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Analysis of One-Bit Quantized Precoding for the
Multiuser Massive MIMO Downlink

Amodh Kant Saxena, Inbar Fijalkow, Senior Member, IEEE, and A. Lee Swindlehurst, Fellow, IEEE

Abstract - We present a mathematical analysis of linear
precoders for downlink massive MIMO multiuser systems
that employ one-bit digital-to-analog converters at the
basestation in order to reduce complexity and mitigate
power usage. The analysis is based on the Bussgang theo-
rem, and applies generally to any linear precoding scheme.
We examine in detail the special case of the quantized
zero-forcing (ZF) precoder, and derive a simple asymptotic
expression for the resulting symbol error rate at each
terminal. Our analysis illustrates that the performance of
the quantized ZF precoder depends primarily on the ratio
of the number of antennas to the number of users, and our
simulations show that it achieves performance similar to a
more complicated nonlinear least-squares encoder for low-
to-moderate signal to noise ratios, where massive MIMO
systems are presumed to operate. We also use the Bussgang
theorem to derive a new linear precoder optimized for the
case of one-bit quantization, and illustrate its improved
performance.

I. INTRODUCTION

M ASSIVE MIMO involves the use of many, perhaps
hundreds, of antennas at the base station (BS) of a

wireless network, and can potentially provide large increases
in capacity via spatial multiplexing [1]. In a multi-user (MU)
scenario, the massive MIMO BS typically serves a number
of users much smaller than the number of antennas, and
hence a large number of degrees-of-freedom can be offered
to each user. This can in turn lead to improved robustness and
correspondingly high data rates [1]–[3].

Under favorable propagation conditions, the user channels
become asymptotically orthogonal as the number of antennas
grows, and simple linear precoding at the BS can be used to
invert the channel without noise enhancement. Many studies
consider Maximal Ratio Transmission (MRT) [4] or Zero Forc-
ing (ZF) precoders [5], and asymptotic results from random
matrix theory show how an increasing number of antennas can
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result in a dramatic increase in downlink capacity [6] even for
these simple precoding schemes.

While the benefits of massive MIMO at the BS grow
with the number of antennas, so do the resulting power
consumption and hardware costs. While one can scale down
the transmit power with an increase in the number of antennas
in order to maintain a certain level of performance (e.g.,
due to beamforming gain), there are certain sources of fixed
power consumption at the circuit level that cannot be reduced
and these sources will lead to an increase in power as the
number of antennas is increased [7]. More important than this
is the issue of energy efficiency; a standard RF implementation
requires highly linear amplifiers that must as a result be
operated with considerable power back-off, which severely
limits the overall energy efficiency of the system. The more
RF chains, the less and less efficient the system is.

One approach to addressing this problem in the massive
MIMO downlink is the use of hybrid analog and digital RF
front ends, which employ fewer RF chains in favor of an
analog beamforming (precoding) network that is deployed af-
ter the digital-to-analog converters (DACs) [8]–[10]. However,
this approach does not scale well for wideband systems, as
one must either use the same RF beamforming network for
the entire band (which is clearly suboptimal), or one must add
complexity to the RF analog domain, in the form of either
additional phase-shift networks for different frequency bands,
or some type of analog tapped-delay line. Instead, we focus
on another approach that has gained attention recently, namely
the use of low-resolution DACs for each antenna and RF
chain; in particular, we will investigate the simplest possible
case involving one-bit DACs. Using one-bit ADCs/DACs con-
siderably reduces power consumption, which grows linearly
with increases in bandwidth and sampling rate, and exponen-
tially in the number of quantization bits [11]–[13]. Unlike
hybrid beamforming schemes, extending one-bit systems to
the wideband case does not require further complicating the
RF analog design; in particular (and more importantly for the
downlink), it considerably simplifies the RF architecture by
eliminating the need for highly linear amplifiers and back-
off operation, which further reduces circuit complexity and
dramatically improves energy efficiency. As we will show in
this paper, the severe distortion caused by the one-bit DACs
can be mitigated by proper signal processing, and the impact
is not too significant in the low- to mid-SNR ranges where
massive MIMO systems will likely operate.

