
HAL Id: hal-01559696
https://hal.archives-ouvertes.fr/hal-01559696

Submitted on 11 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DYNASCORE: DYNAmic Software COntroller to
increase REsource utilization in mixed-critical systems

Angeliki Kritikakou, Thibaut Marty, Matthieu Roy

To cite this version:
Angeliki Kritikakou, Thibaut Marty, Matthieu Roy. DYNASCORE: DYNAmic Software COntroller
to increase REsource utilization in mixed-critical systems. ACM Transactions on Design Automa-
tion of Electronic Systems, Association for Computing Machinery, 2018, 23 (2), pp.art ID n°13.
�10.1145/3110222�. �hal-01559696�

https://hal.archives-ouvertes.fr/hal-01559696
https://hal.archives-ouvertes.fr

A

DYNASCORE: DYNAmic Software COntroller to increase REsource
utilization in mixed-critical systems

Angeliki Kritikakou, University of Rennes 1-IRISA/INRIA
Thibaut Marty, University of Rennes 1-IRISA/INRIA
Matthieu Roy, LAAS-CNRS, University of Toulouse

In real-time mixed-critical systems, Worst-Case Execution Time analysis (WCET) is required to guarantee
that timing constraints are respected —at least for high criticality tasks. However, the WCET is pessimistic
compared to the real execution time, especially for multicore platforms. As WCET computation considers
the worst-case scenario, it means that whenever a high criticality task accesses a shared resource in multi-
core platforms, it is considered that all cores use the same resource concurrently. This pessimism in WCET
computation leads to a dramatic under utilization of the platform resources, or even failing to meet the
timing constraints. In order to increase resource utilization while guaranteeing real-time guarantees for
high criticality tasks, previous works proposed a run-time control system to monitor and decide when the
interferences from low criticality tasks cannot be further tolerated. However, in the initial approaches, the
points where the controller is executed were statically predefined. In this work, we propose a dynamic run-
time control which adapts its observations to on-line temporal properties, increasing further the dynamism
of the approach, and mitigating the unnecessary overhead implied by existing static approaches. Our dy-
namic adaptive approach allows to control the on-going execution of tasks based on run-time information,
and increases further the gains in terms of resource utilization compared with static approaches.

CCS Concepts: rComputer systems organization → Embedded systems; Real-time systems; Relia-
bility; rNetworks→ Network reliability;

Additional Key Words and Phrases: Dynamic management, Real-time systems, Run-time monitoring, Mul-
ticore systems, Safety, Resources Utilization

ACM Reference Format:
A. Kritikakou, T. Marty, and M. Roy. DYNASCORE: DYNAmic Software COntroller to increase REsource
utilization in mixed-critical systems. ACM Trans. Des. Autom. Electron. Syst. V, N, Article A (January YYYY),
25 pages.
DOI: 0000001.0000001

1. INTRODUCTION
As system requirements increase and power dissipation issues of single-core sys-
tems have become a bottleneck, the chip market has moved towards multicore plat-
forms [Singh et al. 2013]. Such systems provide massive computing power, and thus
they can execute concurrently a higher volume of applications. Applications may have
different properties and requirements, leading to mixed-critical systems [Vestal 2007].
A mixed-critical system runs applications with different levels of criticality. The criti-
cality level depends partially on the consequences on the system when an application
fails to meet its timing constraints. For instance, the Design Assurance Level (DAL)

This work is co-funded by the European Union under the HORIZON 2020 Framework Programme under
grant agreement ICT-688131.

Author’s addresses: A. Kritikakou and Thibaut Marty, University of Rennes 1-IRISA/INRIA, 35000, Rennes,
France; M. Roy, LAAS-CNRS - University of Toulouse, Toulouse, France
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© YYYY ACM. 1084-4309/YYYY/01-ARTA $15.00
DOI: 0000001.0000001

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:2

model [SAE 2010] defines hard real-time applications with high criticality levels A, B
or C and soft real-time applications with low criticality levels D or E.

The applications with high criticality level require strict guarantees on their correct
execution, i.e. correct functionality and providing responses on time. To ensure these
strict guarantees, a safe estimation of the Worst-Case Execution Time (WCET) [Gatti
2013] has to be used. The WCET computation can be achieved through safe measure-
ments or static analysis of the programs [Deverge and Puaut 2007]. The measurements
on real hardware or simulator is always possible, but these methods cannot guarantee
an exact computation of the worst case path [Deverge and Puaut 2007]. Static analysis
relies on hardware models of the processors, which are becoming harder and harder
to create [Heckmann et al. 2003] due to the complexity and the missing information
of the system architecture, mainly for commercial reasons. Pessimism is introduced to
the WCET due to 1) dynamic components with difficult-to-predict behaviour, such as
cache memories and branch predictors, and 2) shared resources, where the concurrent
accesses introduce timing variations, and thus the effects of possible task interferences
have to be upper bounded by assuming full contention at each request. This safe but
pessimistic WCET leads to over-allocating resources to high criticality applications
and in the worst case, to considering the system as unschedulable.

Taking advantage of the difference in the criticality level of the mixed-critical ap-
plications, a possible approach is to develop a run-time controller [Kritikakou et al.
2014a; Kritikakou et al. 2014b] to mitigate this WCET pessimism. In these works, two
types of WCET are considered: 1) WCETiso computed when high criticality tasks run
only, and 2) WCETmax, computed with both high and low criticality tasks. When the
WCETmax for high criticality tasks is computed above the deadline, the system can still
be schedulable for high criticality tasks if their WCETiso is below the deadline. Initially
all tasks are launched. The controller verifies regularly at statically predefined points
if the real occurring interferences lead to a deadline miss by computing the remaining
part of the WCETiso (i.e. Remaining WCET, RWCETiso). If not, the tasks continue their
concurrent execution. Otherwise, the low criticality tasks must stop interfering with
the high criticality tasks and are, thus, suspended. When the high criticality tasks fin-
ish, interferences from the low criticality tasks are re-allowed, and they resume their
execution. In this way, the deadlines of the high criticality tasks are met and the utili-
sation of the system resources is increased, as low criticality tasks are allowed to run
concurrently with high criticality tasks.

However, this static approach is executed at predefined points whose distance is
driven by pessimistic WCET estimated at design-time and computed all tasks are al-
lowed to run. Therefore, unnecessary control overhead is introduced affecting the ex-
ecution time of the high criticality tasks. To address this issue, we propose a dynamic
adaptive control mechanism which decides at run-time when the high criticality tasks
should be monitored. The run-time controller is executed when it is really necessary
reducing the execution time of the high criticality tasks and increasing the resources
utilisation compared to the static approaches of [Kritikakou et al. 2014a; Kritikakou
et al. 2014b]. The proposed dynamic approach further extends the gains of the static
method, as it offers an irregular distribution of the points where the run-time control
is executed, which is adapted during the execution of the system based on the moni-
toring information. More precisely, the contributions of this study on top of the static
state of the art approaches are:
— The extension and the instrumentation of the theoretic results of [Kritikakou et al.

2014a] to implement an adaptive run-time version of our controller that is able to
activate or inhibit observation points during execution.

— A new algorithm to run-time compute RWCETiso —the Remaining Worst Case Ex-
ecution Time—, taking into account active and inactive points.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:3

Shared Memory

CPU

L1

Core
2

CPU

L1

Core
1 ...

CPU

L1

Core
m

(a) Multi-core system

τC1Core
1

Core
3

α)

β)

τ1

τnCore
m

...

t

τ1

τn
t

τC1

τC2Core
2

Core
3

Core
m

...

Core
1

τC2Core
2

ɣ)

t

τn

Core
1

Core
3

Core
m

τ1

τn
...

D
C1

Switch

tτn

Core
3

Core
m

τ1

τn
...

τC1

τC1

δ)Core
1

D
C2

τC2

τC2

Core
2

Core
2

decision

Switch
decision

D
C1

D
C2

(b) Mixed-critical schedules

Fig. 1. Mixed-critical systems implementation

— An adaptive mechanism to run-time compute the next active observation point.
— A implementation of the proposed dynamic version in a real multicore system
— An extended set of experiments and evaluation results of both the static and the

dynamic approaches to show the gains of the proposed approach and to explore
the design space of these two methods. The presented exploration study focuses on
three main parameters: 1) slack in time, given by the high criticality tasks’ dead-
line, 2) configuration granularities, and 3) low and high interferences. The explo-
ration is performed under an application type that under-privileges the dynamic
approach. We left as future work the exploration of different characteristics for the
high criticality and low criticality applications.

The remaining of the paper is organized as follows: Section 2 provides a motivational
example for the gains of the proposed method. Section 3 describes the target domain
and the problem formulation. Section 4 describes the proposed dynamic adaptive con-
trol mechanism. Section 6 presents the implementations and the experimental results.
Section 7 overviews the related work and Section 8 concludes this study.

2. MOTIVATIONAL EXAMPLE
Let us consider n + 2 tasks T = {τC1, τC2, τ1, . . . , τn} where τC1 and τC2 are periodic
tasks of high criticality level (DAL A, B or C), period TC1 and TC2, and deadline DC1

and DC2; (τi)i=1..n are n tasks of low criticality level (DAL D or E). The platform has
m cores and each task is executed on a dedicated core.

Most of the existing approaches use one type of WCET to compute the WCETmax of
τC1 and of τC2, i.e. when all tasks are executed in parallel. Due to the pessimism in the
WCET estimation, the WCETmax of τC1 and of τC2 are estimated above their deadlines.
This is depicted in Fig. 1(b).α, where the gray box shows the WCETmax of τC1 and τC2

and the lined part indicates to which amount the deadlines are not met. The system is
considered as not schedulable as the WCETmax is estimated above the high criticality
tasks deadlines and the hard real-time constraints cannot be guaranteed.

