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Highlights

• A multiscale model for the cell cycle-circadian clock coupling is developed

• The model is based on a transport PDE structured by molecular contents

• A particle-based method is used for resolution

• Impacts of inter and intracellular dynamics on cell proliferation are studied

• Discordance of division rhythms between population and single cell levels is observed
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Abstract11

We present a multiscale mathematical model for the regulation of the cell cycle by12

the circadian clock. Biologically, the model describes the proliferation of a population13

of heterogeneous cells connected to each other. The model consists of a high dimen-14

sional transport equation structured by molecular contents of the cell cycle-circadian15

clock coupled oscillator. We propose a computational method for resolution adapted16

from the concept of particle methods. We study the impact of molecular dynamics17

on cell proliferation and show an example where discordance of division rhythms be-18

tween population and single cell levels is observed. This highlights the importance of19

multiscale modeling where such results cannot be inferred from considering solely one20

biological level.21

∗Corresponding author, email nader.elkhatib@lau.edu.lb
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1 Introduction22

The mammalian cell cycle and the circadian clock are two molecular processes that23

operate in a rhythmic manner. On one hand, the cell cycle is driven by the rhythmic24

activity of cyclin-dependent kinases, which dictate the time a cell must engage mitosis25

and the time it must divide giving birth to two daughter cells. On the other hand, the26

circadian clock is a network of transcriptional and translational feedback-loops that27

generate sustained oscillations of different mRNAs and proteins concentration with a28

period of approximately 24h. It turns out that several components of the circadian-29

clock regulate various cyclin-dependent kinases at different stages of the cell cycle. This30

makes the circadian clock a key player in the temporal organization of the cell cycle31

and makes these two biological processes act as two tightly coupled oscillators.32

Many computational models explored the interaction between the cell cycle and33

the circadian clock. One category of models consists of systems of ordinary differential34

equations that describe the interaction at the molecular level [14, 33]. The second cat-35

egory consists of physiologically-structured partial differential equations that describe36

the effect of circadian regulation on the growth rate of cells [8, 9, 2, 7]. In a recent37

study, we have combined these two approaches by coupling an age-structured PDE to38

a circadian clock-cell cycle molecular ODE system [12]. Although this model could39

capture the influence of intracellular dynamics on the growth rate of cells, it lacked40

a proper multiscale description [1]. It could not take into consideration, for example,41

intracellular heterogeneity among cells.42

Here, we present a multiscale formulation of our mathematical model for the reg-43

ulation of the cell cycle by the circadian clock and a numerical method for solving it.44

The multiscale formulation consists of a transport equation structured by the molecu-45

lar contents of the coupled cell cycle-circadian clock oscillator. In its general form, the46

equation reads47

∂tρ(x, t, λ) +∇x ·
[
u(x, t, λ, ψ)ρ(x, t, λ)

]
= L[x, λ]

(
ρ(x, t, λ)

)
, (1.1)

with ρ representing the density of cells. In the coupled PDE/ODE model, the PDE48

(equation (11) in [12]) was structured in age. By contrast, partial derivatives in equa-49

tion (1.1) are structured by the molecular contents (denoted x) and the space where50

it is solved is d-dimensional with d the number of molecular components xi; this is51

why we call it a molecular-structured equation. Since the molecular mechanism of52

the cell cycle-circadian clock interaction involves an abundant number of components,53

the model is high-dimensional in nature. Classical numerical methods such as finite54
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volumes/differences are inappropriate for solving the transport equation. This is the55

main difficulty that makes molecular-structured models scarcely used in similar appli-56

cations. We circumvent this difficulty by adapting a particle method to solve the main57

equation.58

Particle methods have arisen as an alternative to classical numerical methods for59

solving high-dimensional problems. They are used in different applications, like the60

incompressible Euler equations in fluid mechanics [17, 19, 20], the Vlasov equation61

in plasma physics [3, 15] and in turbulence models for reactive flows [25, 24]. The62

computational implementation of particle methods is conceptually simple. At a given63

time, the solution is represented by a large number of particles, each having its own64

properties, for example position and weight. These properties evolve in time according65

to a system of stochastic or ordinary differential equations. The classical solution to the66

PDE is obtained by reconstructing a smooth density from the particles distribution.67

