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Abstract. The main goal of this paper is to put on solid mathematical grounds the so-called Non-
Equilibrium Green’s Function (NEGF) transport formalism for open systems. In particular, we de-
rive the Jauho-Meir-Wingreen formula for the time-dependent current through an interacting sam-
ple coupled to non-interacting leads. Our proof is non-perturbative and uses neither complex-time
Keldysh contours, nor Langreth rules of ‘analytic continuation’. We also discuss other technical
identities (Langreth, Keldysh) involving various many body Green’s functions. Finally, we study
the Dyson equation for the advanced/retarded interacting Green’s function and we rigorously con-
struct its (irreducible) self-energy, using the theory of Volterra operators.

1 Introduction

The computation of Green’s functions (GFs) associated to interacting many-body quantum systems is one of
the most fruitful and challenging problems in theoretical condensed matter physics. Among many applications
of Green’s functions techniques let us mention the linear response to an adiabatically switched perturbation
(e.g. an external electric field or electron–electron interactions) which is embodied in a single or two-particle
GF. Also, the equilibrium properties of an interacting system can be studied in the framework of the finite-
temperature (Matsubara) formalism. The great advantage of GFs is that they can be obtained from perturba-
tive approximations which satisfactorily capture plenty of physical phenomena. In some sense they are much
simpler objects than N -particle wavefunctions which are difficult to compute even with the currently avail-
able hardware. It was already clear in the early ’60s that non-equilibrium regimes cannot be described within
ground-state perturbation theory based on the Gell-Mann and Low Theorem [GML] as the system does not
return to the same initial state after the external driving is turned off.

In spite of this difficulty considerable efforts were spent to adapt the very appealing and successful diagram-
matic expansion of the ground-state GF (see, e.g., [FW]) to the non-equilibrium setting and in particular to
transport calculations for open quantum systems. The resulting theory of non-equilibrium Green’s functions
(NEGFs) nowadays surpasses in predictive power quantum kinetic (Boltzmann) equations1, Kubo-Greenwood

1The Kadanoff-Baym equations lead to the Boltzmann equation under appropriate assumptions, see the review [Da].
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formulas [Ku] and the Landauer-Büttiker approach to coherent transport (see, e.g., [Im]). Although the NEGF
formalism was proposed and developed in the ’60s by several authors [Sc, KB, Ke, Fu, Cr] to the best of our
knowledge a review has not been available until ’84 [Da]. Also, the first application of the Keldysh formal-
ism to a transport problem has been presented in a series of papers by Caroli et al. [Ca1, Ca2, Co, Ca3]. It is
interesting to note that in their first paper the authors introduced the partitioning transport setting which is
nowadays standard textbook material (the setting will be described in the next section). The real breakthrough
of the non-equilibrium GFs method to transport problems is due to Meir and Wingreen [MW]. They proposed
a closed formula for the steady-state current across an interacting region which was then extended to the tran-
sient regime [JWM].

Given the fact that in the non-interacting case the single-particle GF reduces to the resolvent of the full Hamil-
tonian which can either be computed in perturbation theory or related to scattering theory, it is not surprising
that some aspects of Green’s functions methods have been also addressed from the mathematical point of
view. Two such examples are the Green-Kubo formulation of linear response theory and the Landauer-Büttiker
approach to coherent transport in mesoscopic systems. Both methods were rigorously established for inde-
pendent electron (i.e., quasi-free) models with discrete and continuous geometries [AH, AP, AJPP2, BP, CJM,
CDNP, N].

In the interacting case, and more generally for non quasi-free dynamics, mathematical constructions of current
carrying steady states have been obtained within the perturbative approach [FMU, JP1, AJPP1, MMS]. The lin-
ear response theory of these nonequilibrium steady states (NESS) is also well understood at the mathematical
level [JOP1, JOP2, JOP3]. Using the scattering theoretical approach developed in these works, we have recently
obtained steady-states limits of the two-point GFs of an open mesoscopic sample [CMP1, CMP2, CM] for var-
ious, partitioning and non-partitioning protocols. We have also presented an alternative perturbative formula
for the steady-state current and established the independence of the steady-state quantities on the initial state
of the sample.

As a natural continuation of these results the present work aims at providing the first rigorous account of the
Keldysh-Green’s functions machinery which is rather inaccessible to the mathematical community in its origi-
nal formulation. Indeed, for a beginner or a mathematically oriented reader the first unfamiliar technical object
of the NEGF formalism is quite its starting point: the famous Keldysh contour introduced along with its asso-
ciated countour-ordering operator which replaces the time-ordering operator of the equilibrium theory. In the
simplest version of the theory (i.e., if the initial correlations are neglected) the contour runs from some initial
time t0 where the system is still in an equilibrium state to some later time t and then back to t0. This unusual
choice becomes even stranger when one adds a misleading picture in which the contour is slightly extended to
the complex plane. If the initial state is correlated the Keldysh contour has an additional complex (Matsubara)
‘hook’ (t ∈ [t0 − iβ, t0]). Let us emphasize that this construction plays a crucial role in transport calculations
where one uses formal identities for GFs whose time variables are seen on different ‘branches’ of the Keldysh
contour.

If one carefully follows the development of the many-body perturbative approaches, the only ‘raison d’être’
of the Keldysh contour is quickly unraveled: it provides a systematic and convenient way to order time argu-
ments of complicated products of interaction picture operators on the chronological (from t0 to t ) and anti-
chronological (from t to t0) time branches. These products appear naturally in the statistical average of a
given observable in the non-equilibrium regime. A nice discussion on this point can be found in the review
by Danielewicz [Da]. Moreover, a compact form amenable to a diagrammatic analysis via the Wick theorem is
achieved by introducing contour-ordered GFs, the latter being nothing but Keldysh GFs. To sum up, the Keldysh
contour helps one to reveal the formal analogy between the equilibrium many-body perturbation theory and
the non-equilibrium one. Nevertheless, it is rather unfortunate that in order to study the non-equilibrium, one
has to be familiar to the ground-state perturbation theory, Matsubara Green’s functions, real-time GFs and so
on [MSSL, Ne, ND, NDG, FVA]. According to a recent point of view [SvL], the non-equilibrium many-body per-
turbation formalism is the first one to be learned, the other ones being derived from it as simplified versions.
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The NEGF formalism

In our paper we establish a ‘contour-free’ viewpoint of the NEGF formalism. A certain advantage of this ap-
proach is that a mathematically oriented reader can get to the JMW formula without an a priori knowledge of
many-body theory or Feynman diagrams. On the other hand, it should not come as a surprise that the non-
equilibrium transport can be formulated without contour-ordered quantities given the fact that the seminal
work of Kadanoff and Baym [KB] is written down only in terms of retarded/advanced and correlation GFs.

The paper is organized as follows:

• After this Introduction we continue with a description of the setting in Section 2. We are only dealing
with discrete, partitioned systems; the partition-free case [SA] will be treated elsewhere. Note that we
work right from the beginning at the thermodynamic limit, the only important properties of the reference
state being the KMS property and gauge-invariance (i.e. it ‘commutes’ with the number operator).

• In Section 3 we introduce the NEGFs and we formulate our main results. Sections 4 and 5 contain all
the proofs. Section 6 concludes the paper and lists some open problems. In the Appendix we prove a
positivity lemma related to the dissipative properties of the retarded interacting GF.

• While in this work we shall use standard quantities (lesser, retarded/advanced GFs) and tools (Wick the-
orem, Dyson equation) from many-body perturbation theory, our proofs do not require two essential
ingredients of the Keldysh formalism: the contour-ordering operator and the so called ‘analytic continu-
ation’ Langreth rules [La, HJ]. Although a significant number of papers in the physical literature confirm
the usefulness of these methods in specific calculations based on diagrammatic expansion, our approach
shows that they are not mandatory for the study of non-equilibrium transport. In fact we are able to pro-
vide in Theorem 3.1 the first rigorous proof of the probably most famous by-product of the NEGF formal-
ism, namely the Jauho-Meir-Wingreen (JMW) [JWM] formula for the time-dependent current through
an interacting quantum dot without using contour-ordered GFs and Langreth rules; the only technical
ingredients we need are the well known KMS condition (2.3) and the Duhamel identity (4.1). Along the
way we also present ‘contourless’ derivations of the Langreth rules and of the Keldysh equation for the
lesser Green’s function.

• The JMW formula only involves lesser and retarded interacting GFs restricted to the small sample. When
the restriction to the small sample of the initial state is the vacuum, we show in Proposition 3.6 how to
express lesser GFs in terms of non-interacting advanced/retarded GFs and a lesser self-energy, which in
principle can be computed in all orders of the interaction.

• Our final result, Proposition 3.7, is a rigorous formulation of a Dyson equation for the interacting ad-
vanced/retarded GFs, using the theory of Volterra operators. In the proof of Lemma 5.1 we also describe
how one can compute the self-energy in any order of the interaction and we explicitly identify its leading
terms.

Acknowledgments. The idea of a rigorous mathematical approach to the NEGF formalism appeared more than
ten years ago, catalyzed by lively discussions with, among others, N. Angelescu, J. Dereziński, P. Duclos, P. Gart-
ner, V. Jakšić, G. Nenciu, G. Stefanucci, and V. Zagrebnov. Financial support by Grant 4181-00042 of the Danish
Council for Independent Research | Natural Sciences is gratefully acknowledged. The work of CAP was partly
funded by Excellence Initiative of Aix-Marseille University-A*MIDEX, a French “Investissements d’Avenir” pro-
gram. VM acknowledges financial support by the CNCS-UEFISCDI grant PN-III-P4-ID-PCE-2016-0221.