A safe solution is the execution of high criticality tasks (one or more) in isolation,
which means that only high criticality tasks are executed on the platform, eliminating
the congestion from the low criticality tasks. The WCETiso is significantly lower as no
resource sharing and no conflicts occur from the low criticality tasks and the high criti-
cality tasks can respect their deadlines. This is depicted in Fig. 1(b).β, where the white
boxes show the WCETiso of τC1 and τC2, which are below their respective deadlines.
When the high criticality tasks terminate, the low criticality tasks start their execu-
tion. The real-time constraints are met, but the system resources are under-utilized.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:4

As the WCETiso of τC1 and τC2 is lower than their deadlines, the system can be
schedulable at least for the high criticality tasks. The static version of [Kritikakou
et al. 2014a; Kritikakou et al. 2014b] combines the previous two extremes to increase
the resource utilization. In Fig. 1(b).γ, the gray box depicts the real execution time of
the high criticality tasks with the low criticality tasks running in parallel, whereas the
black parts show the execution time of the run-time controller regularly repeated at
predefined points. When the controller decides to suspend the execution of the low crit-
icality tasks (switch decision), the high criticality tasks are executed in isolation, which
is depicted by the white box indicating the RWCETiso in Fig. 1(b).γ. As the RWCETiso
is used, the high criticality tasks are guaranteed to meet their deadlines, whereas the
partial parallel execution of the high criticality with the low criticality tasks increases
the utilization of system resources. However, the monitoring points are statically de-
fined without exploring the real interferences occurring during the execution, intro-
ducing unnecessary overhead which affects the execution time of the high criticality
tasks and the time that the low criticality tasks can be executed in parallel.

In contrast, this work proposes an approach to reduce the unnecessary time spent in
the regular execution of the controller. The dynamic version adapts the run-time con-
trol during the execution by deciding the next monitoring point to be activated based
on actual information on run-time timing information. As depicted in Fig. 1(b).δ, the
number of black marks (which show the execution of the controller) is now reduced and
they are irregularly placed, whereas the low criticality tasks run for longer time in par-
allel with the high criticality tasks (the switching decision is taken later). Section 6.1
quantifies the obtained gains through experimental results.

3. TARGET DOMAIN AND PROBLEM FORMULATION
The platform target domain is a multi/many processor with m cores and r shared re-
sources, whereas the application domain is a mixed-critical system consisting of a set
of high criticality tasks and low criticality tasks. Therefore, the systems consisting only
of high criticality tasks reside outside our application domain. The proposed approach
guarantees the deadlines of the high criticality tasks, whereas improves the core uti-
lization by taking advantage of the existence of low criticality tasks and executes them
in parallel, whenever it is possible.

Our approach makes a distinction between two modes of execution: 1) the execu-
tion of only the high criticality tasks and 2) the execution of all tasks. The run-time
controller switches between these two modes of execution to always achieve timely
execution of high criticality tasks, and maximize resource usage when possible.

The input of our approach is the scheduling and assignment decisions over the m
cores of the mixed-critical system. There are several techniques [Burns and Davis
2016] to perform scheduling and assignment for mixed critical systems. When the
WCETmax is estimated above the deadlines of the high criticality tasks (and thus the
system is unschedulable as is), the scheduling is performed using high criticality tasks
only. Then, the low criticality tasks are scheduled without modifying the scheduling
decisions of the high criticality tasks.

In Fig. 2(a), the system is made of x independent tasks (first line). The tasks are
partitioned into high criticality and low criticality tasks (line 2). The high criticality
tasks (τCi)i=1..p are characterized by: 1) High criticality level of DAL A, B or C, 2)
Hard deadline (DCi)i=1..p, and 3) Period (TCi)i=1..p, which can also be 0 in case of a non
periodic task. The low criticality tasks (τi)i=1..n are characterized by: 1) Low criticality
level of DAL D or E, and 2) Soft deadline (Di)i=1..n or no deadline.

The applied scheduling and assignment (line 3) has as output have p groups of high
criticality tasks and n groups of low criticality tasks maximum. Each group runs on a
dedicated core (last line), with p less than m and p+ n less or equal to m.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:5

Task 1 ...Task 2 Task x

Core 1

Partition

Task 1 ...

High criticality Vs Low criticality tasks

Task 3 Task x-1 Task 2 ...Task 4 Task x

Scheduling and Assignment

Task 1

Task 3

...

Task x-1

Core i Core mCore i+1

Task 2

...
Task 4

Task x

Core 1

Task 1

Task 3

...

Task x-1

Core i Core mCore i+1

Task 2

...
Task 4

Task xt_c1
t_cp

t_1
t_n

Input to proposed approach

(a)

Core 1 Core i+1 Core m

Shared memory

Run-time

Design-time
analyzer

Configured platform

...

For each

High Criticality Task �
ci

Bin.Code

Compiler

For each

Low criticality Task �
i

Bin.Code

Time &
Structure
Info (TSI)

Design-time

Task
instrumentation

Instrumented
source code

... Core i

(b)

Fig. 2. a) Input and b) Overview of the proposed software methodology.

In the remaining text, the term “a high criticality task” refers to the group of high
criticality tasks assigned to a specific core, whenever this is possible. For instance,
the high criticality task running on Core 1 for Fig. 2(a) is the set of Task 1 and Task
3, because the scheduling and assignment step imposes that Task 1 and Task 3 are
assigned to Core 1 and Task 3 starts execution after Task 1.

In this manuscript we focus on independent tasks and unified access memory archi-
tectures. The proposed approach could also be applied to parallel applications which
are modelled as a set of tasks which exchange information through synchronization.
In this latter case, the method to estimate the WCET used by the run-time control
should include both the interferences and the synchronization costs. Extending our
approach to non-uniform memory access (NUMA) architectures requires similar addi-
tional knowledge, i.e., the tools to estimate the partial WCET have to take into account
the mapping of the tasks to the cores, memory mapping in the different available mem-
ory banks, as well as interferences in the grid that interconnects the cores.

4. PROPOSED APPROACH
The proposed methodology is based on two scenarios: the optimistic one, i.e. the maxi-
mum load, where low and high criticality tasks are executed at the same time, and the
safe scenario, i.e. the isolation, where only high criticality tasks are executed. The ap-
proach combines a design-time analysis and a run-time control, as shown in Fig. 2(b).

The design-time analysis provides the information required to guarantee the tim-
ing behaviour of the high criticality tasks. Therefore, the high criticality tasks are
instrumented with the code of the dynamic adaptive controller. No instrumentation is
required for the low criticality tasks. Then, the required Time and Structure Informa-
tion (TSI) is precomputed for the isolation scenario where no interferences occur by the
low criticality tasks. The binary codes and the TSI are loaded onto the corresponding
cores, as described by the scheduling given as input to our approach.

During execution, the all tasks run on the system. The dynamic controller is acti-
vated at a subset of the inserted monitoring points – depending on the real interfer-
ences – in order to manage the execution of the tasks over the platform meeting the

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:6

hard deadlines. It checks the timing behaviour of the high criticality tasks and, thus,
indirectly estimates the interferences that actually occurred. To provide guarantees, it
computes the remaining time required for the high criticality tasks to finish their ex-
ecution in the isolation scenario, where no low-criticality task can interfere. If enough
time still exists, the system continue to accept the interferences from the low criti-
cality tasks, otherwise the core executing the high criticality task sends a request to
a global master to suspend the low criticality tasks. The master keeps control of the
total suspension/resume requests from the cores running high-criticality tasks. As the
run-time control is distributed to each high criticality task, the proposed approach can
scale up to many different cores sharing a single memory. For the master, the worst
case is when all independent high criticality tasks demand for suspension and resume.
Therefore, the master can receive in the worst case 2*i ht requests, where i ht is the
number of independent high criticality tasks running on the platform.

To provide a better understanding of the steps of the design-time analysis and the
run-time control, we use the toy example of Fig. 1(b) to introduce the basic ideas of each
step. Let’s assume that the τC1 is given by the main function of Fig. 3(a), which con-
sists of two sequential basic blocks (B0,B1), one basic block inside a loop (B2) and one
sequential basic block (B3). The bounds of the loop are small only in order to facilitate
the illustration of the principles.

4.1. Design-time analysis
4.1.1. Critical tasks instrumentation. Each high criticality task τC is represented by a set

of Extended Control Flow Graphs (ECFGs) [Kritikakou et al. 2014a], where an ECFG
is a control flow graph with monitoring points.

Definition 4.1 (High criticality task (τCi)i=1..p). A high criticality task (τCi)i=1..p is
a set of functions S = {F0, F1, ..., Fl}, with F0 the main function. Each function is rep-
resented by an ECFG.

Definition 4.2 (ECFG). An extended control flow graph (ECFG) is a control flow
graph extended by adding monitoring points. An monitoring point is a position where
the run-time control is executed, except start which is the initial point before starting
the execution. The ECFG of a function F is a directed graph G = (V,E), consisting of:
(1) A finite set of nodes V composed of 5 disjoint sub-sets V = N∪C∪F∪{IN}∪{OUT},

where:
— N ∈ N represents a binary instruction or a block of binary instructions,
— C ∈ C represents the block of binary instructions of a condition statement,
— Fi ∈ F represents the binary instructions of the function caller of a function Fi

and links the node with the ECFG of the function Fi,
— IN is the input node,
— OUT is the output node.
— every node v ∈ V \{OUT , IN } has one unique input monitoring point before the

execution of the first binary instruction (the monitoring point is represented by
a lower-case symbol);

(2) a finite set of edges E ⊆ V × V representing the control flow between nodes.

In this work, the instrumentation of the high criticality tasks is performed by instan-
tiating theoretical monitoring points of the ECFG of [Kritikakou et al. 2014a] with the
code of the proposed dynamic adaptive control mechanism presented in Section 4.2.

Depending on the compiler optimization flag used, the creation of the ECFGs and the
instrumentation can be applied in different abstraction layers. When no compiler op-
timizations are used, which is usually the case in critical systems due to requirements
of keeping control of the design and passing the certifications, the ECFG and the in-

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:7

main(){
 B0
 B1
 for (i=0;i<9,i++)
 B2
 B3
}

(a)

B
0

B
1

start

i<10

B
3

B
2

b
3

b
2

c

b
1

(b)

B
0

B
1

start

i<10

B
3

B
2

b
3

b
2

c

b
1

Level 0

Level 1

Level 1

Level 2

(c)

b
1

b
2,0

c
0

d
c

d
b2

d
b3

w
c

start b
2,1

c
1

b
2,2

c
2

b
2,3

c
3

b
2,4

c
4

b
2,5

c
5

b
2,6

c
6

b
2,7

c
7

b
2,8

c
8

c
9

b
3

d
b1

d
b2

w
c

d
b2

w
c

d
b2

w
c

d
b2

w
c

d
b2

w
c

d
b2

w
c

d
b2

w
c

d
b2

w
c

(d)

Fig. 3. a) Main function of τC1, b) ECFG, c) Structure information, and d) Timing information of τC1.

strumentation can be performed in the application code. When compiler optimizations
are used, the ECFGs are created using the binary produced by the complier based on
the grammar proposed by our theoretical paper of [Kritikakou et al. 2014a]. Therefore,
compiler optimizations and transformations, e.g. loop unrolling, have been already ap-
plied. The instantiation of the run-time control occurs without modifying the binary
code. Following the grammar rules, the instrumentation of the ECFGs can be achieved
in different granularity levels, exploring the trade-offs in the ECFG complexity, the
TSI information required to be stored and the time intervals between points.