Theoretically, the numerical solution is a linear combination of Dirac masses68

ρ(x, t) =

N∑

j=1

αj(t)δ(x− xj)

where αj is the weight of particle j, xj its position (state) and N is the total number69

of particles. To obtain a classical solution, one has to update the positions and weights70

of particles and then regularize the Dirac masses. The overriding strength of particle71

methods is that, for N fixed, the size of the system increases only linearly with the72

dimensionality of the space. This means that if we have a structured equation with73

dimension d, we have to solve d×N ODEs/SDEs. Since recovering a classical solution74

requires a regularization of the Dirac distribution, the performance of particle methods75

depends also on the quality of the regularization procedure. For generalities about76

particle methods, one can refer to [23, 27, 10].77

In this work, we investigated the influence of molecular dynamics on78

cell proliferation. Therefor, the novelty of our approach emanate from79

considering a multiscale design that incorporates three linked biological80

levels. Hereafter some specificities of our model:81

• Intracellular heterogeneity among cells: generally speaking, the particle method82

consists of solving N copies of an ODE/SDE system, each representing83

the dynamics of a given particle. In our model, the N copies are not84

the same. Since each particle is associated with a given cell, we consid-85

ered several sources of variability. For example, we have multiplied the86
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right-hand side of the ODE system describing cell cycle dynamics by87

a factor λ. This ensures that each cell has a distinct cell cycle period.88

Another source of variability was introduced with cell division. Once89

a cell divides, its daughter is attributed a new coefficient λ given by90

λN+1 = λN +Dξλ, with D a ”diffusion” coefficient and ξλ a normally dis-91

tributed random number. This implies that the daughter and mother92

cells will have distinct cell cycle periods.93

• Inter-cellular connection: we assumed that cells are connected with each94

other by making Per/Cry mRNA transcription dependent on the av-95

erage concentration of Per/Cry among cells. Including connectivity96

between cells is important in certain tissues to maintain a robust syn-97

chronized activity.98

• Coupling back from population to molecular level : we assumed that cell di-99

vision is dependent on the MPF-WEE1 molecular activity and that100

the total number of cells has an impact on Per/Cry mRNA activity.101

This implies a two way coupling between the molecular and population102

levels. We assumed also that the MPF activation coefficient decreases103

at an exponential rate proportional to the total number of cells. This104

ensures a limited growth, which is physiologically more realistic.105

The paper is divided mainly into two parts. First, we introduce the model structure,106

give details about its construction and how the transport equation is solved by adapting107

a particle method. Then, we illustrate biological properties that can be examined108

using our model; like the effect of intracellular dynamics on cell proliferation, the109

synchronization among cells, and how heterogeneity among cells affects growth rate.110

2 Description of the model111

2.1 General framework and main equation112

We consider a large collection of cells with state (x, λ) ∈ Ω×Λ ⊂ Rd×Rp, where x is a113

cellular dynamical state in an open subset Ω of dimension d and λ a cellular parameter114

state in an open subset Λ of dimension p. In our case, x =
(
x1, · · · , xd

)
with d = 10115

represents the set of proteins/mRNAs concentrations and λ ∈ R (p = 1) represents the116

intrinsic cell cycle period of each cell. The distinction between the dynamical and the117

parameter state is that the dynamical state changes during the lifespan of a cell, while118
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the parameter state is fixed over the lifespan of the cell, but can vary among cells or119

when a cell divides. The population is described by its density ρ(x, t, λ) which evolves120

according to the following hyperbolic PDE121

∂ρ

∂t
(x, t, λ) +∇x ·

[
u(x, t, λ, ψ)ρ(x, t, λ)

]
=

1

2
∆λ ·

[
σ2(x, t, λ)R(x, λ)ρ(x, t, λ)

]
+ r(x, λ)ρ(x, t, λ)

︸ ︷︷ ︸
L[x, λ]

(
ρ(x, t, λ)

)

. (2.2)

We assumed that the cellular state dynamics x is governed by a deterministic system of

ODEs, represented by the term u(x, t, λ, ψ), which depends on the cellular state (x,λ)

and on m population-level statistics ψ : Ω× R× Λ→ Rm where

ψi = 〈ρ,Φi〉 =

∫∫

Ω×Λ
ρ(x, t, λ)Φi(x, t, λ)dxdλ, i = 1, · · · ,m (2.3)

with Φi : Ω×R×Λ→ R, i = 1, · · · ,m taken such that ψi is finite. The operator L[x, λ]122

describes the population relative growth rate. The terms σ, R and r are diffusion in123

parameter state, differentiation and growth rates of the population, respectively. For124

the sake of simplicity, we omitted the full description of the derivation of equation (2.2).125