2 The model

In order to avoid technicalities which would only obscure the exposition we restrict ourselves to a simple model
of a discrete sample S coupled to a finite collection of reservoirs R of spinless electrons within the partitioning
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scenario used in our previous work [CMP2]. In this section, we briefly recall this setup and refer the reader
to [CMP2] for a detailed discussion and results pertaining to the existence of steady states in this model.

2.1 The one-particle setup

Our main object of interest is a Fermi gas on a discrete structure S +R (e.g., an electronic system in the tight-
binding approximation). There, S is a finite set describing a confined sample and R = R1 + ·· · +Rm is a
collection of infinitely extended reservoirs (or leads) which feed the sample S .

The one-particle Hilbert space of the compound system is

h= hS ⊕hR , hR =⊕m
j=1h j ,

where hS = `2(S ) and h j is the Hilbert space of the j th reservoir. Let hS , a self-adjoint operator on hS , be
the one-particle Hamiltonian of the isolated sample. Denote by h j the Hamiltonian of the j th reservoir. The
one-particle Hamiltonian of the decoupled system is

hD = hS ⊕hR , hR =⊕m
j=1h j .

The coupling of the sample to the reservoirs is achieved by the tunneling Hamiltonian

hT =
m∑

j=1
d j

(|ψ j 〉〈φ j |+ |φ j 〉〈ψ j |
)

,

where ψ j ∈ h j and φ j ∈ hS are unit vectors and d j ∈ R a coupling constant. The one-particle Hamiltonian of
the fully coupled system is

h = hD +hT.

In the following, we will denote by 1 j /S /R the orthogonal projection acting on the one-particle Hilbert space h
with range h j /S /R .

2.2 The many-body setup

We shall now describe the Fermi gas associated with the one-particle model introduced previously and extend
this model by adding many-body interactions between the particles in the sample S . In order to fix our nota-
tion and make contact with the one used in the physics literature let us recall some basic facts. We refer to [BR2]
for details on the algebraic framework of quantum statistical mechanics that we use here.

Γ−(h) denotes the fermionic Fock space over h and Γ(n)− (h) = h∧n , the n-fold completely antisymmetric tensor
power of h, is the n-particle sector of Γ−(h). For f ∈ h, let a( f )/a∗( f ) be the annihilation/creation operator
on Γ−(h). In the following a# stands for either a or a∗. The map f 7→ a∗( f ) is linear while f 7→ a( f ) is anti-
linear, both maps being continuous, ‖a#( f )‖ = ‖ f ‖. The underlying algebraic structure is characterized by the
canonical anti-commutation relations (CAR for short)

{a( f ), a∗(g )} = 〈 f |g 〉1, {a( f ), a(g )} = 0, (2.1)

and we denote by CAR(h) the C∗-algebra generated by {a#( f ) | f ∈ h}, i.e., the norm closure of the set of polyno-
mials in the operators a#( f ). Note that if g⊂ h is a subspace, then we can identify CAR(g) with a subalgebra of
CAR(h).

The second quantization of a unitary operator u on h is the unitary Γ(u) on Γ−(h) acting as u ⊗u ⊗ ·· ·⊗u on
Γ(n)− (h). The second quantization of a self-adjoint operator q on h is the self-adjoint generator dΓ(q) of the
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strongly continuous unitary group Γ(eit q ), i.e., Γ(eit q ) = eitdΓ(q). If { fι}ι∈I is an orthonormal basis of h and q a
bounded self-adjoint operator, then

dΓ(q) = ∑
ι,ι′∈I

〈 fι|q | fι′〉a∗( fι)a( fι′ ),

holds on Γ−(h). If q is trace class (in particular, if q is finite rank), then dΓ(q) is bounded and belongs to CAR(h).

A unitary operator u on h induces a Bogoliubov automorphism of CAR(h)

A 7→ γu(A) = Γ(u)AΓ(u)∗,

such that γu(a#( f )) = a#(u f ). If t 7→ ut is a strongly continuous family of unitary operators on h, then t 7→ γut

is a strongly continuous family of Bogoliubov automorphisms of CAR(h). In particular, if ut = eit p for some
self-adjoint operator p on h, we call γut the quasi-free dynamics generated by p.

The quasi-free dynamics generated by the identity I is the gauge group of CAR(h) and N = dΓ(I ) is the number
operator on Γ−(h),

ϑt (a#( f )) = eit N a#( f )e−it N = a#(eit f ) =
{

e−it a( f ) for a# = a;

eit a∗( f ) for a# = a∗.

The algebra of observables of the Fermi gas is the gauge-invariant subalgebra of CAR(h),

CARϑ(h) = {A ∈ CAR(h) |ϑt (A) = A for all t ∈R}.

It is the C∗-algebra generated by the set of all monomials in the a# containing an equal number of a and a∗
factors. In particular, it is contained in the so-called even part of CAR(h) which consists of all elements invariant
under the involutive morphismΘwhich maps a#( f ) to −a#( f ).

2.2.1 Locally interacting dynamics

The quasi-free dynamics generated by h describes the sample coupled to the leads and H = dΓ(h) is the corre-
sponding many-body Hamiltonian

τt
H (a#( f )) = eit H a#( f )e−it H = a#(eith f ).

The group τH commutes with the gauge group ϑ so that it leaves CARϑ(h) invariant. In the following, we shall
consistently denote one-particle operators with lower-case letters and capitalize the corresponding second
quantized operator, e.g., HS = dΓ(hS ), HR = dΓ(hR), etc. We shall also denote the corresponding groups of
automorphism by τHS

, τHR
, etc.

For x ∈ S we denote by |x〉 = δx ∈ hS the Kronecker delta at x and by a#
x = a#(δx ) the corresponding cre-

ation/annihilation operators. We allow for interactions between particles in the sample S . However, particles
in the leads remain free. The interaction energy within the sample is described by

W = 1

2

∑
x,y∈S

w(x, y)Nx Ny .

where Nx = a∗
x ax and w is a two-body potential satisfying w(x, y) = w(y, x) ∈ R and w(x, x) = 0 for all x, y ∈S .

For normalization purposes, we also assume that supx,y∈S |w(x, y)| = 1. For any self-adjoint W ∈ CARϑ(h) and
any value of the interaction strength ξ ∈R the operator

K = H +ξW,
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is self-adjoint on the domain of H . Moreover τt
K (A) = eitK Ae−itK defines a strongly continuous group of ∗-

automorphisms of CAR(h) leaving invariant the subalgebra CARϑ(h). This group describes the full dynamics of
the Fermi gas, including interactions. Another important operator is

KD = HS +ξW +HR ,

which describes the dynamics of the interacting but uncoupled system. Note that K = KD +HT .

2.2.2 States of the Fermi gas

A state on CAR(h) is a linear functional
CAR(h) 3 A 7→ 〈A〉 ∈C,

such that 〈A∗A〉 ≥ 0 for all A and 〈1〉 = 1. A state is gauge-invariant if 〈ϑt (A)〉 = 〈A〉 for all t ∈ R. Note that if
〈 ·〉 is a state on CAR(h) then its restriction to CARϑ(h) defines a state on this subalgebra. We shall use the same
notation for this restriction.

A state 〈 ·〉 on CAR(h) induces a GNS representation (H ,π,Ω) where H is a Hilbert space, π is a ∗-morphism
from CAR(h) to the bounded linear operators on H andΩ ∈H is a unit vector such thatπ(CAR(h))Ω is dense in
H and 〈A〉 = (Ω|π(A)Ω) for all A ∈ CAR(h). Let ρ be a density matrix on H (a non-negative, trace class operator
with tr(ρ) = 1). The map A 7→ tr(ρπ(A)) defines a state on CAR(h). Such a state is said to be normal w.r.t. 〈 ·〉.
From the thermodynamical point of view 〈 ·〉-normal states are close to 〈 ·〉 and describe local perturbations of
this state.

Given a self-adjoint operator % on h satisfying 0 ≤ %≤ I , the formula

〈a∗( f1) · · ·a∗( fk )a(gl ) · · ·a(g1)〉% = δkl det{〈g j |%| fi 〉},

defines a unique gauge-invariant state on CAR(h). This state is called the quasi-free state of density %. It
is uniquely determined by the two point function 〈a∗( f )a(g )〉% = 〈g |%| f 〉. An alternative characterization of
quasi-free states on CAR(h) is the usual fermionic Wick theorem

〈ϕ( f1) · · ·ϕ( fk )〉% =


0, if k is odd;

∑
π∈Pk

ε(π)
k/2∏
j=1

〈ϕ( fπ(2 j−1))ϕ( fπ(2 j ))〉%, if k is even;

where ϕ( f ) = 2−1/2(a∗( f )+a( f )) is the field operator, Pk denotes the set of pairings of k objects, i.e., permuta-
tions satisfying π(2 j −1) < min(π(2 j ),π(2 j +1)) for j = 1, . . . ,k/2, and ε(π) is the signature of the permutation
π.

