/2 in En. Hence En has volume at least 2d((rx0/4δn)− 1)dδdn which has a strictly positive limit
inferior. Hence, (4) is proved.

Finally, if E
[
(Y (x0)−MA,n(x0))2

]
→ 0 as n→∞ for almost all x0 ∈ D, then∫

D

max
(

E
[
(Y (x0)−MA,n(x))2

]
, 1
)
dx→n→∞ 0

from the dominated convergence theorem. This is contradictory with the proof of (4). Hence, (5) is proved.

Lemma 2. There exists a sequence (un)n∈N ∈ DN, composed of pairwise distinct elements, such that

lim
n→∞

sup
x∈D

min
i=1,...,n

|ui − x| = 0, (30)

and such that for all n,
inf

1≤i,j≤n
i 6=j

ui,uj∈B(x0,rx0 )

|ui − uj | ≥ 4δn. (31)
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Proof. Such a sequence can be constructed, for instance, by the following random procedure. Let D ⊂ B(0, R) for
R > 0 large enough. Define u1 ∈ D arbitrarily. For n = 1, 2, . . .: (1) if the set Sn = {u ∈ B(x0, rx0); mini=1,...,n |u−
ui| > 4δn+1} is non-empty, sample un+1 from the uniform distribution on Sn. (2) If Sn is empty, sample ũn+1
from the uniform distribution on B(0, R)\B(x0, rx0), and set un+1 as the projection of ũn+1 on D\B(x0, rx0). One
can see that (31) is satisfied by definition. Furthermore, one can show that (30) holds almost surely. Indeed, let
x ∈ B(x0, rx0) and ε > 0, and assume that with non-zero probability B(x, ε) ∩ {ui}i∈N = ∅. Then, the case (1)
occurs infinitely often and, for each i for which the case (1) occurs, there is a probability at least εd/(2rx0)d that
ui ∈ B(x, ε) (when 4δn ≤ ε/2). This yields a contradiction. Hence, for all x ∈ B(x0, rx0) and ε > 0, almost surely,
B(x, ε)∩ {ui}i∈N 6= ∅. We show similarly, for all x ∈ D\B(x0, rx0) and ε > 0, almost surely, B(x, ε)∩ {ui}i∈N 6= ∅.
This show that (30) holds almost surely. Hence, a fortiori, there exists a sequence (un)n∈N ∈ DN satisfying the
conditions of the lemma.

Remark 6. Consider the case d = 1. The proof of Proposition 1 can be modified so that the partition X1, . . . , Xpn

also satisfies x ≤ x′ for any x ∈ Xi, x′ ∈ Xj, 1 ≤ i < j ≤ pn. To see this, consider the same X as in this proof. Let
X1, . . . , Xpn have the same cardinality as in this proof, and let the Cn smallest elements of X be affected to X1, the
next Cn smallest be affected to X2 and so on. Then, one can show that there are at most kn + 2 groups containing
elements of (ui)i∈N ∩ B(x0, rx0) and at least pn − kn − 2 groups containing only elements of B(x̄, rx̄). From these
observations, (4) and (5) can be proved similarly as in the proof of Proposition 1.

B Proof of Proposition 2
Because D is compact we have limn→∞ supx∈D mini=1,...,n ||xni − x|| = 0. Indeed, if this does not hold, there
exists ε > 0 and a subsequence φ(n) such that supx∈D mini=1,...,φ(n) ||xφ(n)i − x|| ≥ 2ε. Hence, there exists a
sequence, xφ(n) ∈ D such that mini=1,...,φ(n) ||xφ(n)i − xφ(n)|| ≥ ε. Since D is compact, up to extracting a further
subsequence, we can also assume that xφ(n) →n→∞ xlim with xlim ∈ D. This implies that for all n large enough,
mini=1,...,φ(n) ||xφ(n)i − xlim|| ≥ ε/2, which is in contradiction with the assumptions of the proposition.