The reader could refer to Supplementary materials for more details. We adopted a more126

computational and biological description of the problem.127

2.2 Intracellular dynamics128

The evolution of cells in the state space depicts the cell cycle-the circadian clock cou-129

pling mechanism. Therefore, intracellular dynamics were described according to the130

following deterministic ODE system presented in [12]:131

dx

dt
= u(x, t, λ, ψ). (2.4)
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where

u1 =
dx1

dt
=

ν1b(x7 + c)

k1b(1 + ( x3k1i )
p) + x7 + c

− k1dx1 + ksψ1, (2.5)

u2 =
dx2

dt
= k2bx

q
1 − k2dx2 − k2tx2 + k3tx3, (2.6)

u3 =
dx3

dt
= k2tx2 − k3tx3 − k3dx3, (2.7)

u4 =
dx4

dt
=

ν4bx
r
3

kr4b + xr3
− k4dx4, (2.8)

u5 =
dx5

dt
= k5bx4 − k5dx5 − k5tx5 + k6tx6, (2.9)

u6 =
dx6

dt
= k5tx5 − k6tx6 − k6dx6 + k7ax7 − k6ax6, (2.10)

u7 =
dx7

dt
= k6ax6 − k7ax7 − k7dx7, (2.11)

u8 =
dx8

dt
= λ

((
klmpf+k0mpf exp−ηψ2

)
kn1mpf

kn1mpf+xn8 +sxn10
(1− x8)− dwee1x9x8

)
, (2.12)

u9 =
dx9

dt
= λ

(
kactw

kactw + dw1
(cw + Cx7) +

( kactw
kactw + dw1

− 1
)kinactwxn8x9

kn1wee1 + xn8
− dw2x9

)
,

(2.13)

u10 =
dx10

dt
= λ

(
kact(x8 − x10)

)
. (2.14)

Equations (2.5-2.11) describe the circadian oscillator and equations (2.12-2.14) the132

cell cycle. Circadian dynamical variables are x1, Per2 or Cry mRNA and proteins;133

x2, PER2/CRY complex (cytoplasm); x3, PER2/CRY complex (nucleus); x4, Bmal1134

mRNA; x5, BMAL1 cytoplasmic protein; x6, BMAL1 nuclear protein and x7, active135

BMAL1. Cell cycle dynamical variables are x8, active MPF; x9, active WEE1 and136

x10, active MPF inhibitor. The coupling between these two oscillators is taken into137

consideration in the term Cx7 of equation (2.13) through the regulation of WEE1 by138

BMAL1/CLOCK. The coefficient C is the coupling strength. Details about this model139

can be found in [12]. The cellular dynamics is now part of a multiscale system, some140

changes were added to the original system to reflect that cells interact with each other.141

These changes are detailed in the coming paragraphs.142

2.3 Population synchronization143

Including connectivity between cells is important in certain tissues to maintain a robust144

synchronized activity. It is known, for example, that neuronal clocks within the the145

suprachiasmatic nucleus SCN form a heterogeneous network that must synchronize to146
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maintain time keeping activity. The coherent output of the SCN is established by147

intracellular signaling factors, such as vasointestinal polypeptide [13]. A simple way to148

induce synchronization in our model is to make Per/Cry mRNA transcription depends149

on the average concentration of Per/Cry among cells. For that, we included in equation150

(2.5) the term ksψ1 := ks〈ρ,Φ1〉 with ks a coefficient that represents the connectivity151

strength and Φ1 = x1. Although peripheral tissues, as modeled here, would run out-152

of-phase without the SCN, there are so many factors that can synchronize clocks that153

it is relevant to study the possibility for peripheral tissues to be connected.154

2.4 Variability among cells155

Variability among cells arises naturally from the difference in their molecular contents.156

This was taken into consideration in our model through the initial states of cells,157

which can be chosen randomly. We added another source of variability through the158

parameter λ. We assumed that each cell has a distinct cell cycle period. This was159

modeled by multiplying equations (2.12-2.14) by a scaling factor λ. Cell division can160

also induce variability by assigning to each new born cell an intrinsic cell cycle period161

that is different from its mother cell. (This is accomplished by taking a non trivial162

distribution p(λ|z), see Supplementary materials equations (1.4), (1.5)).163

2.5 Cell division164

A central aspect of our model is that it takes into account cell division. Cell division165

timing is based on the antagonistic relationship between the mitosis promoting factor166