Most of the work on one-bit quantization for wireless
communication systems has focused on the uplink, where
the BS employs one-bit analog-to-digital converters (ADCs).
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Single-antenna studies of the impact of one-bit ADCs can be
found in [14]–[16]. More recently, their use in MIMO systems
has been considered, and the resulting work has focused
primarily on channel estimation and information theoretic rate
analyses [17]–[22].While there has been considerable research
on downlink precoding for massive MIMO (see e.g., [23]-
[24]) very little has been reported on the impact of low-
resolution DACs on transmit processing. In [25], transmit
optimization for the case of flat fading MIMO systems with
low resolution DACs is addressed. The mean squared error
between the received symbol and the symbol vector input
to the transmitter is minimized to find optimum quantizer
levels, transmit matrix and scalar receiver. In [26], a precoding
technique is introduced which aims to minimize the inter-user
interference and quantization noise introduced by using a look-
up table for all possible transmit sequence combinations. This
paper also introduced a novel minimum Bit Error Rate (BER)
performance metric. In [27], a two stage precoder is proposed,
which comprises a digital precoder, and an analog precoder
implemented after the quantizer. The precoders are optimized
by minimizing the mean square error between the transmit
vector and the receive vector. An iterative algorithm is utilized
in the optimization problem.

In this paper, we study the impact of one-bit DACs on linear
precoding for the massive MIMO downlink. We presented a
preliminary analysis of this problem in [28] using a different
approach. To focus on the performance degradation due to
quantization, we assume that the BS has perfect channel state
information, although this additional error source would have
to be accounted for in a full analysis. Using the Bussgang
theorem [29] to model the second-order statistics of the quan-
tization noise introduced by the DACs, we provide a closed-
form expression for the signal to quantization, interference
and noise ratio (SQINR), which we use to deduce the symbol
error rate for each terminal in the network. We then focus
on the special case of the zero-forcing (ZF) precoder and use
asymptotic arguments to obtain an even simpler expression.
Our analysis illustrates that the performance of the quantized
ZF precoder depends primarily on the ratio of the number of
antennas to the number of user terminals, with asymptotically
improving performance as this ratio increases. Our simulations
indicate that it has performance similar to a more complicated
nonlinear least squares (NLS) encoder for low-to-moderate
signal to noise ratios, at least for small system dimensions
where it is feasible to implement NLS. Finally, using our
insights from the asymptotic analysis of the ZF precoder, we
design a modified precoder that attempts to achieve the benefits
of the ZF precoder even in the non-asymptotic case.

The paper is organized as follows. Section II introduces the
one-bit downlink model, and describes both direct NLS pre-
coding and the simpler quantized linear precoding approach.
The SQINR performance of a general one-bit quantized linear
precoder is then analyzed in Section III, and the approximate
Symbol Error Rate (SER) for each user is derived. Section
IV focuses on the special case of ZF precoding in the
asymptotic regime where the number of BS antennas M and
user terminals K become large, leading to a simpler and more
insightful expression. In Section V, we introduce the Bussgang

adapted precoding algorithm, which attempts to remove the
interuser interference for non-asymptotic values of M and
K. Simulation results comparing the various algorithms are
presented throughout the paper.

II. ONE-BIT DOWNLINK SYSTEM MODEL

A. Mathematical Notation and Assumptions

In what follows, uppercase boldface letters, A, indicate
a matrix, with [A]kl and akl interchangeably denoting the
element at the kth row and lth column. Lower boldface letters,
a, indicate a column vector, with ak denoting the kth element
of the column vector. The symbols (.)∗, (.)T and (.)H denote
the complex conjugate, matrix transpose and the transpose-
conjugate of the argument respectively. We will use diag(C)
to denote the square matrix whose main-diagonal elements
are equal to those of the square matrix C, and whose other
entries are all zero. With a vector argument, Diag(c) denotes
the diagonal matrix whose main diagonal is composed of the
elements of vector c.