The result of the instrumentation of τC1 of Fig. 3(a) is the ECFG depicted at Fig. 3(b),
where one monitoring point has been introduced to each basic block.

4.1.2. TSI computation. Our approach for the computation of TSI follows the approach
described in [Kritikakou et al. 2014a; Kritikakou et al. 2014b]. The description of the
structure and the time information is given below.

The structure information of the ECFG is required to distinguish between different
visits of the same point during run-time execution. For instance, when during execu-
tion the point d of Fig. 3(b), which is the condition of the loop, is visited several times
due to the loop structure. The structure information is the level(x), the head(x) point
and the type(x) of an monitoring point x:
— The level(x) is: 1) 0, if x is the start point, 2) 1, if x is a sequential point between the

IN and the OUT of an ECFG, 3) increased by 1 for each loop, if x is inside a loop.
— The head points show i) when a function has been called and ii) where a loop exists

in each ECFG. The head(x) points are: 1) the start point, if x is a point of level 1
of the main function F0, 2) the function caller, if x is a point of level 1 of the called
function, 3) the condition of the loop, if x is inside a loop.

— The type(x) is : 1) F ENTRY , if x is a function entry, 2) F EXIT , if x is a function
exit, i.e. the node where a function return to, 3) F ENEX, if x is both a function en-
try and a function exit, i.e. the point x where the function returns is also a function
caller, 4) −, otherwise.

In the Fig. 3(c), we depict the structure information for τC1, where the start point
has level 0, the points b1, c and b3 have level 1 and the point b2 has level 2 as it belongs
inside the loop. The head point of b1, c and b3 monitoring points is start, whereas the
head point of b2 is the condition of the loop, i.e. the monitoring point c. As in this toy
example no function call exists, the type is -.

The time information consists of pre-computing partial RWCETiso between monitor-
ing points using the RWCETiso of a point x.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:8

Definition 4.3 (RWCETiso(x) or RWCETiso(x,j)). RWCETiso(x) of a point x, or
RWCETiso(x,j) when point x is inside a loop at the iteration j, is the WCETiso from
the point x up to the end of the task.

The computation of WCET can be performed by using any of the available WCET tech-
niques (a survey is available in [Wilhelm et al. 2008]). Depending on which approach
is used, it may be necessary to recompute the WCET values in case of modifications in
the set of high criticality tasks. A static analysis based WCET estimation is agnostic
to changes in co-executed high criticality tasks. On the contrary, measurement-based
WCET estimations need re-evaluation. As soon as the set of high criticality tasks is
extended by a new high criticality task, the WCET values have to be recomputed.

We compute three types of partial RWCET between points.

Definition 4.4 (dhead(x)−x). dhead(x)−x is the partial RWCETiso between a monitoring
point x and its head point head(x).

dhead(x)−x = RWCETiso(head(x))−RWCETiso(x)

Definition 4.5. whead(x) is the partial RWCETiso between any two consecutive itera-
tions j and j + 1 of the head(x), when head(x) is the condition of a loop.

wc = RWCETiso(c, j)−RWCETiso(c, j + 1),∀j ≤ n

To guarantee that the high criticality tasks deadlines are always met, we must en-
sure that for each high criticality task, enough time is available to decide the suspen-
sion of the low criticality tasks at the next monitoring point. Hence, we compute the
partial worst case execution time between any two consecutive points x, x′ when both
high criticality and low criticality tasks are concurrently executed. In this work, we
have decided to keep only one value for this partial WCET, Wmax, that is the maximum
value for each pair of consecutive points in a high criticality task, in order to store less
information. There is a tradeoff between the potential pessimism introduced in this
value (due to the asymmetry of the positions of observation points) and the amount of
information required to be stored for each point, which is left for future exploration.

Wmax = maxx,x′(RWCETmax(x)−RWCETmax(x
′))

Fig. 3(d) illustrates the time information derived during the analysis. This infor-
mation includes the partial RWCETiso from the initial point start up to each point,
depicted in Fig. 3(d) by db1 , dc, db3 , and from point c to point b2 by db2 . For the loop, the
partial RWCETiso is computed between any two consecutive iterations, depicted by wc.

4.2. Run-time control
The system starts running both high and low criticality tasks. Each core with a high
criticality task has been instrumented at design-time with the code of the dynamic
adaptive controller. Therefore, the controller of a high criticality task is executed lo-
cally and independently from the controller of the rest high criticality tasks. A master
entity is running on a core running a low criticality task and it is responsible for stop-
ping the interferences of the low criticality tasks with the high criticality tasks. In this
work, stopping the interferences generated by low criticality tasks is implemented by
pausing the execution of low criticality tasks. More involved strategies, like degraded
execution of low criticality tasks or working with local data, are left for future work.

4.2.1. Dynamic adaptive local control mechanism. As stated in Section 4.1, the theoretical
monitoring points are instantiated by the dynamic adaptive control mechanism. In
contrast to static approaches, the proposed control is executed at each core at different

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:9

b
1

b
2,0

c
0

R[0]=WCET
iso

start b
2,1

c
1

b
2,2

c
2

b
2,3

c
3

b
2,4

c
4

b
2,5

c
5

b
2,6

c
6

b
2,7

c
7

b
2,8

c
8

c
9

b
3

R[1]=R[0]d
c

R[1]=R[0](5*w
c
)d

c

R[2]=R[1]d
b2

Fig. 4. Run-time execution of τC1

points which are a priori unknown and decided during the execution of the tasks.
Therefore, not all the instrumented monitoring points are used at runtime.

Definition 4.6 (Active point). A point x is called an active point when:
— the execution changes from an ECFG to another, i.e. the type of the point x is

F ENTRY , or F ENEX
— the point x is placed after a number of monitoring points without enabling the con-

troller, which is given by the variable points.

The dynamic adaptive control mechanism is a piece of software as depicted in Algo-
rithm 1, which is executed when we have not decided to eliminate the interferences
of the low criticality tasks, i.e. the condition CRT is valid. The control takes as input
the precomputed data at design-time, i.e. the instrumented points and their TSI in-
formation. At each execution of the control mechanism, it takes as input the occurred
point x, the variable points and the values of the current iterators, in case the point x
is inside a loop. Two variables are set to 0 before the system execution, i.e. the counter
and the offset . The counter for the inactive points is increased by one each time we
pass an instrumented point in the ECFG of the high criticality task. In Fig. 4, we see
the run-time execution of τC1 of Fig. 3 used to illustrate the design-time steps. Each
time an instrumented monitoring point is passed (from monitoring point b1 up to mon-
itoring point b3), the counter is increased. The control mechanism keeps track of the
consecutive ECFG traversal by the high criticality task using the variable offset. Each
time a function call occurs at a monitoring point, the offset is increased by the level of

ALGORITHM 1: Dynamic adaptive control mechanism.
Pre-computed data: intrum.points, TSI
Initialisation before system execution: counter=0, offset=0
Input: x, points, iterator
Output: Request to suspend or not the low criticality tasks
/* High AND Low criticality tasks are running */
if (CRT) then

counter ++;
/* Returning from a function call */
if (type[x] ==F EXIT||F ENEX) then offset = offset - level[x] ; /* condition 1 */
/* Active point */
if (counter==points)||(type[x] ==F ENTRY||F ENEX) then /* condition 2 */

RWCETiso(x)=Dynamic computation RWCET(x, iterator , offset);
ET(x) = Monitoring time();
points = Next active point(RWCETiso(x), ET(x));
if (points ≤ 0) then Request suspension();
counter = 0;

end
/* Function call */
if (type[x] ==F ENTRY || F ENEX) then offset = offset + level[x] ; /* condition 4 */

end

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:10

the point x. In the case that a return from a function call occurs, the offset is decreased
by the level of the point. After the update of the variable offset , the control mechanism
checks if the point is an active one, using the variable counter to identify when the
number of inactive points has passed (given by the variable points), or if the point is a
function entry point. For instance, if the variable points is initially calculated (before
execution at point start) equal to 2, then the first active point is point c0 in Fig. 4. If
the point x is active, it: 1) computes the RWCETiso at point x, 2) monitors the real exe-
cution time ET(x), 3) computes the next active point, and 4) when no more points can
be skipped, it sends a request to the master for suspending the execution of the low
criticality tasks. Then, the counter is initialized to zero. The next paragraphs describe
in details the functions of the proposed run-time control mechanism.

Dynamic computation of RWCETiso(x): When a point x is activated, the control
mechanism calculates dynamically the RWCETiso at the point x. In contrast to static
approaches, the control mechanism is not aware a priori at which point it will be ac-
tivated, as it depends on actual runtime properties. The corresponding algorithm is
depicted in Algorithm 2. The algorithm uses precomputed data at design-time, i.e. the
instrumented points and their TSI information, and takes as input the occurred point
x, the values of the current iterators iterator and the variable offset . Two variables are
initialized before the system execution: the last head of level(1) to the initial point start,
and R[0], the RWCETiso at the level 0, i.e., the WCET of the critical task in isolation.
This is depicted at the top of Fig. 4, where the remaining time before execution equals
to the WCETiso. The algorithm uses the actual local level of the point x, ll, to com-
pute the RWCETiso at that level, R[ll] —this value is equal to RWCETiso(x). As stated
earlier, the offset is updated when the execution changes from one ECFG to another.
The level provides the nested position in the current ECFG. Therefore, the local level
ll derives from the addition of the offset and the level of the point x.