Given a strongly continuous group τ of ∗-automorphisms of CAR(h) commuting with the gauge groupϑ, a state
〈 ·〉 is a thermal equilibrium state at inverse temperature β and chemical potential µ if it satisfies the (β,µ)-KMS
condition w.r.t. τ, i.e., if for any A,B ∈ CAR(h) the function

FA,B (s) = 〈Aτs ◦ϑ−µs (B)〉,
has an analytic continuation to the strip {0 < Im s < β} with a bounded continuous extension to the closure of
this strip satisfying

FA,B (s + iβ) = 〈τs ◦ϑ−µs (B)A〉. (2.2)

We shall say that such a state is a (β,µ)-KMS state for τ.

Remark 2.1. It is well known that for any β> 0 and µ ∈ R the KMS states 〈 ·〉β,µ
H and 〈 ·〉β,µ

K are thermodynamic
limits of the familiar grand canonical Gibbs states associated with the restrictions of the Hamiltonian H and K
to finitely extended reservoirs with appropriate boundary conditions. See [BR2] for details.
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2.2.3 The initial state

Let β = (β1, . . . ,βm) ∈ Rm+ , µ = (µ1, . . . ,µm) ∈ Rm and denote by 〈 ·〉β j ,µ j

H j
the unique (β j ,µ j )-KMS state for τH j

on CAR(h j ). We say that a state 〈 ·〉 on CAR(h) is (β,µ)-KMS if it is a product state extension of the 〈 ·〉β j ,µ j

H j
and

some gauge-invariant state 〈 ·〉S on CAR(hS ), i.e., if

〈A1 A2 · · · Am AS 〉 = 〈AS 〉S
m∏

j=1
〈A j 〉β j ,µ j

H j

holds for all A j ∈ CAR(h j ) and AS ∈ CAR(hS ). We note that given a state 〈 ·〉S on CAR(hS ), such a product state
extension exists and is unique (see [AM]). It describes a sample S whose state 〈 ·〉S is unentangled from the
reservoirs which are all in thermal equilibrium. In particular, a (β,µ)-KMS state needs not be quasi-free. We
shall need the following extension of the KMS condition (2.2) which follows from the CAR (2.1), the linearity,
continuity and gauge invariance of states, the totality of monomials of the form A1 · · · Am AS with A j ∈ CAR(h j )
and AS ∈ CAR(hS ) in CAR(h), and the KMS condition (2.2): For any A ∈ CAR(h) and B ∈ CAR(h j ) the function

FA,B (s) = 〈Aτs
H j

◦ϑ−µ j s (B)〉

has an analytic extension to the strip {0 < Im s <β j } with a bounded continuous extension to the closure of this
strip satisfying FA,B (s + iβ j ) = 〈τs

H j
◦ϑ−µ j s (B)A〉 or

〈Aτs
H j

◦ϑ−µ j s (B)〉 = 〈τs−iβ j

H j
◦ϑ−µ j (s−iβ j )(B)A〉

for all s ∈R. In particular, when s = 0, for any A ∈ CAR(h) and B = a#( f ) with f ∈ h j we have the identity:

〈A a#( f )〉 = 〈a#(eβ j (h j −µ j ) f ) A〉. (2.3)

We also set

%
β,µ
R

:=⊕
j

(
I +eβ j (h j −µ j )

)−1
, (2.4)

which can also be seen as an operator on the whole h by extending it by zero on hS .

3 Main results

In this section we introduce the main objects of interest for the NEGFs machinery and we state our main results.

3.1 Retarded and advanced Green’s Functions

For motivation purposes, let us first consider the non-interacting case, i.e., set ξ= 0. The one-body wave func-
tion then satisfies the Schrödinger equation

i∂tϕ(t ) = hϕ(t ),

and the associated Cauchy problem with initial condition ϕ(t0) = ϕ0 ∈ h is solved by the unitary propagator
ϕ(t ) = e−i(t−t0)hϕ0. In order to study the response of the system to time-dependent perturbations one investi-
gates the corresponding inhomogeneous equation

(i∂s −h)ϕ(s) =ψ(s).
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To deal with perturbations that are localized in time, it makes sense to consider this equation in the Hilbert
space H = L2(R,ds;h). The Fourier transform

ϕ̂(ω) =
∫
R
ϕ(s)e−iωs ds,

maps the time-domain Hilbert space H unitarily onto the frequency-domain Hilbert space L2(R, dω
2π ;h) in such

a way that
((i∂s −h)ϕ)̂ (ω) = (−ω−h)ϕ̂(ω).

Thus, the operatorΩ= i∂s −h, with domain

H 1 = H 1(R,ds;h) = {ϕ ∈H |‖ϕ‖1 = ‖
√

1+ω2ϕ̂‖ <∞} (3.1)

is self-adjoint on H . Its spectrum fills the real axis and a simple calculation shows that the unitary group it
generates is given by

(eitΩϕ)(s) = e−ithϕ(s − t ).

It follows that for z ∈C± = {z ∈C | ± Im z > 0} the resolvent

G±
0 (z) = (Ω− z)−1 =±i

∫
R±

e−it (Ω−z)dt ,

has the time-domain expression

(G±
0 (z)ϕ)(s) =±i

∫
R
θ(±(s′− s))ei(s′−s)(h+z)ϕ(s′)ds′, (3.2)

where θ denotes Heaviside step function.

We setR± = {s ∈R |±s > 0} and observe that the boundary values G±
0 (E) =G0(E±i0) are well defined as operators

on the Fréchet space H loc∓ = L2
loc(R∓,ds;h), with the semi-norm estimate

‖G±
0 (E)ϕ‖T ≤ T ‖ϕ‖T ,

where ‖ϕ‖2
T = ∫ T

0 ‖ϕ(∓s)‖2ds. The ‘integral kernel’ of the operator G∓
0 (E) : H loc± →H loc± is called retarded/advanced

Green’s function. In the physics literature it is usually denoted by GR
0 (E |s, s′)/G A

0 (E |s, s′) or simply GR
0 (s, s′)/G A

0 (s, s′)
in the special case E = 0. Observing that for f , g ∈ h

〈 f |GR
0 (E |s, s′)|g 〉 =−iθ(s − s′)ei(s′−s)E

〈{
τs′

H (a∗(g )),τs
H (a( f ))

}〉
,

〈 f |G A
0 (E |s, s′)|g 〉 =+iθ(s′− s)ei(s′−s)E

〈{
τs′

H (a∗(g )),τs
H (a( f ))

}〉
,

leads to the definition of the retarded/advanced interacting Green’s function

〈 f |GR (E |s, s′)|g 〉 :=−iθ(s − s′)ei(s′−s)E
〈{
τs′

K (a∗(g )),τs
K (a( f ))

}〉
,

〈 f |G A(E |s, s′)|g 〉 :=+iθ(s′− s)ei(s′−s)E
〈{
τs′

K (a∗(g )),τs
K (a( f ))

}〉
.

(3.3)

The decoupled retarded/advanced Green’s function G A/R
D are defined similarly by replacing τK by τKD in (3.3).

We observe that for f , g ∈ hR , the CAR and the fact that there is no interaction in the reservoirs imply that

〈 f |GR
D (s, s′)|g 〉 =−iθ(s − s′)〈 f |ei(s′−s)hR |g 〉,

〈 f |G A
D (s, s′)|g 〉 =+iθ(s′− s)〈 f |ei(s′−s)hR |g 〉.

8



The NEGF formalism

3.2 Other Green’s Functions

For s, s′ ≥ 0 and f , g ∈ h, the interacting ‘lesser’ and ‘greater’ Green’s functions are defined by

〈 f |G<(s, s′)|g 〉 :=+i
〈
τs′

K (a∗(g ))τs
K (a( f ))

〉
,

〈 f |G>(s, s′)|g 〉 :=−i
〈
τs

K (a( f ))τs′
K (a∗(g ))

〉
,

(3.4)

and play an important role in the NEGF formalism. The decoupled ‘lesser’ and ‘greater’ Green’s functions are
obtained upon replacement of K by KD in the above expressions. For f , g ∈HR , the fact that the restriction of

the state 〈 ·〉 to CAR(hR) is the gauge-invariant quasi-free state with density %β,µ
R

leads to the formulas

〈 f |G<
D (s, s′)|g 〉 =+i〈 f |%β,µ

R
ei(s′−s)hR |g 〉,

〈 f |G>
D (s, s′)|g 〉 =−i〈 f |(I −%β,µ

R
)ei(s′−s)hR |g 〉.

For completeness, let us mention two combinations of the ‘lesser’ and ‘greater’ Green’s functions which also
appear in the physics literature. We should not, however, use them in the following. The ‘spectral function’ is

〈 f |A(s, s′)|g 〉 := i〈 f |GR (s, s′)−G A(s, s′)|g 〉 = i〈 f |G>(s, s′)−G<(s, s′)|g 〉 =
〈{
τs′

K (a∗(g )),τs
K (a( f ))

}〉
,

with the property that A(t , t ) = I , while the ‘Keldysh’ Green’s function is

〈 f |GK (s, s′)|g 〉 := 〈 f |G<(s, s′)+G>(s, s′)|g 〉 =
〈

i
[
τs′

K (a∗(g )),τs
K (a( f ))

]〉
.

3.3 The Jauho-Meir-Wingreen current formula

From Eq. (3.4) we see that the interacting lesser Green’s function G< encodes all one-particle properties of the
system. For example, the sample’s particle density at time t ≥ 0 is given by

%(x, t ) = 〈τt
K (a∗

x ax )〉 = Im〈x|G<(t , t )|x〉.