Hence there exists a sequence of positive numbers δn such that δn →n→∞ 0 and such that for all x ∈ D there
exists a sequence of indices in(x) such that in(x) ∈ {1, ..., n} and ||x− xnin(x)|| ≤ δn. There also exists a sequence
of indices jn(x) such that xnin(x) is a component of Xjn(x). With these notations we have, since M1(x),..., Mpn(x),
MA(x) are linear combinations with minimal square prediction errors,

sup
x∈D

E
[
(Y (x)−MA(x))2

]
≤ sup

x∈D
E
[(
Y (x)−Mjn(x)(x)

)2]
≤ sup

x∈D
E
[(
Y (x)− E

[
Y (x)|Y (xnin(x))

])2]
. (32)

In the rest of the proof we essentially show that, for a dense triangular array of observation points, the Kriging
predictor that predicts Y (x) based only on the nearest neighbor of x among the observation points has a mean
square prediction error that goes to zero uniformly in x when k is continuous. We believe that this fact is somehow
known, but we have not been able to find a precise result in the literature. We have from (32),

sup
x∈D

E
[
(Y (x)−MA(x))2

]
≤ sup
x∈D

[
1{k(xnin(x), xnin(x)) = 0}k(x, x) + 1{k(xnin(x), xnin(x)) > 0}

(
k(x, x)−

k(x, xnin(x))2

k(xnin(x), xnin(x))

)]
≤ sup

x,t∈D;
||x−t||≤δn

[
1{k(t, t) = 0}k(x, x) + 1{k(t, t) > 0}

(
k(x, x)− k(x, t)2

k(t, t)

)]
= sup

x,t∈D;
||x−t||≤δn

F (x, t).

Assume now that the above supremum does not go to zero as n→∞. Then there exists ε > 0 and two sub-sequences
xφ(n) and tφ(n) with values in D such that xφ(n) →n→∞ xlim and tφ(n) →n→∞ xlim, with xlim ∈ D and such that
F (xφ(n), tφ(n)) ≥ ε. If k(xlim, xlim) = 0 then F (xφ(n), tφ(n)) ≤ k(xφ(n), xφ(n)) →n→∞ 0. If k(xlim, xlim) > 0 then
for n large enough

F (xφ(n), tφ(n)) = k(xφ(n), xφ(n))−
k(xφ(n), tφ(n))2

k(tφ(n), tφ(n))
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which goes to zero as n→∞ since k is continuous. Hence we have a contradiction, which completes the proof.

C Proofs in Sect. 3.2
First notice that denoting kA(x, x′) = Cov [YA(x), YA(x′)], we easily get for all x, x′ ∈ D,

kA(x, x′) = k(x, x′) + 2kM (x)tK−1
M (x)KM (x, x′)K−1

M (x′)kM (x′)

− kM (x)tK−1
M (x)kM (x, x′)− kM (x′)tK−1

M (x′)kM (x′, x).
(33)

A direct consequence of (33) is kA(x, x) = k(x, x), and under the interpolation assumption (H2), since YA(X) =
Y (X), kA(X,X) = k(X,X).

Proof of Proposition 3. The interpolation hypothesis MA(X) = Y (X) ensures ε′A(X) = 0 so we have

E [YA(x)|YA(X)] = E [YA(x)|MA(X) + 0]
= E [MA(x)|MA(X)] + E [ε′A(x)|MA(X)]
= E [gx(Y (X))|Y (X)] + 0
= MA(x).

(34)

The proof that vA is a conditional variance follows the same pattern:

V [YA(x)|YA(X)] = V [YA(x)|MA(X)]
= V [MA(x)|MA(X)] + V [ε′A(x)]
= vA(x).

(35)

Proof of Proposition 4. Eq. (11) is the classical expression of Gaussian conditional covariances, based on the fact
that YA is Gaussian. Let us now prove Eq. (12). For a component xk of the vector of points X, using the
interpolation assumption, we have MA(xk) = Y (xk) and

Cov [YA(x), YA(xk)] = Cov [MA(x) + ε′A(x),MA(xk)] = Cov [MA(x), Y (xk)] .