The run-time calculation of R[ll] of point x is performed in a recursive way using
each time the R[ll − 1]. For instance, in Fig. 4, the first active point is c0. It has a
level equal to 1 and as it belongs to the main function, therefore the offset is 0 and
the ll = 1 + 0 = 1. The RWCETiso for point c0 is given by R[1], which is computed by
R[1] = R[0]− (0 ∗ wc)− dc = R[0]− dc . Then, the second active point is c5, i.e. the sixth
execution of the condition, it has the same local level ll and the R[1] is now computed
by R[1] = R[0]− (5 ∗ wc)− dc . Due to recursive computation, in case that at least one
inactive point has passed (condition 3 is true) in the current ECFG, two problems may
occur: 1) the R[i] for each inactive point i has not been updated (as the point was
inactive), and 2) the head of the point i is unknown. This occurs only for the points in
the current ECFG, because the offset is always up-to-date (a function entry is always
an active point, and thus its R[offset] is always up-to-date). To illustrate this point,
imagine that third active point is b2,7 in Fig. 4 with a level of 2 and, thus, a ll equal to
2. To compute the RWCETiso at this point, we require the value of R[1]. However, as
the point c7 was not active (red point in Fig. 4), the value R[1] is not updated.

To address these issues, we find the head points of the levels ll up to the level equal
to the offset . For the third active point b2,7 of Fig. 4 means that the last head of local
level 1 is point c. Then, the R[i] for these head points is updated using the information
of the loop iterators iterator [y], d [y] and w [y] of each head point y. To compute R[i] for a
head point y with local level i, we subtract from the remaining time of the head point of
the previous local level i − 1 (R[i − 1]) the time passed up to now. This time derives by
multiplying the w [y] of the head point with local level i with the value of the loop iter-
ator iterator [y] and the d[y] of the head point with local level i. In Fig. 4, the RWCETiso
of the head point c of the active point b2,7 R[1] is given by R[1] = R[0]− (7 ∗ wc)− dc

After the update of the previous local levels (or if no inactive point has passed
since the last execution), the R[ll] of the active point x can be computed in a simi-

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:11

ALGORITHM 2: Dynamic computation RWCETiso(x)

Pre-computed data: intrum.points, TSI
Initialisation before system execution: last head[1]=start, R[0]=WCETiso
Input: x, iterator , offset
Output: R[ll]
ll = offset + level[x]
/* More than 1 inactive point */
if (points > 1) then /* condition 3 */

/* Find the head points for the levels from offset to ll− 1 */
last head[ll − 1] = h[x];
for (i=ll-1;i> offset;i–) do last head[i − 1] = h[last head[i]];
/* Update RWCETiso of levels from offset to ll− 1 */
for (i= offset + 1;i<ll;i++) do R[i] = R[i − 1] - (iterator [last head[i]]) * w [last head[i]] - d[last head[i]];

end
/* Calculate RWCETiso of the point x with level ll */
R[ll] = R[ll − 1] - (iterator [x]) * w [x]) - d[x];

lar way. For instance, the third active point b2, 7 of Fig. 4 has a RWCETiso equal to
R[2] = R[1]− db2 , which is correctly computed as the R[1] has been updated.

Monitoring time: To monitor the current execution time, we developed a set of low
level functions that access the timing control registers of the target platform which
provide access to the clock of the core. More information about the low level function
for our multicore target platform are described in detail in Section 6.1.

Next active observation point: As proven in [Kritikakou et al. 2014a] for the static
approach, the low criticality tasks are suspended when the safety condition given by
Equation (1) does not hold.

ET(x) + RWCETiso(x) + Wmax + tSW ≤ DC (1)

where RWCETiso(x) is the remaining WCET from the point x until the end of the
execution of τC when only high criticality tasks are executed on the platform, Wmax
is the maximum partial RWCET observed between two sequential points when all
tasks are executed on the platform, tSW is the overhead of the suspension of the low
criticality tasks and ET(x) is the monitored current execution time of tC at point x.

To extend Equation (1) to support our dynamic approach, the variable Wmax has to
be multiplied by the variable points, which is the number of inactive points up to the
next activation of the run-time control mechanism:

ET(x) + RWCETiso(x) + (points ∗Wmax) + tSW ≤ DC (2)

THEOREM 4.7. If WCETiso ≤ DC for a high criticality tasks τC , then for any execu-
tion with the proposed adaptive control mechanism, τC always respects its deadline.

PROOF. If only high criticality tasks are executed on the platform, by definition
WCETiso ≤ DC . Let us assume that τC starts its execution with low criticality tasks
until point pi+1. For two consecutive points pi and pi+1, we have:

ET(pi+1)− ET(pi) ≤ points ∗Wmax (3)
0 ≤ RWCETiso(pi)−RWCETiso(pi+1) (4)

Since the execution continues for all the tasks until pi+1, it means that pi fulfilled the
safety condition of Equation (1):

ET(pi) + tSW + (points ∗Wmax) + RWCETiso(pi) ≤ DC

The remaining execution from pi+1 is safe if τC is executed only with high criticality
tasks deadline, therefore we have to show that:

ET(pi+1) + tSW + RWCETiso(pi+1) ≤ DC

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:12

ALGORITHM 3: Demonstration case study: gemm
define PB N 100
int A[PB N][PB N];
int B[PB N][PB N];
int C[PB N][PB N];
int alpha=32412;
int beta=2123;
begin int main()

gemm();
return EXIT SUC;

end

begin int gemm()
int i, j, k;
for (i = 0; i < PB N; i++) do

for (j = 0; j < PB N; j++) do
C[i][j] *= beta;
for (k = 0; k < PB N; k++) do C[i][j] += alpha * A[i][k] * B[k][j];

end
end
return EXIT SUCCESS;

end

Thanks to (3), ET(pi+1) + tSW + RWCETiso(pi+1) ≤ ET(pi) + points ∗ Wmax + tSW +
RWCETiso(pi+1). Because the safety condition (1) holds in pi, we obtain: ET(pi+1) +
tSW + RWCETiso(pi+1) ≤ DC + RWCETiso(pi+1) − RWCETiso(pi) Thanks to (4),
RWCETiso(pi+1) − RWCETiso(pi) ≤ 0, hence we conclude that ET(pi+1) + tSW +
RWCETiso(pi+1) ≤ DC, i.e. the high criticality task terminates in time.

Using Equation (2), we can compute at run-time the number of points that can be
safely omitted until the run-time control has to be re-executed: points, the current
number of consecutive inactive points, is defined by Equation (5):

points =
DC − (ET(x) + RWCETiso(x) + tSW)

Wmax
(5)

When points ≤ 0, the low criticality tasks must be suspended in the current active
point, as no time remains for suspension in the next active point.

Request suspension of low criticality tasks: The implementation of suspension and
resuming of the low criticality tasks is based on a set of interrupts and events to com-
municate between the cores. When a request for a suspension occurs, the core that runs
the high criticality task and requires the suspension sends an interrupt to the core that
runs the master entity. Similarly, to resume the execution of the low criticality tasks,
the core notifies the master by sending another interrupt. The implementation on the
target platform is described in detail in Section 6.1.

4.2.2. Global master control. The master collects the requests of the cores with high
criticality tasks through interrupts. When an interrupt-request suspension is received
by the master, the execution of the low criticality task is interrupted and the corre-
sponding Interrupt Handling Routine (IHR) is executed. The IHR keeps track of active
requests. Upon the first request, the IHR of the master sends an interrupt at each
core with low criticality tasks and their IHR prohibits the execution of low critical-
ity tasks, through an active polling mechanism. During isolation, the master updates
the number of active requests. When a high criticality task has terminated, it sends a
second interrupt-notification and the master reduces the active requests by 1. When
all high criticality tasks have finished their execution, and no active requests exist,
the low criticality tasks can resume their execution. This is enabled through a second
interrupt to the cores with the low criticality tasks that terminates the active polling.

5. CASE STUDY
We use as a case study the gemm from Polybench benchmark suite [Pouchet et al.
2013], which is depicted in Algorithm 3. The ECFGs corresponding to the main func-
tion F0 and the gemm function F1 are depicted Fig. 5. Different colours are used to
distinguish the nested loops: the first loop is depicted with light gray, the second with
gray, the third with black, whereas the white corresponds to no loop. An observation
point is associated to each block. By analysing the ECFGs we pre-compute the data

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:13

level 1
IN0

N0,1

F1

N0,2

OUT0

(a)

1 2 3 4
IN1

N1,1

C1

N1,7

N1,2

C2

N1,6

N1,3

C3

N1,5

N1,4

OUT1

dc1−n1,2 dc2−n1,3
dc3−n1,4

w1

w2 w3

(b)

Obs. point x type (x) level (x) w(x) d(x)
n0,1 - 1 0 0
f1 F ENTRY 1 0 dstart−f1
n0,2 F EXIT 1 0 dstart−n0,2

n1,1 - 1 0 df1−n1,1

c1 - 1 w1 df1−c1
n1,2 - 2 0 dc1−n1,2

c2 - 2 w2 dc1−c2
n1,3 - 3 0 dc2−n1,3

c3 - 2 w3 dc2−c3
n1,4 - 2 0 dc3−n1,4

n1,5 - 3 0 dc2−n1,5

n1,6 - 4 0 dc1−n1,6

n1,7 - 3 0 df1−n1,7

(c)

Fig. 5. ECFGs of the a) main function F0 and b) gemm function F1 and c) the TSI information.

Table I. RWCETiso run-time computation of level ll.

Active Point (i,j,k) Offset RWCETiso(x) Update
start - 0 R[0] = RWCETiso -
n0,1 - 0 R[1] = R[0]− 0 -
f1 - 0 - offset

. . .
c3 (0,0,16) 1 R[4] = R[3]− 16 ∗ w3 − dc2−c3 R[1],R[2],R[3]

. . .
c2 (0,8,-) 1 R[3] = R[2]− 8 ∗ w2 − dc1−c2 R[1],R[2]

. . .
n1,7 (-,-,-) 1 - offset

level, w, d, type, which are depicted in Fig. 5(c). Table I shows the behaviour of the
dynamic approach in the run-time computation of the RWCETiso(x) for the following
instrumented points (where (ci, j) corresponds to the loop i at the iteration j): n0 ,1 , f1 ,
n1 ,1 , (c1 , 0), n1 ,2 , (c2 , 0), n1 ,3 , (c3 , 0), n1 ,4 , . . . , (c3 , 16), n1 ,4 , . . . , (c3 , 31), n1 ,5 , (c2 , 8),
. . . , n1 ,6 , (c1 , 20), . . . , n1 ,7 , n0 ,2 . The static approach behaviour for the same sequence
(all instrumented points are activated) can be found in [Kritikakou et al. 2014a].