MPF and the protein WEE1. It is assumed that a cell enters mitosis once the activity of167

MPF surpasses that of WEE1 and then divides once MPF activity shuts down abruptly.168

Based on this mechanism, we considered two division types, one deterministic and one169

stochastic. The deterministic division occurs exactly every time MPF activity rises170

above WEE1 activity and then shuts down. This was taken into consideration with171

a growth rate r(x, λ) := rd(x, λ) = δ(x∈Γ). For the stochastic division, we considered172

that a cell divides with a certain probability 4t× r(x, λ) + o(4t) for a small time step173

4t. The division rate r is a function of x and λ that mimics the deterministic case.174

For example, a switch-like function that takes small values on one side of Γ and large175

values on the other side could be used (see Supplementary materials for more details176

about the growth rates and Γ). Here, we used the Koshland-Goldbeter function [16]177
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given by178

K(y, z) =
2yJi

z − y + zJa + yJi +
√

(z − y + zJa + yJi)2 − 4yJi(z − y)
. (2.15)

This function generates a switching behavior [21]. If the ratio y/z (y and z are dummy179

variables here) becomes larger than one, the function switches to the upper state and180

the transition occurs. Ja and Ji are two constants that determines the stiffness of the181

switch, if they converge to zero, the switch converges to a step function.182

2.6 Limited growth183

To make sure the growth is bounded (for physiological and computational reasons),184

we assumed that cell proliferation slows down when the total number of cells reaches185

a threshold value. We assumed that the activation coefficient of MPF decreases at186

an exponential rate proportional to the total number of cells. This was taken into187

consideration in equation (2.12) by multiplying MPF activation coefficient k0mpf by188

exp−ηψ2 where ψ2 = 〈ρ,Φ2〉 with Φ2 = 1 (ψ2 = N(t)). When cell number is large189

enough, MPF activity cannot increase above that of WEE1, and cell division is blocked.190

2.7 Method of resolution191

The main difficulty for solving equation (2.2) comes from the high dimension of the192

dynamical state space (10 in our case). For that, we adapted a particle method that193

is more appropriate in high dimensions than classical methods such as finite differ-194

ences/volumes.195

The intuition behind the particle method is to start with a distribution of particles196

that approximates the initial condition and then follow the evolution of these particles197

in time in the dynamical and parameter states space. Mathematically, the particle198

solution is a discrete measure function, which means it is irregular. To obtain a solution199

in the usual classical sense at a given time T , one has to recover the classical solution200

with regularization techniques. The method is mainly divided into two steps201

2.7.1 Step 1: approximation of the initial condition202

Given an initial condition ρ0(x, λ) ∈ C0(Rd × R), we take an initial set of particles xj203

with weights αj such that ρ0
h =

N∑

j

αjδ[(x, λ)− (xj , λj)] approximates ρ0. This should204
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be understood as an approximation in the sense of measures, which means that one205

looks for a test function φ ∈ C0
0 (Rd × R) such that206

〈ρ0, φ〉 =

∫

Rd
ρ0φdxdλ and 〈ρ0

h, φ〉 =
∑

j

αjφ(xj , λj).

This yields a typical numerical quadrature problem where the integral

∫

Rd
ρ0φ is ap-207

proximated by

N∑

j

αjφ(xj , λj). For biological purposes, in our study we do consider208

directly an initial condition of the form (αj = 1)209

ρ0
h =

N∑

j

δ[(x, λ)− (xj , λj)].

2.7.2 Step 2: particle evolution in time210

In the dynamical state space the particles positions Xj(t) (not to confuse between Xj
211

and xj , our notations implies that Xj(0) = xj) can be computed at a given time t by212

solving the following ordinary differential equation system213

d

dt
Xj(t) = u(Xj(t), t). (2.16)