Remark that αA(x) is the p× 1 vector of aggregation weights of different sub-models at point x, so that MA(x) =
αA(x)tM(x) and kA(x, xk) = αA(x)tCov [M(x), Y (xk)]. We thus get

kA(x,X) = αA(x)tCov [M(x), Y (X)] . (36)

Under the linearity assumption, there exists a p× n deterministic matrix Λ(x) such that M(x) = Λ(x)Y (X). Thus
kA(x,X) = αA(x)tΛ(x)k(X,X). As remarked in Sect. 3, because of the interpolation condition, kA(X,X) =
k(X,X) and

kA(x,X)kA(X,X)−1kA(X,x′) = αA(x)tΛ(x)k(X,X)Λ(x′)tαA(x′) . (37)

Using KM (x, x′) = Cov [M(x),M(x′)] = Λ(x)k(X,X)Λ(x′)t, we get

kA(x,X)kA(X,X)−1kA(X,x′) = αA(x)tKM (x, x′)αA(x′) . (38)

At last, starting from Eq. (11) and using both Eqs (33) and (38), we get Eq. (12).
Finally, the development of E [(Y (x)−MA(x)) (Y (x′)−MA(x′))] leads to the right hand side of Eq. (12) so that

E [(Y (x)−MA(x)) (Y (x′)−MA(x′))] = cA(x, x′)

and Eq. (13) holds.
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D Proofs in Sect. 3.3
Proof of Proposition 5. Consider ∆(x) as defined in Eq. (14). From Eq. (36), using both the linear and the inter-
polation assumptions, we get k(x,X)∆(x) = [k(x,X)− kA(x,X)] k(X,X)−1. Injecting this result in Eq. (14), we
have

MA(x)−Mfull(x) = [kA(x,X)− k(x,X)]k(X,X)−1Y (X) (39)

and the first equality holds. From (14), we also get vA(x)−vfull(x) = k(x,X)k(X,X)−1k(X,x)−kA(x,X)k(X,X)−1kA(X,x)
and the second equality holds. Note that under the same assumptions, we can also use kA(X,X) = k(X,X) and
kA(x, x) = k(x, x) and start fromMA = kA(x,X)kA(X,X)−1Y (X) and vA(x) = kA(x, x)−kA(x,X)kA(X,X)−1kA(X,x)
to get the same results.

Let us now show Eq. (17). The upper bound comes from the fact that MA(x) is the best linear combination
of Mk(x) for k ∈ {1, . . . , p}. The positivity of vA − vfull can be proved similarly: MA(x) is a linear combination
of Y (xk), k ∈ {1, . . . , n}, whereas Mfull(x) is the best linear combination. Notice that vA(x) − vfull(x) ≥ 0
implies, using Eq. (15), that ‖kA(X,x)‖K ≤ ‖k(X,x)‖K . Let us show Eq. (16). We get the result starting from
Eq. (39), applying Cauchy-Schwartz inequality. The bound on vA(x)−vfull(x) directly derives from Eq. (15), using
‖kA(X,x)‖K ≤ ‖k(X,x)‖K .

Finally, the classical inequality between ‖.‖K and ‖.‖ derives from the diagonalization of k(X,X), one can notice
that it depends on n and X, but it does not depend on the prediction point x.

Proof of Remark 4. Using ‖kA(X,x)‖K ≤ ‖k(X,x)‖K , using the equivalence of norms and triangular inequality,
assuming that the smallest eigenvalue λmin of k(X,X) is non zero, bounds (16) in the previous Proposition 5 implies
that {

|MA(x)−Mfull(x)| ≤ 2
λmin
‖k(X,x)‖‖Y (X)‖ ,

|vA(x)− vfull(x)| ≤ 1
λmin
‖k(X,x)‖2 .