6. EVALUATION RESULTS
6.1. Implementation
We are targeting a real multi-core COTS platform, i.e. the TMS320C6678 chip (TMS
in short) of Texas Instrument [Texas Instruments 2013]. The platform is composed of 8
TMS320C66x DSP processors clocked at 1 GHz, which can issue up to 8 instructions in
one clock cycle. Each core contains 32 KB level 1 program memory (L1P), 32 KB data
memory (L1D), and 512 KB level 2 memory (L2) that may contain instructions and
data, which can be configured as cache, SRAM or a hybrid. The level 3 memory (L3)
of 4 MB on-chip SRAM and the external DDR3 of 512 MB memory is shared among
the cores. The cores and the hardware modules are connected via the TeraNet on-chip
network. During the experiments, the compiler optimization flag is set to -O0, i.e. no
optimizations, in order to have a one-to-one translation of the C code to binary code.

We appropriately configured the TMS platform and implemented the low-level func-
tions to support two main mechanisms used by our software controller to handle the
execution of the tasks: the time monitoring of the on-going execution and the suspen-
sion/resuming of the low criticality tasks. We reuse the bare-metal library of [Durrieu
et al. 2014] that provides a set of timing functions to read the current clock by access-

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:14

ing the control registers TCSL and TCSH of the local core clock, which runs at the
core’s frequency. As the system should start the execution when all tasks have been
loaded to the cores, this library also provides a synchronization scheme to ensure that
cores start at the same time. When an active observation point occurs, the run-time
control uses the functions to read the real execution time of the system. The suspen-
sion and the resume of the low criticality tasks is implemented using the event and
interrupt mechanisms of the TMS. The bare-metal library is extended with a set of
functions that (1) configure the events and the interrupts of the TMS, (2) allow the use
of the events by providing software setting, clearing and monitoring mechanisms for
the events, (3) keep suspended or resume the low criticality tasks.

6.2. Experimental setup
We consider in our case study the gemm as the high criticality tasks executed on core 1
and core 2. The gemm benchmark has been selected due to the regularity and the
symmetry of each structure, which favours the static approach and under-privileges
the dynamic approach. In this way, the experimental results provide a lower bound on
the gains of the dynamic approach. A set of loop and data dominated low criticality
tasks executed on the remaining cores, which consist of infinitive loops that perform
read and write accesses to the memory. The aim of the low criticality tasks in the
experimental section is to insert interferences to the high criticality tasks and their
number is modified during the experiments in order to tune the number of possible
interferences. We present the experimental results for: i) one low criticality task τ1,
in parallel with the high criticality tasks, which is the hardest case as it provides the
smallest slack between the RWCETiso and RWCETmax (Section 6.4.1) and ii) six low
criticality tasks τ1, . . . , τ6 in parallel with the high criticality tasks, which provides the
highest number of interferences (Section 6.4.2).

The memory configuration for all the cores is the following:
— the L1P, L1D, and L2 are configured as SRAMs for better predictability
— the stack, data and code sections (.stack, .data, .text . . .) are allocated in the L2

SRAM. The input / output of the code are allocated in the DDR. This means that the
arrays A, B, and C of gemm are placed in the DDR. In this configuration, conflicts
occur in the shared resources among the tasks executed over the platform.

For this system, we tune several parameters to explore the behaviour of our approach:
(1) the deadline of the high criticality tasks DC , i.e. from tight deadlines close to the

WCET of the high criticality tasks in isolation up to more relaxed deadlines,
(2) the number of cores that run low criticality tasks, i.e. from 1 core up to 6 cores,
(3) the granularity of run-time control:

— coarse-grained, monitoring points at the head points of nested level 1 (HP1),
— medium-grained, points at the head points of nested levels 1 and 2 (HP2),
— fine-grained, points at the head points of all nested levels (HP3).

6.3. Design-time analysis
The data required to be pre-computed for the high criticality tasks are the RWCETiso,
the d(x) and the w(x), and the Wmax between any two sequential observation points.

For the calculation of the WCET, no existing static WCET analysis tool models our
platform. Hence, we calculated the RWCETiso, the partial RWCET for the w and the
d based on safe measurements on the real platform using the local timer of the cores
that run high criticality tasks. To increase the reliability of the measurements, we have
repeated our experiments a high number of times and we have maintained the max-
imum observed value for RWCETiso and the minimum observed value for the partial
RWCET for the w and the d. The minimum provides guarantees, as it is the value that
is subtracted from the RWCETiso at run-time. If the maximum value would be used,

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:15

Table II. Monitoring time overhead (in cycles)

Read timer Light control Full control Suspend/Restart
Max.time (Cycles) 70 150 1551 200

the high criticality task will be considered to finish earlier. In addition, we increase
the maximum observed value and decrease the minimum observed value by 10%. We
should stress that during the experiments we observed a low variation of the different
samples. For instance, for the isolated execution of the high criticality tasks, we ob-
serve a variation of: 1) 0.16% for the execution time of the high criticality task and 2)
3.5% for the Wmax for the HP1 points, 3.8% for the HP2 and 0.26% for the HP3.

To compute RWCETiso for each high criticality task, we run only the high criticality
tasks on the platform. We read the local clock of the core just before the execution
of the task and we subtract this value from the time obtained from the local clock at
the end of the task execution. To compute d(x) and w(x) for each granularity of our
dynamic controller for a point x, we read the local clock of the core at each point. To
reduce the overhead introduced by our run-time measurements, we perform the timing
measurements for one point at a time. For the d(x) computation, we use the minimum
time observed between the head point and the point x. For the computation of the w(x),
we use the minimum time observed between any two consecutive loop iterations.

We apply the same technique to compute Wmax, with the high criticality tasks exe-
cuted in parallel with low criticality tasks. For each different number of low criticality
tasks and for granularity of our run-time control, we have computed the corresponding
Wmax using the local clock of the cores that run the high criticality tasks.

6.4. Run-time control
Table II depicts the maximum time overhead of our run-time control for reading the lo-
cal timer, updating the offset (light control), computing the RWCETiso(x) and verifying
that the low criticality tasks can continue their execution (full control) and performing
the suspension/resume of the low criticality tasks.

We consider the notion of relative gain of our methodology compared with the ex-
isting static approach of [Kritikakou et al. 2014a; Kritikakou et al. 2014b]. Our com-
parison with the static approach includes also the comparison of the dynamic version
with the execution of only the high criticality tasks, as the experiments of [Kritikakou
et al. 2014a; Kritikakou et al. 2014b] have shown significant gain of the static approach
with respect to the isolated execution. The relative gain make sense for the deadlines
where the interferences of the low criticality tasks cannot be accepted, i.e. switching
occurs and the low criticality tasks are suspended. When no switching occurs, both
approaches have enough slack to accept the interferences of the low criticality tasks.

Definition 6.1 (Relative gain). Let tdyn denote the execution time of the low critical-
ity task with the dynamic approach methodology and tsta the execution time of the low
criticality task using the static approach. The relative gain of the methodology is:

(tdyn − tsta)/tsta
The execution time of the low criticality tasks for both static and dynamic approaches
includes the time up to the switching decision, where all tasks are executed, and the
time after the termination of the high criticality task, where the low criticality tasks
are resumed until the deadline. We also provide the execution time of the high critical-
ity tasks to compare between the two methods. This execution time is not only affected
by the overhead of the controller, but also from the interferences allowed to occur at
run-time by the low criticality tasks. However, the execution time of the high critical-
ity tasks provides a metric for the gains of the proposed approach in larger deadlines,

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:16

Table III. Execution time and switching time with one low criticality task in parallel (ms).

Deadlines
HP1 HP2 HP3

Static Dynamic Static Dynamic Static Dynamic
tτC1

SW tτC1
SW tτC1

SW tτC1
SW tτC1

SW tτC1
SW

625 624.69 0.0003336 624.30 0.000465 624.73 79.32 624.25 81.90 624.11 10.71 622.69 15.51
630 629.39 107.31 628.33 126.92 629.79 163.28 626.64 185.31 629.69 22.88 628.16 33.50
635 634.73 259.31 633.83 259.71 632.81 243.93 631.59 283.00 634.35 35.37 633.67 51.79
640 639.56 367.81 639.52 369.84 639.26 365.58 639.98 445.54 639.67 47.62 638.62 70.05
650 649.79 613.51 642.19 633.15 649.58 533.01 645.62 567.34 649.19 72.50 649.13 104.19
700 655.18 - 653.84 - 659.50 - 657.87 - 693.13 198.14 698.37 275.11
800 655.17 - 653.04 - 659.49 - 657.98 - 798.27 450.59 798.17 603.79
900 655.03 - 653.01 - 659.54 - 657.93 - 894.03 702.71 897.14 -

1,000 655.12 - 652.10 - 659.52 - 657.70 - 998.63 995.57 897.65 -
1,100 655.17 - 653.12 - 659.30 - 657.98 - 1,041.63 - 897.54 -

where both static and dynamic approaches allow the low criticality tasks to always be
executed in parallel with the high criticality tasks.

6.4.1. Smallest slack: 1 low criticality task. Table III shows the execution time of τC1 and
the time when the switch occurs (SW) for several deadlines and granularities for both
the static and the dynamic approaches. The results highlight the effect of the dynamic
approach. The switching to the isolated execution of only the high criticality tasks
occurs latter as less overhead is introduced by our controller. The more time we spend
in the parallel execution of high and low criticality tasks, the longer is the execution
time of τ1, and thus the gain. In addition, τC1 finishes earlier in the dynamic approach,
because by removing the overhead of the controller more time is left for the execution
of the high criticality task. We also observe that the proposed controller is capable of
deciding in a smaller deadline than the static controller that the low criticality tasks
can always be executed in parallel with the high criticality tasks, increasing the gain
as the low criticality tasks are not suspended compared with the static approach.