To take into account the source term in equation (2.2), we examined the intracellular

state of each cell (position of X in the state space) after each time step 4t and looked

if the biological conditions are met for a cell to divide. This means that if for a

given particle, MPF activity rises above that of WEE1 and then shuts down under a

threshold level, we add a particle XN+1 with intracellular state similar to the mother

cell or randomly chosen. If division occurs, a new parameter λN+1 = λN + Dξλ is

assigned to the particle of number N + 1, with D a diffusion coefficient and ξλ a

normally distributed random number. Hence the measure solution at a given time T ,

is given by

ρh(x, T ) =
Ñ∑

j

δ[(x, λ)− (Xj(T ),λj(T ))]. (2.17)

with Ñ the new number particles.214

Commonly, with particle method one needs to obtain a solution in the215

classical sense, which means that the particle solution (2.17) should be216

10



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

regularized. This is usually accomplished by taking the convolution product217

of ρh with a smoothing kernel ζε. In our case, we did not need to obtain218

a smooth solution, since there is no explicit dependence of the quantities219

of interest on the density of cells ρ. We focused on studying statistic-like220

properties of the distribution of cells. Hence, we did not perform any221

regularization procedure on the particle solution. For more information about222

particle methods the reader could refer to [24, 27].223

3 Results224

3.1 Regulation of the cell cycle by the circadian clock225

We solved equation (2.2) with L = 0, i.e. without division. We assumed that each cell226

has an intrinsic cell cycle period included in the interval [20 h, 28 h] . This was done227

by assigning to each particle a different coefficient λ. We let all cells have the same228

initial molecular state and considered two cases; one without coupling to the circadian229

clock (C = 0), and one with coupling to the circadian clock (C = 1.2). We plotted a230

projection of the solution in the subspaces (x7, x9) and (x7, x8), which are the subspaces231

of molecular concentrations (BMAL1/CLOCK, WEE1) and (BMAL1/CLOCK, MPF).232

We obtained a random distribution of particles for the non-coupled case and a limit233

cycle distribution for the coupled case (Figure 1). This means that the circadian clock234

is forcing all cells to oscillate with the same period. This is in agreement with results235

obtained earlier [12]; it was shown that a population composed of cells with cell cycle236

periods between 20 h and 28 h are brought to oscillate with a unique cell cycle period237

of 24 h for large values of C.238

3.2 Cell division239

We took four cells initially, two of them with λ = 230, and two with λ = 180 (intrinsic240

cell cycle lengths ' 10 h and 12.7 h respectively). These values were taken randomly.241

We solved equation (2.2) with a source term and considered three cases, one with r = rd242

(deterministic growth) and the two other ones with r = rs (stochastic growth). For the243

stochastic growth, we used a stiff and a non-stiff Koshland-Goldbeter function. First,244

we fixed the value of η to 0, which means that MPF activity does not depend on the245

total cells number. We assumed that newborn cells retain the cell cycle length of their246

mother cells at the division time, hence p(λ|z) = δ(λ− z) which leads the growth term247

to ne L = r(x, λ)ρ. This ensures that MPF cycle does not change along birth. Our248
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Figure 1: Solution of equation (2.2) without cell division. (A,B) Projection on the subspace
(x7, x9); (C,D) projection on the subspace (x7, x8). (A,C) Without coupling to the circadian
clock, C = 0. (B,D) With coupling to the circadian clock C = 1.2.
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simulations showed that the total number of cells after four days was equal to 1152 for249

the first case, 900 for the second one with a stiff Koshland-Goldbeter function and 480250

with a non stiff one. This is natural and is justified by the fact that the division rate rd251

is a Dirac-type division which means that division depends deterministically on MPF252

activity. Looking at MPF activity, we see that it peaks 9 times for λ = 230, and 6 times253

for λ = 180 every 4 days (Figure 2A,B). If division occurs exactly once MPF activity254

accomplishes a normal cycle, the total number of cells should be 2×29 +2×26 = 1152,255

which is the result obtained with r = rd (Figure 2C). The division rate rs introduces256

stochasticity in the decision for division. In this case, division does not depend only on257

MPF-WEE1 activity, but also on the probability rs ×4t at each time step 4t Figure258

(2C).259

Second, we assumed that proliferation depends on the total number of cells, and260

set η = 2× 10−3 (increasing the value of η will make the factor exp−ηψ2 less than one261

and hence decreases the value of MPF activation coefficient k0mpf ). We took initially262

100 cells with different intrinsic cell cycle periods and followed the total number of cells263

over 15 days. We remarked that division stopped after 8 days, and the growth curve264

reached a steady state (Figure 2D). Increasing the value of η decreases the activity of265

MPF with increasing number of cells. This means that at a certain time, MPF activity266

will decrease below a threshold that does not allow the cell to start mitosis.267