(40)

Noticing that the ‖.‖K and λmin do not depend on x (although they depend on X and n), the result holds.

Proof of Remark 5. As Λ(x) is n× n and invertible, we have

kM (x)tKM (x)−1M(x) = k(x,X)tΛ(x)t(Λ(x)k(X,X)Λ(x)t)−1Λ(x)Y (x) = Mfull(x),

and similarly vA(x) = vfull(x). As MA = Mfull, we have YA = Mfull + ε where ε is an independent copy of
Y −Mfull. Furthermore Y = Mfull + Y −Mfull where Mfull and Y −Mfull are independent, by Gaussianity, so
YA

law= Y .

E Proofs in Sect. 5
Proof of Proposition 8. Because MA,η(x) is the best linear predictor of Y (x), for n ∈ N, we have

E
[
(Y (x)−MA,η(x))2

]
≤ E

[
(Y (x)−Mη,in(x))2

]
. (41)

Let ε > 0. Let Nn be the number of points in Xin that are at Euclidean distance less than ε from x. By
assumption, Nn → ∞ as n → ∞. Let us write these points as xnj1 , . . . , xnjNn

, with corresponding measurement
errors ξj1 , . . . , ξjNn

. Since Mη,in(x) is the best linear unbiased predictor of Y (x) from the elements of Y (xnj1) +
ξj1 , . . . , Y (xnjNn

) + ξjNn
, we have

E
[
(Y (x)−Mη,in(x))2

]
≤ E

(Y (x)− 1
Nn

Nn∑
a=1

(Y (xnja) + ξja)
)2 . (42)

By independence of Y and ξX , we obtain

E

(Y (x)− 1
Nn

Nn∑
a=1

(Y (xnja
) + ξja

)
)2 = E

( 1
Nn

Nn∑
a=1

(Y (x)− Y (xnja
))
)2+ E

( 1
Nn

Nn∑
a=1

ξja

)2
≤
(

max
a=1,...,Nn

E
[
(Y (x)− Y (xnja

))2])+
∑Nn

a=1 ηa
N2
n

.
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The above inequality follows from Cauchy-Schwarz, the fact that Y has mean zero and the independence of
ξj1 , . . . , ξjNn

. We then obtain, since (ηa)a∈N is bounded,

lim sup
n→∞

E

(Y (x)− 1
Nn

Nn∑
a=1

(Y (xnja) + ξja)
)2 ≤ sup

u∈D
||u−x||≤ε

E
[
(Y (x)− Y (u))2]

= sup
u∈D

||u−x||≤ε

(k(x, x) + k(u, u)− 2k(x, u)) .

From (41) and (42), we have, for any ε > 0,

lim sup
n→∞

E
[
(Y (x)−MA,η(x))2

]
≤ sup

u∈D
||u−x||≤ε

(k(x, x) + k(u, u)− 2k(x, u)) . (43)

The above display goes to zero as ε→ 0 because k is continuous. Hence the lim sup in (43) is zero, which concludes
the proof.

Proof of Lemma 1. Let ε > 0. For n ∈ N, let Nn be the number of points in {x1, . . . , xn} that are at Euclidean
distance less than ε to x. Because x is in the interior ofD and because g > 0 onD, we have pε = P(||x1−x|| ≤ ε) > 0.
Hence from the law of large number, almost surely, for n large enough, Nn ≥ (pε/2)n. For each n ∈ N, the Nn
points in {x1, . . . , xn} that are at Euclidean distance less than ε to x are partitioned into pn classes. Hence, one of
these classes, say the class Xin , contains a number of points larger or equal to Nn/pn. Since n/pn goes to infinity
by assumption, we conclude that the number of points in Xin at distance less than ε from x goes to infinity, almost
surely. This concludes the proof.

Proof of Proposition 9. The proof is based on the same construction of the triangular array of observation points
and of the sequence of partitions as in the proof of Proposition 1. We take x as x0 in this proof. Only a few
comments are needed.