Fig. 6 presents the behaviour of the relative gain of our dynamic approach com-
pared with the static approach for the different configurations of our controller and

0	
0.2	
0.4	
0.6	
0.8	

1	
1.2	
1.4	
1.6	
1.8	

2	

62
5	

62
7	

62
9	

63
1	

63
3	

63
5	

65
0	

67
0	

Cri$cal	Deadline	(ms)	

HP1	

0	
0.05	
0.1	

0.15	
0.2	

0.25	
0.3	

0.35	

62
5	

62
7	

62
9	

63
1	

63
3	

63
5	

65
0	

67
0	

Cri$cal	Deadline	(ms)	

HP2	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

62
5	

62
8	

63
1	

63
4	

65
0	

68
0	

71
0	

74
0	

77
0	

80
0	

83
0	

86
0	

89
0	

92
0	

95
0	

98
0	

11
00

	

Cri$cal	Deadline	(ms)	

HP3	

Fig. 6. Relative gain for HP1, HP2, and HP3 configurations

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:17

Table IV. Number of active points.

Deadlines
HP1 HP2 HP3

Static Dynamic Static Dynamic Static Dynamic
625 1 1 2,235 95 21,417 56
630 22 26 4,309 108 45,727 63
635 56 41 6,034 109 70,698 67
640 73 46 9,103 138 95,277 70
650 121 59 13,495 130 145,332 69
700 128 11 16,512 12 399,376 73
800 128 4 16,512 5 911,971 78
900 128 3 16,512 3 1,423,362 23

1000 128 2 16,512 2 1,937,353 10
1100 128 2 16,512 2 2,113,664 7

the different deadlines. From the experiments, we observe that our approach achieves
significant relative gains on top of the static approach:
— For the configurations of HP1 and HP2, the improvements of the proposed dynamic

approach appear at deadlines which are close to the execution time in isolation.
From the Fig. 6(a) and Fig. 6(b), the gain is observed for deadlines from 625 ms
up to 650 ms, since after the deadline 650 ms both the dynamic and the static
approaches decide that there is no need to suspend the low criticality tasks. For the
HP1 configuration we observe a maximum gain of 184.69%, which is the highest
gain observed in the three configurations. This occurs for the deadline of 626 ms,
with switching times SW equal to 10.03 ms for the static case and 30.65 ms for the
dynamic. This occurs because the configuration of HP1 has a large Wmax between
two concurrent observation points, and thus the gain is significantly larger when
the dynamic approach passes over observation points. For the configuration of HP2,
the highest observed gain is 32% for the deadline of 633 ms.

— For the configuration of HP3 the gains of the dynamic approach are also presented
in relaxed deadlines, because the dynamic approach is able to decide in earlier
deadlines the parallel execution of the high criticality tasks and the low criticality
tasks. Therefore, we observe the aims of our approach up to the deadline 1,000 ms.
The highest gain occurs at 627 ms and it is 58.21%.

Table IV shows the number of times the controller has been executed during the ex-
ecution of the high criticality tasks for several deadlines and granularities for both the
static and the dynamic approaches. The results highlight that the proposed approach
highly decreases the number of the points that have been activated and thus the over-
head of the run-time control mechanisms. For the configuration of HP1 we observe
that the number of active points is in the same magnitude for both the dynamic and
the static approach. However, the proposed dynamic approach decreases the number
of the active points and at the same time it places them closer to the point where the
suspension of the low criticality tasks must occur, reducing the number of the active
points when the deadline is closer to the deadline where all the tasks can be executed
in parallel. In this way, it avoids unnecessary execution of the controller, allowing to
further execute the high criticality tasks. Therefore, the point of switching between
scenarios arrives later, increasing the gain, as described in the previous paragraphs.
For the configurations of HP2 and HP3, the number of active points is reduced from 2
to 4 orders of magnitude for HP2 and 3 to 6 orders of magnitude for HP3.

To further explore the behaviour of the proposed dynamic and the static approach
Fig. 7 presents the number of active points where the run-time control has been exe-
cuted in logarithmic scale for several deadlines and configurations of our controller.

From the experiments, we observe that:
— The static approach in all the configurations (HP1, HP2 and HP3) increases the

number of observation points where the run-time controller has been executed with
an increase in the critical deadline up to the point where both the high criticality

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:18

1.E+00	

1.E+01	

1.E+02	

1.E+03	

62
5	

63
0	

63
5	

68
0	

73
0	

78
0	

83
0	

88
0	

93
0	

98
0	

13
00

	
30

00
	

Cri$cal	Deadline	(ms)	

HP1	

Sta1c	
Dynamic	

1.E+00	

1.E+01	

1.E+02	

1.E+03	

1.E+04	

1.E+05	

62
5	

63
0	

63
5	

68
0	

73
0	

78
0	

83
0	

88
0	

93
0	

98
0	

13
00

	
30

00
	

Cri$cal	Deadline	(ms)	

HP2	

Sta2c	
Dynamic	

1.E+00	
1.E+01	
1.E+02	
1.E+03	
1.E+04	
1.E+05	
1.E+06	
1.E+07	

62
5	

63
0	

63
5	

68
0	

73
0	

78
0	

83
0	

88
0	

93
0	

98
0	

13
00

	
30

00
	

Cri$cal	Deadline	(ms)	

HP3	

Sta2c	
Dynamic	

Fig. 7. Number of active points for HP1, HP2, and HP3 configurations

tasks and the low criticality tasks are executed in parallel and the controller is
executed at all the observation points.

— The dynamic approach has less active points compared to the static approach for all
the configurations. The dynamic computation of the next active point ignores the
unnecessary observation points, which adds additional overhead, whereas it moves
the verification of the safety condition closer to the actual time when it should occur.

— For the deadlines before the decision of running all the tasks in parallel without
suspension (660 ms for HP1 and HP2 and 890 ms for HP3), the dynamic approach
has its highest number of points activated. For the HP1 and HP2 configuration, the
highest number of active points is observed nearby the deadline that allows paral-
lel execution of all tasks and it is 59 for the HP1 configuration (650 ms) and 138 for
the HP2 configuration (640 ms). For the static approach at the same deadlines, we
observe 121 active points for the HP1 configuration and 9,103 for the HP2 configu-
ration. For the HP3 configuration, the highest number of active points is 83 and it
is observed nearby the deadline that allows parallel execution of all tasks (860 ms).
In the same deadline, the static approach executes 1,220,182 times the controller.

— For the deadlines where parallel execution of all the tasks is possible as decided
by our dynamic controller, the number of active points is significantly decreased,

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:19

as described in the right part of the curves of Fig. 7. As the deadlines are further
relaxed, the number of active points is decreased and at the end it converges to
only one execution of the proposed dynamic controller which is capable of deciding
that all the tasks can run in parallel. In contrast, the static approach executes the
control mechanisms at all the statically predefined points.

6.4.2. Highest interferences: maximum number of low criticality tasks. In this section we
present the results of the proposed dynamic approach when all the cores are active,
i.e. we have six low criticality tasks in parallel and thus the number of congestions
over the shared resources is highly increased and we explore the behaviour of our
approach for larger deadlines compared with the case presented in section 6.4.1.

Table V shows the execution time of τC1 and the time when the switch occurs (SW) for
several deadlines and granularities for both the static and the dynamic approaches. We
observe that the dynamic approach decides in earlier deadline than the static approach
that all task can be safely executed in parallel for the configuration of HP1 and HP2. A
similar behaviour is expected for HP3, when we explore the deadlines with a smaller
step, as shown by the results in section 6.4.1.

Fig. 8 presents the behaviour of the relative gain of our dynamic approach compared
with the static approach. We observe that for the configurations of HP1 we have a
gain of 10.69%, for the HP2 a gain of 55.75% and for HP3 a gain of 14.64%. Compared
to the results of the previous section, in the case of the highest interferences the HP2
provides better gains than HP1. This occurs because the wHP1 is much higher than the
wHP2 in the case of the smallest slack. Therefore, the time between two consecutive
monitoring points is larger, reducing the possible inactivation of observation points
(few points placed far away). In contrast, the wHP2 is lower, so it allows an exploration
of the gains without too much overhead, whereas wHP3 is too small (lot of points placed
very close one to the other). Similarly to section 6.4.1, the results highlight that the
proposed approach highly decreases the number of the points that have been activated
and thus the overhead of the run-time control mechanisms.

Table VI shows the number of times the controller has been executed during the ex-
ecution of the high criticality tasks for several deadlines and granularities for both the
static and the dynamic approaches. For the configuration of HP1 we observe that the
number of active points is reduced in almost all the cases by one order of magnitude.
The dynamic approach with the configuration of HP1 has the largest number of active
points just before the deadline for which it decides that all the tasks can be executed in
parallel. Then, the number of active points is monotonically decreasing. For the config-
uration of HP2, we observe that the number of active points for the proposed dynamic
approach are decreased from 2 to 4 orders of magnitude. For the configuration of HP3,
we observe that the number of active points for the proposed dynamic approach are
decreased from 3 to 6 orders of magnitude, as the deadline is further relaxed.

Fig. 9 presents, in logarithmic scale, the number of active points where the run-time
control has been executed, for several deadlines and different configurations of the
controller. We still observe that the static approach requires a higher number of active

Table V. Execution time and switching time with six low criticality task in parallel (ms).

Deadlines
HP1 HP2 HP3

Static Dynamic Static Dynamic Static Dynamic
tτC1

SW tτC1
SW tτC1

SW tτC1
SW tτC1

SW tτC1
SW

650 643.08 24.12 640.26 24.73 648.11 36.63 642.10 36.68 645.07 35.75 642.11 36.52
750 742.48 142.97 742.40 146.19 743.41 146.19 749.13 151.35 749.33 148.71 749.73 157.88
950 931.63 403.91 913.49 404.02 943.54 433.47 949.600 441.35 948.55 423.24 947.99 426.79

1,500 1,492.54 1,196.04 1,492.35 1,197.08 1,494.68 1,210.3 1,496.89 1,212.12 1,493.54 1,198.07 1,492,80 1,200.49
2,100 2,085.73 2,028.30 2,085.14 - 2,099.44 2,052.23 2,095.76 - 2,099.63 2,035.55 2,096.71 2,041.75
2,300 2,192.60 - 2,085.67 - 2,203.35 - 2,095.87 - 2,269.17 - 2,135.22 -

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:20

observation points in all configurations (HP1, HP2 and HP3), whereas the dynamic
technique reduces the number of active points when the deadline is relaxed. For the
HP1 configuration, the highest number of active points is 9 and this maximum is at-
tained at 1,500 ms and 2,100 ms. For the HP2 configuration the highest number of
active observation points is 87 at 2,000 ms, whereas for the HP3 configuration, the
highest number of active points is 147 at 850 ms. In the same deadlines for the HP1
configuration, the static approach executes 68 and 117 times the controller, for the
HP2 configuration 13,952 times and for the HP3 configuration, 188,078 times.