Computing the time derivative of the sample’s particle number NS = dΓ(1S ) we obtain

∂tτ
t
K (NS ) = τt

K (i[K , NS ]) = τt
K (i[HT , NS ])

=∑
j

d jτ
t
K (i[dΓ(|φ j 〉〈ψ j |+ |ψ j 〉〈φ j |),dΓ(1S )])

=∑
j

d jτ
t
K (dΓ(i[|φ j 〉〈ψ j |+ |ψ j 〉〈φ j |,1S ])) =∑

j
J j (t )

which allows us to identify the j th term in the above sum

J j (t ) = id jτ
t
K

(
a∗(ψ j )a(φ j )−a∗(φ j )a(ψ j )

)
,

with the particle current out of the j th reservoir. Its expectation value in the initial state is

I j (t ) := 〈J j (t )〉 = d j
(〈φ j |G<(t , t )|ψ j 〉−〈ψ j |G<(t , t )|φ j 〉

)= 2d j Re〈φ j |G<(t , t )|ψ j 〉, (3.5)

where, in the last equality, we used the fact that G<(t , t )∗ =−G<(t , t ). The main result of this paper is a rigorous
proof of the JMW formula:

9
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Theorem 3.1 (The Jauho-Meir-Wingreen formula). If the initial state 〈 ·〉 is (β,µ)-KMS, then the particle current
out of the j th reservoir at time t > 0 is given by

I j (t ) =−2d 2
j

∫ t

0
ds

∫
dν j (E) Im

{
ei(t−s)E 〈φ j |G<(t , s)+GR (t , s)[1+eβ j (E−µ j )]−1|φ j 〉

}
,

where ν j denotes the spectral measure of h j for the vector ψ j .

Remark 3.2. The main feature of the JMW formula is that it only involves interacting Green functions restricted
to the sample S (in spite of the fact that in (3.5) φ j ∈ hS and ψ j ∈ h j ). If one is interested in transient regimes,
it seems that this formula is easier to deal with from a numerical point of view. But if one is interested in
proving the convergence to a steady state value when t →∞, it is not very useful. Moreover, the JMW formula
must be backed-up by systematic methods of calculating interacting GFs, which rely on Dyson equations and
interaction self-energies.

Remark 3.3. Let h̃ j ⊂ h j denote the cyclic subspace of h j generated byψ j , i.e., the smallest h j -invariant closed
subspace of h j containing ψ j . Set h̃= hS ⊕ (⊕ j )h̃ j and denote by h̃⊥ the orthogonal complement of h̃ in h. Let
O be the ∗-subalgebra of CAR(h) generated by {a( f ) | f ∈ h̃}. One easily checks that O is invariant under the
groups ϑ and τK . By the exponential law for fermions (see, e.g., Section 3.4.3 in [DeGe]) there exists a unitary
map U : Γ−(h) → Γ−(h̃)⊗Γ−(h̃⊥) such that Ua( f )U∗ = a( f )⊗ I for f ∈ h̃. Identifying in this way O with CAR(h̃)
and noticing that W ∈O , one easily shows that the restriction of the group τK to O is the Heisenberg dynamics
generated by K̃ = dΓ(h̃)+ ξW where h̃ is the restriction of h to h̃. Thus, as far as the dynamics on O is con-
cerned, we may assume w.l.o.g. that ψ j is a cyclic vector for h j . Going to the induced spectral representation,
this means that h j = L2(R,dν j (E)) where ν j (the spectral measure of h j for ψ j ) is a probability measure, h j is
multiplication by E and ψ j is the constant function ψ j (E) = 1.

Theorem 3.1 is a direct consequence of Eq. (3.5) and the next result.

Proposition 3.4 (The Langreth identity). Assume that the initial state 〈 ·〉 is (β,µ)-KMS. Then, the following
identity holds for all j ∈ {1, . . . ,m} and t , t ′ ≥ 0,

〈φ j |G<(t , t ′)|ψ j 〉 = d j

∫ ∞

0
〈φ j |

(
GR (t , s)|φ j 〉〈ψ j |G<

D (s, t ′)+G<(t , s)|φ j 〉〈ψ j |G A
D (s, t ′)

) |ψ j 〉ds. (3.6)

Remark 3.5. One should compare our results with formulas (12.11), (12.19), (12.21) and (13.3) in [HJ]. Our
formula (3.6) corresponds to (12.19) and (13.3) in [HJ]. Haug and Jauho derive these two formulas in two steps:
first using Keldysh contours (see (12.18) in [HJ]) and after that a Langreth-type ‘analytic continuation’ in order
to come back to ‘normal’ integrals.

3.4 A decoupling Keldysh-like identity

As one can see from the JMW formula, one is left with computing correlation functions between points both
situated in the sample S . From a mathematical point of view, this is as complicated as the original prob-
lem. Nevertheless, in the physics literature one tries to rewrite the interacting lesser functions in terms of
retarded/advanced GFs which afterward can be numerically computed by solving Dyson type equations. The
next proposition shows how this is done:

Proposition 3.6 (A decoupling Keldysh identity). If the initial state 〈 ·〉 is (β,µ)-KMS and if its restriction to
CAR(hS ) is the vacuum state, then there exists a continuous function

R+×R+ 3 (s, s′) 7→ S<(s, s′) = ∑
x,x′∈S

|x〉S<
xx′ (s, s′)〈x ′| ∈B(hS )

10
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such that

〈φ|G<(t , t ′)|φ′〉 =
∫ ∞

0
ds

∫ ∞

0
ds′ 〈φ|GR

0 (t , s)S<(s, s′)G A
0 (s′, t ′)|φ′〉, (3.7)

for φ,φ′ ∈ hS and t , t ′ ≥ 0. Moreover,
S<

xx′ (s, s′) = i〈T ∗
x′ (s′)Tx (s)〉

where
Tx (s) = a(eishD hTδx )+ξτs

K (axVx ).

and
Vx = ∑

y∈S

w(x, y)Ny .

As a function of the interaction strength ξ, S<(s, s′) is entire analytic. The first two terms of its expansion

S<(s, s′) = ∑
n≥0

ξnS<(n)(s, s′)

are given by (recall (2.4) for the definition of %β,µ
R

):

S<(0)
xx′ (s, s′) = i〈x|hT e−ishR%

β,µ
R

eis′hR hT |x ′〉 = i
∑

j
d 2

j

(∫
ei(s′−s)E

1+eβ j (E−µ j )
dν j (E)

)
〈x|φ j 〉〈φ j |x ′〉,

and

S<(1)
xx′ (s, s′) = i

∑
y∈S

[
w(x, y)

(
〈x|e−ish%

β,µ
R

eish |y〉〈y |e−ish%
β,µ
R

eis′hR hT |x ′〉

−〈x|e−ish%
β,µ
R

eis′hR hT |x ′〉〈y |e−ish%
β,µ
R

eish |y〉
)

+w(x ′, y)
(
〈x|hT e−ishR%

β,µ
R

eis′h |y〉〈y |e−is′h%
β,µ
R

eis′h |x ′〉

−〈x|hT e−ishR%
β,µ
R

eis′h |x ′〉〈y |e−is′h%
β,µ
R

eis′h |y〉
)]

.

The ‘true’ Keldysh identity appearing in the physics literature differs from (3.7) in that it involves the interacting
retarded/advanced GF’s, G A/R , instead of the non-interacting ones G A/R

0 . The argument leading to such a re-
lation relies on a Dyson type equation connecting G A/R to G A/R

0 through the so-called advanced/retarded self-
energies. In the physics literature, the derivation of these Dyson equations usually rests on formal analogies
with zero temperature and/or diagrammatic perturbative techniques for the contour ordered GFs. The next
two results stated in Proposition 3.7 and Proposition 3.8 are non-perturbative and provide a rigorous mathe-
matical foundation to these relations.

3.5 Dyson equations

Given the construction in the beginning of this section relating the retarded and advanced Green’s functions to
boundary values of resolvent operators, it is clear that the Green’s functions GR/A

v of a time-independent per-
turbation v of the one-body Hamiltonian, where v ∈ B(H ), are related to the unperturbed Green’s functions
GR/A

0 by the second resolvent equation, i.e.,

GR
v (E |s, s′) =GR

0 (E |s, s′)+
∫ s

s′
GR

0 (E |s,r ) v GR
v (E |r, s′)dr,

G A
v (E |s, s′) =G A

0 (E |s, s′)+
∫ s′

s
G A

0 (E |s,r ) v G A
v (E |r, s′)dr,

11
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which we write as
GR/A

v =GR/A
0 +GR/A

0 vGR/A
v =GR/A

0 +GR/A
v vGR/A

0 . (3.8)

We now state our second result concerning the existence of interacting proper self-energies and formulate the
Dyson equations, similar to (3.8), obeyed by the interacting advanced/retarded Green functions.

Proposition 3.7 (The advanced/retarded Dyson equation). Let 〈 ·〉 be an arbitrary state on CAR(h). There exists
continuous functions

R+×R+ 3 (s, s′) 7→ΣA/R (s, s′) = ∑
x,x′∈S

|x〉ΣA/R
xx′ (s, s′) 〈x ′| ∈B(hS )

such that for every s, s′ ≥ 0 we have:

G A/R (E |s, s′) =G A/R
0 (E |s, s′)+

∫ ∞

0
dr

∫ ∞

0
dr ′G A/R

0 (E |s,r )ΣA/R (E |r,r ′)G A/R (E |r ′, s′) (3.9)

=G A/R
0 (E |s, s′)+

∫ ∞

0
dr

∫ ∞

0
dr ′G A/R (E |s,r )ΣA/R (E |r,r ′)G A/R

0 (E |r ′, s′).