We let V (δ) be as in the proof of Proposition 1 and we remark that for any δ > 0, for any r ∈ N, for any
Gaussian vector (U1, . . . , Ur) independent of Y and for any u0, u1, . . . , ur ∈ D with ||ui − u0|| ≥ δ for i = 1, . . . , r,
we have

V [Y (u0)|Y (u1) + U1, . . . , Y (ur) + Ur] ≥ V [Y (u0)|Y (u1), U1, . . . , Y (ur), Ur] = V [Y (u0)|Y (u1), . . . , Y (ur)] ≥ V (δ).

We also remark that the triangular array and sequence of partitions of the proof of Proposition 1 do satisfy the
condition of Proposition 8. Indeed, the first component X1 of the partition, with cardinality Cn →∞, is dense in
D.

We remark that for k = kn + 1, . . . , pn (notations of the proof of Proposition 1), for any row of Xk, of the form
xnb with b ∈ {1, . . . , n}, we have vk(x) ≤ V [Y (x)|Y (xnb) + ξb] ≤ k(x, x) − k(x, xnb)2/(k(xnb, xnb) + ηb). Hence,
because (ηi)i∈N is bounded, there is a fixed ε′2 > 0 such that for k = kn + 1, . . . , pn, ε1 ≤ vk(x) ≤ k(x, x)− ε′2, with
ε1 as in the proof of Proposition 1.

With these comments, the arguments of the proof of Proposition 1 lead to the conclusion of Proposition 9.

Proof of Proposition 10. We can see that MUK,i(x) = wi(x)tZ(Xi) for i = 1, . . . , p. Hence, for i, j = 1, . . . , p,

Cov [MUK,i(x),MUK,j(x)] = wi(x)tCov [Z(Xi), Z(Xj)]wj(x) = wi(x)tk(Xi, Xj)wj(x).

Hence, Cov [MUK(x)] = KUK,M (x). Furthermore, for i = 1, . . . , p,

Cov [MUK,i(x), Z(x)] = wi(x)tCov [Z(Xi), Z(x)] = wi(x)tk(Xi, x).

Hence, Cov [MUK(x), Z(x)] = kUK,M (x). Let

α(x) = argmin
γ∈Rp

E[γtMUK(x)]=E[Z(x)]
for any value of β in Rm

E
[(
γtMUK(x)− Z(x)

)2]
. (44)

25



Since E[MUK,i(x)] = E[Z(x)] for i = 1, . . . , p and for any value of β ∈ Rm, the constraint in (44) can be written as
γt1pE[Z(x)] = E[Z(x)] that is γt1p = 1. The mean square prediction error in (44) can be written as

k(x, x) + γtKUK,M (x)γ − 2γtkUK,M (x).

Thus (44) becomes
α(x) = argmin

γ∈Rp

γt1p=1

(
k(x, x) + γtKUK,M (x)γ − 2γtkUK,M (x)

)
.

We recognize the optimization problem of ordinary Kriging which corresponds to universal Kriging with an
unknown constant mean function (Sacks et al. 1989, Chiles and Delfiner 2009). Hence, we have

α(x)tMUK(x) = m̂UK,M (x) + kUK,M (x)tKUK,M (x)−1 (MUK(x)− m̂UK,M (x)1p) ,

from for instance Sacks et al. (1989), Chiles and Delfiner (2009). Hence we have α(x)tMUK(x) = MA,UK(x), the
best linear predictor described in Proposition 10.

We can see thatMA,UK(x) = αA,UK(x)tMUK(x) and that αA,UK(x) = α(x). Then since E[αA,UK(x)tMUK(x)] =
Z(x), from Cov [MUK(x)] = KUK,M (x) and from Cov [MUK(x), Z(x)] = kUK,M (x), we obtain

E
[
(MA,UK(x)− Z(x))2

]
= k(x, x) + αA,UK(x)tKUK,M (x)αA,UK(x)− 2αA,UK(x)tkUK,M (x).

This concludes the proof.
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