6.4.3. Different granularity comparison and further discussion. From the obtained results, we
observe that the relative gain of HP2 with high interferences is higher that the HP2
gain with low interferences, whereas the opposite occurs for the HP3 gain. We should
stress that in the experiments with low interferences one task runs in parallel, and,
thus, the computation of Wmax is less pessimistic, whereas less interferences occur
during the execution. In the experiments with high interferences, the deadlines where
tasks can be executed in parallel are significantly larger. For the HP2 gain in low
interferences, the Wmax is closer to the real time and we have a medium-grained in-
strumentation. The dynamic version provides less gains compared with HP2 with high
interferences, where Wmax is pessimistic. When we go to a more fine-grained instru-
mentation (HP3), the experiments with low interferences provide more gains as the ac-
tivated points in static are too many compared with the HP2 experiments. But, when
more interferences occur, the Wmax of the internal loop is higher, so the pessimism
added reduces the gains of the dynamic approach.

The comparison between different granularities provides significant insight in the
two approaches. The granularity decides the time interval between two consecutive
observation points. Therefore, a more coarse-grain granularity in the static approach
can be seen as equivalent to more fine-grained dynamic approach. However, the two
approaches are not equivalent. The static coarse-grained approach has few observa-

0	

0.02	

0.04	

0.06	

0.08	

0.1	

0.12	

65
0	

75
0	

85
0	

95
0	

15
00

	
21

00
	

23
00

	

Cri$cal	Deadline	(ms)	

HP1	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

65
0	

75
0	

85
0	

95
0	

15
00

	
21

00
	

23
00

	

Cri$cal	Deadline	(ms)	

HP2	

0	
0.02	
0.04	
0.06	
0.08	
0.1	

0.12	
0.14	
0.16	

65
0	

75
0	

85
0	

95
0	

15
00

	
21

00
	

23
00

	

Cri$cal	Deadline	(ms)	

HP3	

Fig. 8. Relative gain for HP1, HP2, and HP3 configurations

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:21

1.E+00	

1.E+01	

1.E+02	

1.E+03	

65
0	

75
0	

85
0	

95
0	

15
00

	
21

00
	

23
00

	
25

00
	

35
00

	

Cri$cal	Deadline	(ms)	

HP1	

Sta1c	
Dynamic	

1.E+00	

1.E+01	

1.E+02	

1.E+03	

1.E+04	

1.E+05	

65
0	

75
0	

85
0	

95
0	

15
00

	
21

00
	

23
00

	
25

00
	

35
00

	

Cri$cal	Deadline	(ms)	

HP2	

Sta2c	
Dynamic	

1.E+00	
1.E+01	
1.E+02	
1.E+03	
1.E+04	
1.E+05	
1.E+06	
1.E+07	

65
0	

75
0	

85
0	

95
0	

15
00

	
21

00
	

23
00

	
25

00
	

35
00

	

Cri$cal	Deadline	(ms)	

HP3	

Sta2c	
Dynamic	

Fig. 9. Number of active points for HP1, HP2, and HP3 configurations

tion points placed regularly in large time intervals, whereas the dynamic approach
may have also few points, but they are placed in irregular intervals and closer to the
point where the interferences cannot be tolerated. Therefore, the dynamic fine-grained
approach is useful in cases where the static coarse-grained approach cannot provide
any gains. Here is a motivational example: a code with a three level nested loop, where
the outer loops have few iterations and the inner loop is dominant. The coarse-grained
static approach will suspend the low criticality tasks too early, as it cannot explore

Table VI. Number of active points.

Deadlines
HP1 HP2 HP3

Static Dynamic Static Dynamic Static Dynamic
650 2 2 199 6 21,592 21
750 7 4 848 9 96,778 26
950 21 5 2,740 9 315,648 28

1,500 73 46 9,103 138 95,277 70
2,100 68 9 8,697 13 1,071,851 38
2,300 128 6 16,512 6 2,113,664 16

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:22

Table VII. Time comparison of different granularities.
Smallest slack

Switching occurs No Yes When
Original New D High Criticality* D Low Criticality*
S: HP1 D: HP2

1,100
0

640
+ 21,13% ∼

S: HP1 D: HP3 + 39% - 80.75% ∼
S: HP2 D: HP3 + 39% - 80.72% ∼

Highest Interferences
Switching occurs No Yes When
Original New D High Criticality* D Low Criticality*
S: HP1 D: HP2

2,300
-4%

750
+ 5.86% earlier

S: HP1 D: HP3 - 2.62% + 10.43% ∼
S: HP2 D: HP3 - 3.9% + 8% ∼

* + %: New has longer exec. time, - %: New has shorter exec. time

finer granularity. By using a more fine-grained version, the inner loop can be explored.
And by using the dynamic version the unnecessary points of static approaches can be
avoided pushing the verification closer to the limit of tolerating interferences.

The decision of which configuration and approach to use is a multidimensional trade-
off problem with axes, such as: 1) granularity configuration (affecting the overhead
and, thus, the execution time of high criticality task and the step between points, and
thus the gain), 2) the available slack (affects the decision of when the switching occurs),
3) the time when switching decision occurs (affects the execution time of the high criti-
cality task due to the interferences of the low criticality), 4) the application (affects the
partial RWCET (d and w), and 5) the tasks executed in parallel with the high criticality
task (affects the wmax and the interferences). We expect that the experimental results
of this work provide insight with respect to the different design parameters (static Vs
dynamic, coarse-medium-fined grained configurations) and problem constraints (dead-
line, low and high interferences). Further work is the exploration of impact of the
characteristics of the high criticality applications and the low criticality applications.

Table VII compares the gains in execution time of the high and low criticality tasks
for different configurations. The comparison is given by (new − original)/original for
a deadline that both approaches (original, new) have a parallel execution of all tasks
(column “No”), a deadline where both approaches suspend the low criticality tasks
(column “Yes”). In column “When” informs which approach explores better the slack.

For the smallest slack possible, from the comparison of a large time interval in the
static method (S: HP1) with a medium interval in the dynamic method (D: HP2), we
observe that when switching occurs, the D: HP2 behaves generally better that the S:
HP1 approach, because of the smaller time interval of D: HP2, which explores better
the internal loop. We observe that in the deadline close to the deadline where all tasks
can be executed without suspension, the S: HP1 provides more gain. This is because of
two main facts. In the smallest slack, the Wmax is computed between two consecutive
points of the external loop and when only one core executes low criticality tasks. Hence,
the inserted pessimism of Wmax is the lowest possible and the run-time computation of
the RWCETiso is closer to the actual remaining time. The D: HP2 proceeds in irregular
steps, multiples of a smaller time interval Wmax . The Wmax is computed between two
consecutive points of the second loop. The inserted pessimism is now multiplied by
the number of inactive points each time. Therefore, it can happen than for specific
deadlines (close to multiplies of the Wmax of S: HP1) the S: HP1 regular large steps
reach close to the case where all task can be concurrently executed. In similar way, for
more fine-grained dynamic approach, the coarse-grain static still provides more gain.
For larger deadlines, where no switching occurs, the coarse-grained static provides
better gains. However, this does not reduce the usefulness of the D: HP3, as in many
cases depending on the application, the configuration of HP1 cannot provide gains. We
should state that changing from S: HP1 to S: HP3 has also a significant gain reduction

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:23

of 87%. However, the D: HP3 approach explores better the available time slack offered
by to the deadline compared to S: HP3.

For the highest interferences and the deadlines where switching occurs, the execu-
tion time of the high criticality tasks is similar with the coarse-grain static approach,
but it provides a gain in the low criticality tasks execution from 5.86% up to 10.43%.
For larger deadlines, the execution time of the high criticality task is has a reduction
from 2.62% up to 4%. These observations occur because in the case of the highest inter-
ferences, the Wmax of the external loop is computed in the worst case, where all other
cores are executing tasks. Therefore, the inserted pessimism in the computation of
Wmax is the largest possible and leads to early suspension of the low criticality tasks.

7. RELATED WORK
The main domains for run-time control of tasks execution and scheduling on mul-
ticores are average execution and worst execution. Approaches such as [Pricopi and
Mitra 2014] on task scheduling and [Shafique et al. 2015] on run-time task mapping
mechanisms belong to the former case. Two main task models are used in worst case
domain, i.e. tasks with same and with different criticality. Approaches such as [Chen
2016] belong to the former case, where they consider the WCET of the tasks and fo-
cus on task scheduling. Our approach belongs to the second category as it focuses
on mixed-critical systems. This section presents existing approaches for implement-
ing mixed-critical systems, with respect to run-time execution and task scheduling. A
detailed survey on real-time systems is available in [Burns and Davis 2016].