Moreover, the map ξ 7→ ΣA/R ∈B(hS ) which defines the irreducible advanced/retarded self-energy is entire ana-
lytic.

3.6 The Keldysh identity

We note an important feature of the above Dyson equations. Due to the special structure of the self-energy
ΣA/R (which only lives in the sample), we see that the finite dimensional restriction of G A/R (E |s, s′) to the small
sample obeys the same equation.

Also, by isolating G A/R
0 from (3.9) and introducing it in (3.7) we immediately obtain the following result:

Proposition 3.8 (The Keldysh identity). If the initial state 〈 ·〉 is (β,µ)-KMS and if its restriction to CAR(hS ) is
the vacuum state, then there exists a continuous function

R+×R+ 3 (s, s′) 7→Σ<(s, s′) = ∑
x,x ′∈S

|x〉Σ<
xx′ (s, s′) 〈x ′| ∈B(hS )

such that

〈φ|G<(t , t ′)|φ′〉 =
∫ ∞

0
ds

∫ ∞

0
ds′〈φ|GR (t , s)Σ<(s, s′)G A(s′, t ′)|φ′〉, (3.10)

for φ,φ′ ∈ hS and t , t ′ ≥ 0.

4 Proofs

4.1 Proof of Proposition 3.4

One main ingredient of the proof is the following Duhamel formula

τt ′
K (A) = τt ′

KD
(A)+

∫ t ′

0
τs

K (i[HT ,τt ′−s
KD

(A)])ds, (4.1)

12
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which is obtained by differentiating τ−s
K ◦τs

KD
(A), then integrating back from 0 to t ′, and finally changing the

integration variable from s to t ′− s. Applying it to A = a∗(ψ j ) we infer

〈φ j |G<(t , t ′)|ψ j 〉 = i
〈
τt ′

KD
(a∗(ψ j ))τt

K (a(φ j ))
〉
+

∫ t ′

0
i
〈
τs

K (i[HT ,τt ′−s
KD

(a∗(ψ j ))])τt
K (a(φ j ))

〉
ds. (4.2)

For t ′− s ≥ 0 we have

i[HT ,τt ′−s
KD

(a∗(ψ j ))] = i[dΓ(hT ), a∗(ei(t ′−s)h jψ j )] = a∗(ihT ei(t ′−s)h jψ j )

= id j 〈ψ j |ei(t ′−s)h j |ψ j 〉a∗(φ j ) = d j 〈ψ j |G A
D (s, t ′)|ψ j 〉a∗(φ j ),

and (4.2) becomes

〈φ j |G<(t , t ′)|ψ j 〉 = i
〈
τt ′

KD
(a∗(ψ j ))τt

K (a(φ j ))
〉
+d j

∫ ∞

0
〈φ j |G<(t , s)|φ j 〉〈ψ j |G A

D (s, t ′)|ψ j 〉ds. (4.3)

We see that the second term on the right hand side coincides with the second term on the rhs of (3.6). The rest
of this proof will deal with the first term on the rhs of (4.3).

Since hT is finite rank, HT = dΓ(hT ) is a self-adjoint element of CAR(h). This allows us to introduce the interac-
tion representation of the full dynamics: for any A ∈ CAR(h) and t ∈R,

τt
K (A) = Γ∗t τt

KD
(A)Γt ,

where the cocycle Γt = eitKD e−itK satisfies the Cauchy problem

i∂tΓt = τt
KD

(HT )Γt , Γ0 =1,

and takes its values in the unitary elements of CAR(h). It follows that

i
〈
τt ′

KD
(a∗(ψ j ))τt

K (a(φ j ))
〉
= i

〈
τt ′

KD
(a∗(ψ j ))Γ∗t τ

t
KD

(a(φ j ))Γt

〉
= i

〈
a∗(eit ′h jψ j )Γ∗t τ

t
KD

(a(φ j ))Γt

〉
. (4.4)

We shall now consider the expression i〈a∗(ψ̃ j )Γ∗t τ
t
KD

(a(φ j ))Γt 〉 for arbitrary ψ̃ j ∈ h j . Using the canonical anti-
commutation relations which implies

{a∗(ψ̃ j ),τt
KD

(a(φ j ))} = τt
KD

({a∗(e−ith j ψ̃ j ), a(φ j )}) = 0, (4.5)

we commute the creation operator to the right, getting

i
〈

a∗(ψ̃ j )Γ∗t τ
t
KD

(a(φ j ))Γt

〉
= i

〈
Γ∗t a∗(ψ̃ j )τt

KD
(a(φ j ))Γt + [a∗(ψ̃ j ),Γ∗t ]τt

KD
(a(φ j ))Γt

〉
= i

〈
−Γ∗t τt

KD
(a(φ j ))a∗(ψ̃ j )Γt + [a∗(ψ̃ j ),Γ∗t ]τt

KD
(a(φ j ))Γt

〉
(4.6)

= i
〈
−Γ∗t τt

KD
(a(φ j ))Γt a∗(ψ̃ j )−Γ∗t τt

KD
(a(φ j ))[a∗(ψ̃ j ),Γt ]+ [a∗(ψ̃ j ),Γ∗t ]τt

KD
(a(φ j ))Γt

〉
.

Since the initial state is (β,µ)-KMS, the KMS condition (2.3) implies〈
Γ∗t τ

t
KD

(a(φ j ))Γt a∗(ψ̃ j )
〉
=

〈
a∗(eβ j (h j −µ j )ψ̃ j )Γ∗t τ

t
KD

(a(φ j ))Γt

〉
,

which, combined with (4.6), yields

i
〈

a∗([1+eβ j (h j −µ j )]ψ̃ j )Γ∗t τ
t
KD

(a(φ j ))Γt

〉
= i

〈
−Γ∗t τt

KD
(a(φ j ))[a∗(ψ̃ j ),Γt ]+ [a∗(ψ̃ j ),Γ∗t ]τt

KD
(a(φ j ))Γt

〉
.
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Setting ψ̃ j = [1+eβ j (h j −µ j )]−1eit ′h jψ j we can thus rewrite (4.4) as

i
〈
τt ′

KD
(a∗(ψ j ))τt

K (a(φ j ))
〉
= i

〈
−Γ∗t τt

KD
(a(φ j ))[a∗(ψ̃ j ),Γt ]+ [a∗(ψ̃ j ),Γ∗t ]τt

KD
(a(φ j ))Γt

〉
.

We now undo the commutators and obtain four terms, two of them forming an anti-commutator equal to zero
due to (4.5). This leads to

i
〈
τt ′

KD
(a∗(ψ j ))τt

K (a(φ j ))
〉
= i

〈
{a∗(ψ̃ j ),τt

K (a(φ j ))}
〉= i

〈
τt

K

(
{τ−t

K (a∗(ψ̃ j )), a(φ j )}
)〉

. (4.7)

Another application of a slightly modified version of the Duhamel formula in (4.1) further gives:

{τ−t
K (a∗(ψ̃ j )), a(φ j )} = {τ−t

KD
(a∗(ψ̃ j )), a(φ j )}−

∫ t

0

{
τ−(t−s)

K (i[HT ,τ−s
KD

(a∗(ψ̃ j ))]), a(φ j )
}

ds

=−d j

∫ t

0
{τ−(t−s)

K (a∗(φ j )), a(φ j )}i〈ψ j |e−ish j |ψ̃ j 〉ds

=−d j

∫ t

0
{τ−(t−s)

K (a∗(φ j )), a(φ j )}〈ψ j |G<
D (s, t ′)|ψ j 〉ds,

The anti-commutator on the rhs of the first equality equals zero as in (4.5). Inserting this relation into (4.7) we
finally get

i
〈
τt ′

KD
(a∗(ψ j ))τt

K (a(φ j ))
〉
=−d j

∫ t

0
i
〈

{τs
K (a∗(φ j )),τt

K (a(φ j ))}
〉〈ψ j |G<

D (s, t ′)|ψ j 〉ds

= d j

∫ ∞

0
〈φ j |GR (t , s)|φ j 〉〈ψ j |G<

D (s, t ′)|ψ j 〉ds,

which, together with (4.3) yields the result.

4.2 Proof of Proposition 3.6

Recall that NS denotes the particle number operator of the sample S . For any A ∈ CAR(h) and any unit vector
φ ∈ hS one has

|〈a∗(φ)A
〉 | ≤ 〈

a∗(φ)a(φ)
〉1/2 〈

A∗A
〉1/2 ≤ 〈NS 〉1/2 〈

A∗A
〉1/2 .

Since in this proposition we assume that the restriction of 〈 ·〉 to CAR(hS ) is the vacuum state, one has 〈NS 〉 = 0
and hence

〈
a∗(φ)A

〉 = 0 for all A ∈ CAR(h). In the following, we shall write A ∼ B whenever A,B ∈ CAR(h) are
such that 〈

(A−B)∗(A−B)
〉= 0,

and hence 〈C A〉 = 〈C B〉 for all C ∈ CAR(h).