3.3 Synchronization268

To study the synchronization of cells, we compared the molecular concentrations of a269

cell chosen randomly with the average molecular concentration of all cells. We let the270

rate of production of Per2/Cry mRNA of each cell to be dependent on the average271

value for Per2/Cry mRNA. This was done by taking ks = 0.05 in equation (2.5). We272

took a population of 100 cells with autonomous cell cycle periods randomly distributed273

between 20 and 28 hours. Initial molecular concentrations were chosen randomly be-274

tween 0 and 1 and each cell has a distinct initial molecular state. We did not consider275

division hence L = 0, but we considered coupling between the cell cycle and the cir-276

cadian clock (C = 1.2). We followed the evolution of three components, Per2/Cry277

mRNA, BMAL1/CLOCK and WEE1, over 20 days. Our simulations showed that for278

ks = 0, the average molecular concentration had small oscillations which are asyn-279

chronous with those of the random cell concentration (Figure 3 A,B,C). Whereas for280

ks = 0.05, we obtained that the average molecular concentration tends to coincide with281

that of the random cell (Figure 3 D,E,F). This indicates that all cells are oscillating in282

a similar manner (same period and phase), and indicates synchronization of all popu-283
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Figure 2: (A) MPF-WEE1 antagonistic activity for λ = 180: division occurs if MPF activity
rises above that of WEE1 and then shuts down. (B) Impact of λ on MPF activity. (C)
Total number of cells with different source terms with no dependence of MPF activity on
the total number of cells (η = 0). Initial number of cells = 4, two cells with λ = 230 and
two with λ = 180. (D) Impact of the dependence of MPF activity on the total number of
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lation cells. In the case ks = 0, even though cells are coupled in the same manner to284

their circadian clock, cells keep oscillating in an asynchronous manner. The circadian285

clock regulates all cells to oscillate in a similar period which is 24 h in this case but286

due to the randomness in the initial molecular concentrations, each cell oscillates with287

a different phase.288

3.4 Heterogeneity of cells and growth rate289

We studied the growth rate of a cell population where each cell had a different cell290

cycle period. We took 100 cells initially and conferred to each of them a coefficient λ291

chosen randomly between 128 and 193. These coefficients scale the intracellular cell292

cycle system so that periods range randomly from 12 h to 18 h. The circadian control293

strength value C was fixed to 1.6. We did not consider connection between cells (ks = 0)294

and we did not consider dependence of the intracellular dynamics on any population295

level statistics. Simulations were done over 20 days and with a net death rate to mainly296

reduce the computation time. Simulations showed a growth rate with two daily peaks,297

suggesting that there were two division rounds every day (Figure 4A). To explain this298

bimodal behavior for the growth rate, we looked at the average activity of WEE1 and299

MPF. Simulations showed that MPF activity overcomes that of WEE1 once a day300

(Figure 4B). Based on average MPF activity alone, division should occur only once301

a day, and cannot explain the two daily peaks. We then followed a subpopulation of302

cells and examined at which time each cell divided. We identified three regimes for303

division: a single division per day, two divisions per day and three divisions every304

two days (Figure 4C,D). These regimes can be explained by the entrainment results305

obtained previously (for autonomous cell cycle periods between 12 and 18 h) showing306

large phase-locking regions entrainment with ratios 1:1, 2:1 and 3:2 [12]. The double307

peaks for the growth rate can be then explained by the fact that all cells are dividing308

at least once a day and some of them will undergo a second round of division (Figure309

4D).310

4 Discussion and conclusion311

We presented in this work a multiscale mathematical model for the regulation of the312

cell cycle by the circadian clock and its influence on cell growth. The model consisted313

of a master transport partial differential equation of high dimension structured by the314

molecular contents of the coupled cell cycle-circadian clock oscillator. We proposed a315
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computational approach for resolution adapted from the concept of particle methods.316

Several computational and theoretical studies dealt with modeling cell population317

connected to molecular systems influencing cell growth. Bekkal Brikci and colleagues,318

developed a nonlinear model for the dynamics of a cell population divided into a pro-319

liferative and quiescent compartments. This model is structured by the time spent by320

a cell in the proliferative phase and by the Cyclin D CDK4/6 amount [5, 6]. Ribba321

and colleagues developed a multiscale model of cancer growth based on the genetic322

and molecular features of the evolution of colorectal cancer [28]. In more recent works,323