Task scheduling: The initial mixed-criticality scheduling work has mainly addressed
uni-processor platforms (e.g. [Baruah et al. 2010; Burns and Baruah 2013]), the results
of which are not directly applicable in multicore platforms. In multicore platforms, sev-
eral approaches exist that assume that the task set is schedulable at least at the high
criticality level, i.e. the WCET is estimated lower than the deadlines. In [Brandenburg
and Anderson 2007], both hard real-time and soft real-time tasks are scheduled using
an Earliest Deadline First for Hard real-time, Soft real-time and Best effort approach,
assuming that the hard real-time tasks are statically schedulable. When a core finishes
its execution before the estimated WCET, this time is reallocated to non hard real-time
tasks. The two level mixed-criticality scheduling of [Anderson et al. 2009; Mollison
et al. 2010] schedules tasks of different criticality levels with different scheduling ap-
proaches. The lowest criticality tasks are allowed to be executed when no higher crit-
icality task is running, i.e. the critical tasks are executed in isolation. To support the
approach, the LITMUSRT offers several mixed-critical scheduling policies [Herman
et al. 2012]. Other approaches associate several WCETs to each task and consider
a scheduling scenario per criticality level [Li and Baruah 2012; Baruah et al. 2013;
Pathan 2012]. The hisher the criticality level, the larger and safer the WCETs [Burns
and Baruah 2011]. Initially, all tasks are assigned their low criticality WCET. At run-
time, they observe if the tasks have signaled termination at the pre-defined position
given by the value of the low criticality WCET. If no signal termination has been re-
ceived, switching to higher criticality WCET occurs.The tasks with lower criticality
levels are dropped [Baruah et al. 2012] or allowed to be reexecuted when the system
returns to the low criticality mode [Fleming and Burns 2013]. In [Li and Baruah 2012;
Baruah et al. 2013] describe a generalization of the preemptive uni-processor algo-
rithm EDF with Virtual Deadlines (EDF-VD) to multiprocessor platforms. In [Baruah
and Fohler 2011] mixed-critical systems use time-triggered scheduling where WCET
estimates are allowed to overrun. A monitor run-time detects overruns and switches
schedules based on a set of pre-computed schedules. In [Giannopoulou et al. 2013], a
time-triggered scheduling enables only tasks of the same criticality level to be executed
concurrently achieving timing isolation on the core level.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:24

Run-time control: Several approaches propose resources reallocation based on
information derived from monitoring their utilization, e.g. the memory accesses.
In [Nowotsch et al. 2013] interference-sensitive WCETs are computed based on a pre-
liminary analysis of the resource usage of tasks. The shared resources are off-line
partitioned among tasks. A monitor observes at run-time the task resource usages and
suspends the task that overtakes the allocated capacity. In [Nowotsch and Paulitsch
2013] allows dynamic changes in the resource partitioning, when resources are under-
utilized. In [Yun et al. 2012; 2013] memory accesses are reserved for critical tasks. A
run-time controller regulates the accesses to the shared memory and ensures temporal
isolation among tasks. An off-line profiling technique has been proposed in [Mancuso
et al. 2013] which finds the most frequently accessed memory pages in a task. This
information is used to modify the variables’ position in the shared caches in order to
reduce the interferences. The hardware approach of [D. Lo and Suh 2014] allows the
monitoring only when enough slack time exists guaranteeing that the monitoring does
not impact the meeting of the real-time constraints of the tasks. If no slack exists, a
dropping operation minimizes the monitoring overhead.

Our approach is orthogonal to the aforementioned approaches: it considers two types
of WCETs depending on how the critical task is executed on the platform (maximum
load or isolation), and not on the WCET reliability, it is applicable in cases where
the complete system is considered as unschedulable, e.g. the WCET of low and high
criticality tasks are estimated above the deadlines, it is based on monitoring the on-
going execution time of the critical task, and not the accesses to the shared resources.

8. CONCLUSIONS
In this work, we present our dynamic software methodology and implementation in a
multi-core system for improving resources utilization by increasing task parallelism,
while guaranteeing the real-time response of the high criticality tasks. At design-time
analysis, the high criticality tasks are instrumented and analysis is applied to compute
the structure and timing information. At run-time, an adaptive controller is activated
at dynamically computed points, where it computes the remaining WCET of the high
criticality tasks and decides whether the low criticality tasks should be suspended.
The conducted experiments show a significant gain of our dynamic approach, com-
pared to safe isolation approaches and static run-time control approach, while always
guaranteeing hard real-time constraint of the high criticality tasks.

REFERENCES
J. H. Anderson, S. K. Baruah, and B. B. Brandenburg. 2009. Multicore Operating-System Support for Mixed

Criticality. In WMC.
S.K. Baruah, V. Bonifaci, G. D’Angelo, Haohan L., A. Marchetti-Spaccamela, N. Megow, and L. Stougie.

2012. Scheduling Real-Time Mixed-Criticality Jobs. Trans. Computers 61, 8 (2012), 1140–1152.
S.K. Baruah, B. Chattopadhyay, H. Li, and I. Shin. 2013. Mixed-criticality scheduling on multiprocessors.

Real-Time Systems (2013), 1–36.
S.K. Baruah, L. Haohan, and L. Stougie. 2010. Towards the Design of Certifiable Mixed-criticality Systems.

In RTAS. 13–22.
S. K. Baruah and G. Fohler. 2011. Certification-Cognizant Time-Triggered Scheduling of Mixed-Criticality

Systems. In RTSS. 3–12.
B.B. Brandenburg and J.H. Anderson. 2007. Integrating Hard/Soft Real-Time Tasks and Best-Effort Jobs on

Multiprocessors. In ECRTS. 61–70.
A. Burns and B. Baruah. 2013. Towards A More Practical Model for Mixed Criticality Systems. In RTSS.
A. Burns and S.K. Baruah. 2011. Timing Faults and Mixed Criticality Systems. In Dependable and Historic

Computing (Lecture Notes in Computer Science), Vol. 6875. 147–166.
A. Burns and R. Davis. 2016. Mixed Criticality Systems - A Review. Technical Report. Dep. Computer Sci-

ence, Univ.York, UK.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:25

J. J. Chen. 2016. Partitioned Multiprocessor Fixed-Priority Scheduling of Sporadic Real-Time Tasks. ECRTS
00 (2016), 251–261.

T. Chen D. Lo, M. Ismail and G. E. Suh. 2014. Slack-Aware Opportunistic Monitoring for Real-Time Systems.
In RRTAS.

J. F. Deverge and I. Puaut. 2007. Safe measurement-based WCET estimation. In WCET, Vol. 1.
G. Durrieu, M. Faugre, S. Girbal, D. G. Prez, C. Pagetti, and W. Puffitsch. 2014. Predictable Flight Manage-

ment System Implementation on a Multicore Processor. In ERTS.
T. Fleming and A. Burns. 2013. Extending Mixed Criticality Scheduling. In RTSS.
M. Gatti. 2013. Development and certification of Avionics Platforms on Multi-Core processors. In Tutorial

Mixed-Criticality Systems: Design and Certification Challenges, ESWeek.
G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele. 2013. Scheduling of Mixed-criticality Applications

on Resource-sharing Multicore Systems. In EMSOFT. IEEE, Piscataway, NJ, USA, Article 17, 15 pages.
R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm. 2003. The influence of processor architecture on

the design and the results of WCET tools. Proc. IEEE 91, 7 (2003), 1038–1054.
J. L. Herman, C. J. Kenna, M. S. Mollison, J. H. Anderson, and D. M. Johnson. 2012. RTOS Support for

Multicore Mixed-Criticality Systems. In RTASum. 197–208.
A. Kritikakou, O. Baldellon, C. Pagetti, C. Rochange, and M. Roy. 2014a. Run-time Control to Increase Task

Parallelism in Mixed-Critical Systems. In ECRTS.
A. Kritikakou, C. Rochange, M. Faugère, C. Pagetti, M. Roy, S. Girbal, and D. G. Pérez. 2014b. Distributed

Run-time WCET Controller for Concurrent Critical Tasks in Mixed-critical Systems. In RTNS. 139–148.
L. Haohan Li and S. Baruah. 2012. Global Mixed-Criticality Scheduling on Multiprocessors. In ECRTS.

166–175.
R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pellizzoni. 2013. Real-time cache manage-

ment framework for multi-core architectures. In RTAS. 45–54.
M. S. Mollison, J. P. Erickson, J. H. Anderson, S. K. Baruah, and J. A. Scoredos. 2010. Mixed-Criticality

Real-Time Scheduling for Multicore Systems.. In CIT. 1864–1871.
J. Nowotsch and M. Paulitsch. 2013. Quality of Service Capabilities for Hard Real-time Applications on

Multi-core Processors. In RTNS. 151–160.
J. Nowotsch, M. Paulitsch, D. Bühler, H. Theiling, S. Wegener, and M. Schmidt. 2013. Multi-core interference-

sensitive WCET analysis leveraging runtime resource capacity enforcement. Technical Report. Univ.
Augsburg, Germany.

R. M. Pathan. 2012. Schedulability Analysis of Mixed-Criticality Systems on Multiprocessors. In ECRTS.
309–320.

Luis-Noel Pouchet and others. 2013. PolyBenchmarks Benchmark Suite. http://www.cse.ohio-state.edu/
∼pouchet/software/polybench/. (2013).

M. Pricopi and T. Mitra. 2014. Task Scheduling on Adaptive Multi-Core. IEEE Trans. Computers 63, 10
(2014), 2590–2603. DOI:http://dx.doi.org/10.1109/TC.2013.115

SAE. 2010. Aerospace Recommended Practices 4754a - Development of Civil Aircraft and Systems. (2010).
SAE.

M. Shafique, D. Gnad, S. Garg, and J. Henkel. 2015. Variability-aware Dark Silicon Management in On-chip
Many-core Systems. In DATE. EDA Consortium, San Jose, CA, USA, 387–392.

A.K. Singh, M. Shafique, A. Kumar, and J. Henkel. 2013. Mapping on multi/many-core systems: Survey of
current and emerging trends. In DAC. 1–10.

Texas Instruments. 2013. TMS320C6678 Multicore Fixed and Floating-Point Digital Signal Processor. Tech-
nical Report SPRS691D. TI.

S. Vestal. 2007. Preemptive Scheduling of Multi-criticality Systems with Varying Degrees of Execution Time
Assurance. In RTSS. 239–243.

R. Wilhelm, J. Engblom, A. Ermedahl, and others. 2008. The worst-case execution-time problem - overview
of methods and survey of tools. TECS 7, 3 (2008).

H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. 2012. Memory Access Control in Multiprocessor for
Real-Time Systems with Mixed Criticality. In ECRTS. 299–308.

H. Yun, G Yao, Rodolfo Pellizzoni, M. Caccamo, and L. Sha. 2013. MemGuard: Memory bandwidth reserva-
tion system for efficient performance isolation in multi-core platforms. In RTAS. 55–64.

Received January 2017; revised xxx xxx; accepted xxx xxx

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