Starting with Duhamel’s formula for the pair (K , H):

τt
K (a(φ)) = τt

H (a(φ))+ξ
∫ t

0
τs

K

(
i[W,τt−s

H (a(φ))]
)

ds,

we note that

τt
H (a(φ)) = τt

HD
(a(φ))+

∫ t

0
τs

HD

(
i[HT ,τt−s

H (a(φ))]
)

ds

= a(eithDφ)+
∫ t

0
a(eishD ihT ei(t−s)hφ)ds

= a(eithDφ)+
∫ ∞

0

∑
j

d j

(
〈φ|GR

0 (t , s)|ψ j 〉a(eishDφ j )+〈φ|GR
0 (t , s)|φ j 〉a(eishDψ j )

)
ds,
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from which we deduce

τt
H (a(φ)) ∼

∫ ∞

0

∑
j

d j 〈φ|GR
0 (t , s)|φ j 〉a(eishDψ j )ds.

Setting
Vx := ∑

y∈S

w(x, y)Ny ,

we further write, for t > s,

i[W,τt−s
H (a(φ))] = 1

2

∑
x,y∈S

w(x, y)i[Nx Ny , a(ei(t−s)hφ)]

= 1

2

∑
x,y∈S

w(x, y)
(
Nx i[Ny , a(ei(t−s)hφ)]+ i[Nx , a(ei(t−s)hφ)]Ny

)
= 1

2

∑
x,y∈S

w(x, y)
(
Nx〈φ|GR

0 (t , s)|y〉ay +〈φ|GR
0 (t , s)|x〉ax Ny

)
= ∑

x∈S

〈φ|GR
0 (t , s)|x〉axVx .

Thus,

τt
K (a(φ)) ∼

∫ ∞

0

∑
j

d j 〈φ|GR
0 (t , s)|φ j 〉a(eishDψ j )ds +ξ

∫ ∞

0

∑
x∈S

〈φ|GR
0 (t , s)|x〉τs

K (axVx )ds

∼
∫ ∞

0

∑
x∈S

〈φ|GR
0 (t , s)|x〉Tx (s)ds

where we have set
Tx (s) := a(eishD hTδx )+ξτs

K (axVx ).

Since GR
0 (t , s)∗ =G A

0 (s, t ), we can write

〈φ|G<(t , t ′)|φ′〉 = ∑
x,x′∈S

∫ ∞

0
ds

∫ ∞

0
ds′〈φ|GR

0 (t , s)|x〉S<
xx′ (s, s′)〈x ′|G A

0 (s′, t ′)|φ′〉

with
S<

xx′ (s, s′) = i
〈
T ∗

x′ (s′)Tx (s)
〉

.

Note that S<(s, s′), as an operator on hS , is real analytic and extends to an entire function of ξ. The first terms
of its Taylor expansion around ξ= 0

S<(s, s′) =
∞∑

n=0
ξnS<(n)(s, s′),

are easily generated by iterating the Duhamel formula

Tx (s) = a(eishD hTδx )+ξτs
H (axVx )+ξ2

∫ s

0
i[τr

H (W ),τs
H (axVx )]dr +O (ξ3).

5 Proof of Proposition 3.7

5.1 Functional setup

In this section we introduce a few function spaces which provide a convenient framework for the study of
various GFs.
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We identify H± = L2(R±,ds)⊗h with subspaces of

H = L2(R,ds)⊗h=H−⊕H+.

The Fourier transform ϕ̂(ω) = ∫
Rϕ(s)e−iωs ds maps H to L2(R,dω)⊗h and H± to H2(C∓)⊗h, the Hardy space

of h-valued analytic functions on the half-plane C∓ = {z ∈C | ∓ Im(z) > 0} with the norm

‖ϕ‖2 =
∫
R±

‖ϕ(s)‖2ds =
∫
R
‖ϕ̂(E ∓ i0)‖2 dE

2π
= sup

η>0

∫
R
‖ϕ̂(E ∓ iη)‖2 dE

2π
.

The Sobolev space H 1 = H 1(R)⊗h (see (3.1)) is a subset of C (R;h), the Banach space of continuous h-valued
functions on R equipped with the sup-norm. In fact elements of H 1 are uniformly (Hölder) continuous

‖ϕ(s)−ϕ(s′)‖ ≤ |s − s′|1/2‖ϕ‖H 1 ,

sup
s∈R

‖ϕ(s)‖ ≤
∫
R
‖ϕ̂(ω)‖dω

2π
≤ 2−1/2‖ϕ‖H 1 .

We denote by H 1
0 the closed subspace of H 1 consisting of functions ϕ :R→ h such that ϕ(0) = 0.

We also introduce H loc = L2
loc(R,ds)⊗h, the Fréchet space of all locally square integrable functions ϕ : R→ h

with the seminorms

‖ϕ‖2
T =

∫ T

−T
‖ϕ(s)‖2ds,

and we set
H loc± = {ϕ ∈H loc | suppϕ⊂R±}.

We consider the subspaces
H 1

loc = {ϕ ∈H loc |χϕ ∈H 1 for all χ ∈C∞
0 (R)},

and
H 1

0,loc = {ϕ ∈H loc |χϕ ∈H 1
0 for all χ ∈C∞

0 (R)},

H 1
0,loc± =H 1

0,loc ∩H loc±.

We shall say that a linear operator M : H loc± →H loc± is non-negative, and write M ≥ 0, whenever

χK MχK ≥ 0,

holds as an operator on H for all compact interval K ⊂ R±, where χK denotes the operator of multiplication
with the characteristic function of K .

5.2 Volterra operators

Let ∆= {(s, s′) ∈R2|0 ≤ s′ ≤ s <∞} and ∆ 3 (s, s′) 7→ B(s, s′) ∈B(h) a continuous function such that

‖B(s, s′)‖ ≤ beγ(s−s′)

for some constants b > 0 and γ ∈R. The Volterra operator with kernel B is the map

(Vϕ)(s) =ϕ(s)−
∫ s

0
B(s, s′)ϕ(s′)ds′,
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on H loc+. We shall denote it by V = I −B . One easily checks that (by estimating the Hilbert-Schmidt norm)

‖(I −V )ϕ‖T ≤ b

2|γ| (e2γT −1−2γT )1/2‖ϕ‖T ,

so that V : H loc+ → H loc+ is continuous. Moreover, the set of Volterra operators on H loc+ form a group. The
inverse of V = I −B is the Volterra operator V −1 = I +R where

R(s, s′) = B(s, s′)+
∞∑

n=2

∫
s′≤s1≤···≤sn−1≤s

B(s, sn−1) · · ·B(s2, s1)B(s1, s′)ds1 · · ·dsn−1,

is such that
‖R(s, s′)‖ ≤ be(γ+b)(s−s′).

In particular RanV =H loc+ and KerV = {0}. Volterra operators on H loc− are defined in a similar way.

5.3 More on the non-interacting advanced/retarded Green’s functions

The operators G±
0 (z) : H →H defined in (3.2) satisfy G±

0 (z)∗ =G∓
0 (z̄) and

G±
0 (z)−G±

0 (z)∗ = (z − z̄)G±
0 (z)∗G±

0 (z)

so that, in particular,
±ImG±

0 (z) =±Im(z)G±
0 (z)∗G±

0 (z) > 0.

In the Fourier representation G±
0 (z) acts as multiplication with (−ω−h− z)−1 which is bounded on H2(C±)⊗h.

It follows that
G±

0 (z)H∓ ⊂H∓.

In fact the causality/anti-causality relations

suppϕ⊂ [T,∞[=⇒ suppG−
0 (z)ϕ⊂ [T,∞[,

suppϕ⊂]−∞,T ] =⇒ suppG+
0 (z)ϕ⊂]−∞,T ],

hold for all T > 0 and justify the name advanced/retarded Green’s function given to the integral kernel of G∓
0 .

Since RanG±
0 (z) =H 1 for z ∈C±, if

〈ψ|G±
0 (z)ϕ〉 = 0,

for all ϕ ∈H∓, then
〈G∓

0 (z̄)ψ|ϕ〉 = 〈ψ|G±
0 (z)ϕ〉 = 0

and it follows that G∓
0 (z̄)ψ ∈ H±∩H 1. Since (Ω− z̄)G∓

0 (z̄)ψ = ψ the locality of Ω implies that ψ ∈ H±. Thus
(G±

0 (z)H∓)⊥ ⊂ H± and hence H∓ = H ⊥
± ⊂ (G±

0 (z)H∓)⊥⊥. This means that G±
0 (z)H∓ is dense in H∓. In fact

one has G±
0 (z)H∓ =H 1

0 ∩H∓.

We also observe that the boundary values G±
0 (E ± i0) are well defined as maps from H loc∓ to H loc∓ with the

estimate
‖G±

0 (E ± i0)ϕ‖T ≤ T ‖ϕ‖T ,

for all T > 0 and ϕ ∈H loc∓. In fact G±
0 (E ± i0) : H loc∓ →H 1

0,loc∓.