Prokopiou et al. presented a multiscale computational model to study the maturation324

of CD8 T-cells in a lymph node controlled by their molecular profile [26]. Schluter325

and colleagues developed a multiscale multicompartment model that accounts for bio-326

physical interactions on both the cell-cell and cell colonies levels [29]. Bratsun and327

colleagues proposed a multiscale model of cancer tumor development in epithelial tis-328

sue. Their model includes mechanical interactions, chemical exchange as well as cell329

division [4]. Shokhirev and colleagues developed a multiscale model to study the role of330

NF-κB in cell division. Their approach allows for the prediction of dynamic organ-level331

physiology in terms of intracellular molecular network.332

All of these works emphasize on the importance of taking into account different333

levels of a biological system by showing results that cannot be inferred by considering334

solely one level of functioning. We exposed a simulation showing discordance between335

rhythms observed on the population and signal cell levels. This is important since it336

underlies the fact that biological function markers which most of the times rely on337

average-like information can mislead the interpretation in some cases. Our modeling338

approach differs from the above cited works which can be separated into two cate-339

gories. One consisted of low dimension structured partial differential equations solved340

by classical numerical techniques [28, 5]; and the other one consisted of agent-based341

modeling approaches [4, 29, 30]. Our approach consists of considering a master par-342

tial differential equation in high dimension structured by molecular contents for which343

we propose a computational solution based on a particle method. This allowed us to344

structure the partial differential equation by a large number of molecular contents,345

providing a realistic representation of the coupled cell-cycle circadian clock oscillator.346

By doing so, we were able to describe both population and single cell functioning in347

one equation. Globally, the model takes into consideration the molecular dynamics348

inside a cell, connection between heterogeneous cells and the proliferation of cells.349

Our results can shed light on the superiority of frequent administration of chemother-350

apies over the standard maximum tolerated dose (MTD). Scheduling the MTD into351
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multiple administrations per cycle proved to be more effective and less toxic [18, 22, 31].352

We showed in section 3.4 that an apparent population growth rhythm may hide sev-353

eral subpopulation growth rhythms. Biological markers, as the Ki-67 index, are mostly354

indicative of the growth status at the population level. Therefore, one is tempted to355

consider that the administration of an anticancer drug during the time of the largest356

growth peak is the most effective. However, our simulations showed that this largest357

growth peak is obtained from the crossing of different subpopulation rhythms. There-358

fore, administrating a drug at the same time every treatment cycle may hit only one359

subpopulation of cells, leaving another subpopulation without treatment for a long360

time. This possibly leads to the emergence of resistant subpopulations and make the361

treatment ineffective.362

The aim of this work was to provide a computational multiscale framework for the363

regulation of the cell cycle by the circadian clock. The use of multiscale computational364

tools is of growing interest in the area of drug development, especially the area of sys-365

tems pharmacology. A major challenge for systems pharmacology is the development366

of mechanistic tools to understand how regulatory networks control variability in drug367

response at the organismal level [34]. Our model was constructed in the hope to over-368

come such challenges. It had the specificity of describing the connection between the369

cell cycle and the circadian clock through the regulation of the protein kinase WEE1 by370

the complex BMAL1-CLOCK. Irregular activity of the WEE1 kinase has been linked to371

ovarian and NSCLC cancers. Inhibiting this activity demonstrated interference with372

DNA damage response within tumor cells, leading to their death. Drugs targeting373

WEE1 are currently under investigation [11]. In such specific applications, our model374

can be of great utility. According to Zhao and colleagues, experimental settings in375

the process of drug development are sometimes not sufficient due to the multitude of376

interactions between mammalian network proteins. Actions on the desired targets may377

lead to adverse events occurring at another level due to the wide ramification of molec-378

ular interactions. The abundance of such interactions makes it hard to design drugs379

affecting only the desired targets with controlled therapeutic effects [34]. Therefore it380

is important to propose modeling frameworks that allow in silico experimentation in381

the presence of uncertain or incomplete data. In this manuscript, we have provided382

such an example, and showed why incomplete population level data may lead to a383

suboptimal treatment.384

Multiscale modeling in systems medicine is growing in importance. Wolkenhauer385

and colleagues recently proposed different recommendations to improve the integration386

of multiscale models into clinical research [32]. One of their medium-term recommen-387
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dations is the rising need of developing computational tools and algorithms for efficient388

multiscale simulations. We hope the modeling approach we propose in this study rep-389

resents a step forward towards this direction.390
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