As an application of the above results, let us consider the inhomogeneous Schrödinger equation

i∂sϕ(s) = (h + z)ϕ(s)+ψ(s), ϕ(0) = f ∈ h,

for Im z ≤ 0 and ψ ∈H loc+. By Duhamel’s formula, the solution for s ≥ 0 is given by

ϕ(s) = e−is(h+z) f + (G−
0 (z)ψ)(s),

and thus belongs to H loc+.
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5.4 More on the interacting advanced/retarded Green’s functions

Starting from (3.3) we can also associate integral operators on H to the interacting advanced/retarded GFs. We
define G±(z) by

〈ψ|G±(z)ϕ〉 =±i
∫ ∞

−∞
ds

∫
±(s′−s)>0

ds′ei(s′−s)z〈{τs
K (a(ψ(s))),τs′

K (a∗(ϕ(s′)))}〉,

for ±Im z > 0, so that

|〈ψ|G±(z)ϕ〉| ≤ 2
∫ ∞

−∞
ds

∫ ∞

0
dr‖ψ(s)‖‖ϕ(s ± r )‖e−r |Im z|

≤ 2
∫ ∞

0
dr e−r |Im z|

∫ ∞

−∞
ds‖ψ(s)‖‖ϕ(s ± r )‖

≤ 2
∫ ∞

0
dr e−r |Im z|‖ψ‖‖ϕ‖ ≤ 2

|Im z| ‖ψ‖‖ϕ‖,

i.e. ‖G±(z)‖ ≤ 2
|Im(z)| . Clearly, the map z 7→G±(z) ∈B(H ) is analytic in C±. Moreover, for z ∈C+ one has

〈ψ|G+(z)ϕ〉 = i
∫ ∞

−∞
ds

∫ ∞

s
ds′ ei(s′−s)z〈{τs

K (a(ψ(s))),τs′
K (a∗(ϕ(s′)))}〉

= i
∫ ∞

−∞
ds′

∫ s′

−∞
ds ei(s′−s)z〈{τs

K (a(ψ(s))),τs′
K (a∗(ϕ(s′)))}〉

= i
∫ ∞

−∞
ds

∫ s

−∞
ds′ e−i(s′−s)z〈{τs′

K (a(ψ(s′))),τs
K (a∗(ϕ(s)))}〉

=
[
−i

∫ ∞

−∞
ds

∫ s

−∞
ds′ ei(s′−s)z̄〈{τs′

K (a∗(ψ(s′))),τs
K (a(ϕ(s)))}〉

]
= 〈ϕ|G−(z̄)ψ〉 = 〈G−(z̄)ψ|ϕ〉,

hence
G±(z)∗ =G∓(z̄). (5.1)

Finally, it immediately follows from its definition that G±(z) satisfies the same causality/anti-causality relations
than G±

0 (z), and in particular that
G±(z)H∓ ⊂H∓.

5.5 The reducible self-energy

For ϕ ∈H 1, we can write

〈ψ|G±(z)(Ω− z)ϕ〉 =±i
∫ ∞

−∞
ds

∫ ∞

0
dr 〈{τs

K (a(eisz̄ψ(s))),τs±r
K (a∗(ϕ̃(s ± r )))}〉

where ϕ̃(s′) = eis′z ((Ω− z)ϕ)(s′). Let us define b( f ) := iξ[W, a( f )], so that b∗( f ) = iξ[W, a∗( f )] and

i[K , a#( f )] = ∂sτ
s
K (a#( f ))|s=0 = a#(ih f )+b#( f ).

One easily derives the relations

τt
K (a∗(ϕ̃(t ))) = i∂tτ

t
K (a∗(eit zϕ(t )))− iτt

K (b∗(eit zϕ(t ))) (5.2)
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which leads to:

τs±r
K (a∗(ϕ̃(s ± r ))) =±i∂rτ

s±r
K (a∗(ei(s±r )zϕ(s ± r )))− iτs±r

K (b∗(ei(s±r )zϕ(s ± r ))).

Integration by parts with respect to r yields:

〈ψ|G±(z)(Ω− z)ϕ〉 = 〈ψ|ϕ〉±
∫ ∞

−∞
ds

∫ ∞

0
dr 〈{τs

K (a(eisz̄ψ(s))),τs±r
K (b∗(ei(s±r )zϕ(s ± r ))}〉,

which we can rewrite as
G±(z)(Ω− z) = I +F±(z),

where F±(z) extends to a bounded operator on H with

‖F±(z)‖ ≤ 4|ξ|‖W ‖
|Im z| .

Using this together with (5.1), by duality it follows that RanG±(z) ⊂H 1. For ψ ∈H 1, we further have

〈(Ω− z̄)ψ|F±(z)ϕ〉 =±
∫ ∞

−∞
ds

∫
±(s′−s)>0

ds′〈{τs
K (a(ψ̃(s))),τs′

K (b∗(eis′zϕ(s′))}〉,

where
ψ̃(s) = eisz̄ ((Ω− z̄)ψ)(s).

Using the adjoint of (5.2):

τs
K (a(ψ̃(s))) =−i∂sτ

s
K (a(eisz̄ψ(s)))+ iτs

K (b(eiszψ(s)),

interchanging the s and s′ integrals and then integrating by parts with respect to s, yields

〈(Ω− z̄)ψ|F±(z)ϕ〉 = 〈ψ|Σ̃±(z)ϕ〉,

where
Σ̃±(z) = vHF +S±(z),

with
(vHFϕ)(s) = vHF(s)ϕ(s)

the Hartree-Fock energy

(vHF(s) f )(x) =−i〈τs
K ({ax ,b∗( f )})〉, 〈δy |vHF(s)δx〉 = ξ〈τs

K ({ay , [W, a∗
x ]})〉,

and

〈ψ|S±(z)|ϕ〉 =±i
∫ ∞

−∞
ds

∫
±(s′−s)>0

ds′〈{τs
K (b(eisz̄ψ(s))),τs′

K (b∗(eis′zϕ(s′)))}〉.

We note that vHF(s) is a finite rank operator on h with Ran vHF(s) ⊂ hS , and an entire analytic function of s. In
the NESS, it is independent of s. Let us show that it is self-adjoint. We have:

〈y |vHF(s)|x〉 = ξ〈τs
K (ay W a∗

x −ay a∗
x W +W a∗

x ay −a∗
x W ay )〉

and
〈y |vHF(s)|x〉 = ξ〈τs

K (axW a∗
y −W ax a∗

y +a∗
y axW −a∗

y W ax )〉.
Using that {ax , a∗

y } = {a∗
x , ay } = δx y we obtain 〈y |vHF(s)|x〉 = 〈x|vHF(s)|y〉 and we are done.
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The operators S±(z) define functions (s, s′) 7→S±(z|s, s′) ∈ B(hS ) which, up to a factor of θ(±(s′− s)) are also
entire analytic in both variables

〈g |S±(z|s, s′)| f 〉 =±iθ(±(s′− s))ei(s′−s)z〈{τs
K (b(g )),τs′

K (b∗( f ))}〉.
These operators are also finite rank with

RanS±(z|s, s′) ⊂ hS , hR ⊂ KerS±(z|s, s′),

and

〈ψ|S±(z)|ϕ〉 =
∫ ∞

−∞
ds

∫ ∞

−∞
ds′〈ψ(s)|S±(z|s, s′)|ϕ(s′)〉.

The relation
S+(z)∗ =S−(z̄),

can be proved following the same idea as in (5.1). In the NESS, S±(z|s, s′) =S±(z|s − s′).

Summarizing, we have shown that G±(s)(Ω− z) = I +F±(z) and (Ω− z)F±(z) = Σ̃±(z) which can be rewritten as
G±(z) =G±

0 (z)+F±(z)G±
0 (z) and F±(z) =G±

0 (z)Σ̃±(z). The operator Σ̃±(z) is called reducible advanced/retarded
self-energy. Thus, we have proved

Lemma 5.1. For ±Im z > 0 the advanced/retarded interacting Green’s function satisfies the equation

G±(z) =G±
0 (z)+G±

0 (z)Σ̃±(z)G±
0 (z), (5.3)

where Σ̃±(z) is the reducible self-energy, an operator acting on L2(R,ds)⊗hS as

(Σ̃±(z)ϕ)(s) = vHF(s)ϕ(s)+
∫
S±(z|s, s′)ϕ(s′)ds′,

with
〈y |vHF(s)|x〉 = ξ〈τs

K ({ay , [W, a∗
x ]})〉,

and
〈y |S±(z|s, s′)|x〉 =∓iξ2θ(±(s′− s))ei(s′−s)z〈{τs

K ([W, ay ]),τs′
K ([W, a∗

x ])}〉.

We observe that the boundary values of all these advanced/retarded operators G±
0 (E±i0), G±(E±i0) and Σ̃±(E±

i0) are well defined as operators on H loc∓, by the same estimate as for the free Green’s functions. It follows that
relation (5.3) remains valid on H loc∓ for z = E ± i0. In particular

〈x|G A/R (s, s′)|x ′〉 = 〈x|G A/R
0 (s, s′)|x ′〉+ ∑

y,z∈S

∫
du

∫
dv 〈x|G A/R

0 (s,u)|y〉Σ̃±
y z (0± i0|u, v)〈z|G A/R

0 (v, s′)|x ′〉.

Remark 5.2. The self-energy Σ̃±(z) has an important property related to dissipation. As already noticed, the
Hartree-Fock part is self-adjoint, thus, for z = E − iη, η> 0 and ϕ ∈H+, one has

(Σ̃−(z)ϕ)(s) = vHF(s)ϕ(s)+
∫ s

0
S−(z|s, s′)ϕ(s′)ds′,

and hence, with Bs = τs
K (b(eisEϕ(s))) and invoking Lemma A.1,

Im
∫ T

0
〈ϕ(s)|(Σ̃−(z)ϕ)(s)〉ds = Im

∫ T

0
ds

∫ s

0
ds′〈ϕ(s)|S−(z|s, s′)|ϕ(s′)〉

=−Re
∫ T

0
ds

∫ s

0
ds′〈{τs

K (b(eisz̄ϕ(s))),τs′
K (b∗(eis′zϕ(s′)))}〉

=−Re
∫ T

0
ds

∫ s

0
ds′e−η(s−s′)〈{Bs ,B∗

s′ }〉 ≤ 0. (5.4)
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5.6 The irreducible advanced/retarded self-energy

Considering G±
0 and G± as operators on H loc∓, the relation

G±(z) =G±
0 (z)+G±

0 (z)Σ̃±(z)G±
0 (z), (5.5)

can be rewritten as
G±(z) = (

I +G±
0 (z)Σ̃±(z)

)
G±

0 (z),

and since I +G±
0 (z)Σ̃±(z) is a Volterra operator on H loc∓, the last relation leads to

G±
0 (z) = (

I +G±
0 (z)Σ̃±(z)

)−1
G±(z),

which, inserted into (5.5), yields
G±(z) =G±

0 (z)+G±
0 (z)Σ±(z)G±(z), (5.6)

with
Σ±(z) = Σ̃±(z)

(
I +G±

0 (z)Σ̃±(z)
)−1

, (5.7)

a Volterra kernel. The operator Σ±(z) is the irreducible self-energy announced in (3.9). This ends the proof of
Proposition 3.7.

5.7 Some dissipative properties of the irreducible self-energy

Since I −Σ±(z)G±(z) is a Volterra operator, (5.6) implies that G±(z)H∓ is dense in H∓. Multiplying (5.6) on the
left byΩ− z further gives (

Ω−Σ±(z)− z
)

G±(z) = I ,

so that
G±(z) = (Ω−Σ±(z)− z)−1.

Reasoning like in (5.4) we obtain Im(G−(z)) ≤ 0. Using this in the ‘resolvent identity’

G−(z)−G−(z)∗ =G−(z)∗(z − z̄ +Σ−(z)−Σ−(z)∗)G−(z)

one deduces

Im(z +Σ−(z)) ≤ 0 (5.8)

and in particular, in the limit Im z → 0,
Im(Σ−(E − i0)) ≤ 0.

Let us consider the Schrödinger equation

i∂sϕ(s) = (h + z)ϕ(s)+ (Σ−(z)ϕ)(s)

with the initial condition ϕ(0) for Im z ≤ 0. The dissipative property (5.8) ensures that the solution satisfies
‖ϕ(s)‖ ≤ ‖ϕ(0)‖ for s ≥ 0:

1

2
∂s‖ϕ(s)‖2 = Im〈ϕ(s)|i∂sϕ(s)〉 = Im〈ϕ(s)|(z +Σ−(z)ϕ)(s)〉

so
1

2
(‖ϕ(T )‖2 −‖ϕ(0)‖2) = Im

∫ T

0
ds

∫ s

0
ds′〈ϕ(s)|Σ−(z|s, s′)|ϕ(s′)〉+ Im z

∫ T

0
‖ϕ(s)‖2ds ≤ 0.
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It follows that the equation has a contractive propagator ϕ(s) =U (s, s′)ϕ(s′). By Duhamel’s formula, the initial
value problem is equivalent to the integral equation

ϕ(s) = e−is(h+z)ϕ(0)+ (G−
0 (z)Σ−(z)ϕ)(s)

= e−is(h+z)ϕ(0)− i
∫ s

0
dr e−i(s−r )(h+z)

∫ r

0
ds′Σ−(r, s′)ϕ(s′).

Since G−
0 (z)Σ−(z) is a Volterra kernel, this equation is solved by setting

ϕ(s) = ((I −G−
0 (z)Σ−(z))−1ψ)(s),

with
ψ(s) = θ(s)e−is(h+z)ϕ(0) = iG−

0 (z)δ0 ⊗ϕ,

where δ0 ⊗ϕ ∈H −1, δ0 denoting the Dirac mass at s = 0. By (5.7)

I −G−
0 (z)Σ−(z) = I −G−

0 (z)Σ̃−(z)(I +G−
0 (z)Σ̃−(z))−1

= (I +G−
0 (z)Σ̃−(z))−1

ϕ(s) = (I +G−
0 (z)Σ̃−(z))ψ

= i(I +G−
0 (z)Σ̃−(z))G−

0 (z)δ0 ⊗ϕ
= iG−(z)δ0 ⊗ϕ.

Thus we have the following formula for the interacting Green’s function

(G−(z)ϕ)(s) =−i
∫ s

−∞
U (s, s′)ϕ(s′)ds′.

6 Concluding remarks and open problems

We established the first systematic mathematical approach to the non-equilibrium Green’s function formalism
for interacting transport in open systems. Rather than introducing the textbook Keldysh contours and contour-
ordering operators we follow a three-step bottom-up strategy only using real-time GFs (i.e., retarded, advanced
and lesser):

1. We relate the time-dependent current to a fully interacting lesser GF 〈φ j |G<(t , t )|ψ j 〉 associated with a
pair of states from a given lead j and the sample.

2. Using the KMS condition and Duhamel identities we show that 〈φ j |G<(t , t )|ψ j 〉 obeys a Langreth-type
identity which immediately implies the JMW formula.

3. We derive the Keldysh equation for the lesser GF restricted to the sample in terms of a lesser interaction
self-energy for which we provide explicit expressions.

Last but not least we rely on the theory of Volterra operators to rigorously define the irreducible retarded self-
energy via its Dyson equation. This is a mandatory back-up for practical diagrammatic recipes (e.g., Hartree-
Fock, self-consistent Born approximation, GW ). For completeness and comparison we recall here that in the
standard top-down way to the JMW formula one rather takes for granted a Dyson equation for contour-ordered
GFs and then uses the formal Langreth rules to come back to real-time quantities.

Let us also point out some open problems related to the NEGF formalism for interacting systems:
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• Initial correlations. We recall that the Keldysh identity (3.10) requires that the initial state of the sample is the
vacuum. From a physical point of view, this means that there are no initial correlations due to the Coulomb in-
teraction between particles before the coupling to the leads is established. If the initial state can have particles
in the sample before the coupling, the Keldysh equation acquires a more complicated form [HJ, SvL].

• The partition-free setting. This alternative transport scenario has been put forward a long time ago by Cini [Ci]
and goes as follows: i) the initial state describes a coupled but unbiased system where all the chemical poten-
tials µ j are equal, i.e., the initial state 〈·〉β,µ is the thermodinamic limit of the grand canonical Gibbs state
associated with the restriction of K to finitely extended reservoirs; ii) at some instant t0 one adds a potential
bias on the leads and a current is established. Later on, Stefanucci and Almbladh [SA] adapted the Keldysh
formalism for the partition-free scenario. They found in particular that the Keldysh equation for the lesser in-
teraction self-energy is far more complicated. In fact, they argue that in this case the Keldysh equation should
only be used to describe the long-time response of the interacting system. They also derive a generalized JMW
formula (see Eq. (16.7) in [SvL]). Although we [CMP1, CMP2] were able to establish the existence of a NESS
in the fully resonant case for the free-partition setting as well, a ‘contourless’ derivation of a JMW-type formula
and its corresponding Langreth-like identities is still missing.

A A positivity lemma

Lemma A.1. Let [0,T ] 3 s 7→ As ∈ B(h) be a continuous map such that sups∈[0,T ] ‖As‖ <∞. Then for any η ≥ 0
one has

Re
∫ T

0
ds

∫ s

0
ds′e−η(s−s′) A∗

s As′ ≥ 0.

Proof. It suffices to show that for any f ∈ h

Re
∫ T

0
ds

∫ s

0
ds′e−η(s−s′)〈 fs | fs′〉 ≥ 0,

where fs = As f . Extending s 7→ fs by zero on R \ [0,T ] yields a strongly measurable h-valued function which
belongs to L1(R;h). Set

fs,ε =
∫ T

0
e−(s−s′)2/2ε fs′

ds′p
2πε

,

so that fs,ε→ fs in L1(R;h) as ε ↓ 0. It follows from the dominated convergence theorem that

Re
∫ T

0
ds

∫ s

0
ds′e−η(s−s′)〈 fs | fs′〉 = lim

ε↓0
Re

∫ ∞

−∞
ds

∫ s

−∞
ds′e−η(s−s′)〈 fs,ε| fs′,ε〉.

The Fourier transform of fs,ε is given by e−εω
2/2 f̂ω with

f̂ω =
∫ T

0
e−iωs fs ds.

It follows that (ν,ω) 7→ 〈 f̂ν,ε| f̂ω,ε〉 is a Schwartz function and an explicit calculation yields∫ ∞

−∞
ds

∫ s

−∞
ds′e−η(s−s′)〈 fs,ε| fs′,ε〉 =

∫ ∞

−∞
dω

2π

1

η− iω
‖ f̂ω,ε‖2,

so that

Re
∫ ∞

−∞
ds

∫ s

−∞
ds′e−η(s−s′)〈 fs,ε| fs′,ε〉 =

∫ ∞

−∞
dω

2π

η

η2 +ω2 ‖ f̂ω,ε‖2 ≥ 0.
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