We assume a flat-fading downlink scenario in which an M -
antenna BS is attempting to send QPSK symbols sk to k =
1, · · · ,K single-antenna users over the K ×M channel H.
The BS transmits an M × 1 vector

√
ρx, where

√
ρ is a fixed

gain and the elements of x are constrained to be equal to
±1± j due to the use of one-bit quantization of the in-phase
and quadrature components of the signal at the BS. Let rk be
the signal received by user k, and define r = [r1 · · · rK ]T so
that we can write the overall system model as

r =
√
ρHx + n , (1)

where the K × 1 vector n represents a vector of independent
Gaussian noise terms of variance σ2

n at each user. For the
downlink, the BS designs the vector x such that the elements
of r can be correctly decoded as the appropriate QPSK sym-
bols in the vector s = [s1 · · · sK ]T . The QPSK symbols for
different users are assumed to be zero-mean and independent
with power σ2

s : E(ssH) = σ2
sIK . The assumption that the BS

transmits QPSK symbols can be interpreted to mean that the
individual users also employ one-bit ADCs, although this is
not strictly necessary.

The kth row of channel matrix H is denoted as hk, and
represents the channel to user k. For our analysis, we will
assume that the channel matrix is given by

H = Diag(σ1, σ2, . . . , σK)H̃ , (2)

where the elements of H̃ are complex Gaussian random
variables, whose real and imaginary parts are both iid Gaussian
random variables with zero-mean and unit-variance, and the
parameters σ1, σ2, . . . , σK represent the individual channel
gains for each user. As mentioned above, we will assume that
the channel H is known at the BS in order to isolate the impact
of the quantization and noise.

B. Nonlinear LS Precoding

Ideally, in the absence of noise, one might attempt to design
a general non-linear precoder providing x such that Hx = s.
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However, due to the finite alphabet constraint imposed by the
one-bit DACs, one would have to find such an x with QPSK
entries, which in general will prevent achieving Hx = s with
equality. Instead, one might choose to implement a nonlinear
least squares (NLS) precoder that attempts to solve [30]–[32]

x = arg min
δ>0,v∈SM

||s− δHv||2 , (3)

where S = {1 + j, 1− j,−1 + j,−1− j} is the set of QPSK
constellation points with j =

√
−1, and δ is a positive real-

valued scaling. However, in general, (3) requires on exhaustive
search of order O(4M ), which is prohibitively expensive even
for relatively small values of M , let alone in the massive
MIMO case. Even a sphere-based encoder [33] would be too
complex for large values of M , and in this case would require
extra care since the matrix H has many more columns than
rows. In such cases, one should transform (3) to

x = arg min
δ>0,v∈SM

||D(z− δv)||2 , (4)

where D is the upper triangular matrix obtained by the
Cholesky factorization of G = HHH + αIM , z = G−1HHs
and α is a small regularization parameter as explained in
[34]. Though less complex than direct NLS encoding, the
generalized sphere encoder still has a complexity exponential
in M −K, which is again costly in the massive MIMO case.
Approaches that approximate the solution to (3) using convex
semi-definite relaxation have been proposed in [32], although
the resulting optimization, while considerably simpler, is still
somewhat complex and must be done on a per symbol basis.

We note here that, for the case where the elements of the
desired vector s are themselves drawn from a finite alphabet
(QPSK here), the NLS encoder over-constrains the problem by
attempting to force δHx to be close to s, when in fact all that
is necessary is that its elements lie within the correct decision
regions so that the users can properly decode them as the
desired constellation points sk. The noise-free received data
δHx can in principle be far away from s and still be decoded
correctly; in fact, often the farther δHx is away from s, the
farther the received signal is from the decision boundaries and
hence the more resilient to noise. So we might expect that NLS
encoding may not give optimal performance in this case, and
in fact we will demonstrate this fact later in the paper.

C. One-bit Quantized Linear Precoding

As an alternative to NLS encoding, we will study the
performance of a very simple approach in which the output of
a standard linear precoder is quantized by one-bit DACs prior
to transmission. In particular, assuming a linear precoding
matrix P, the transmitted signal is x = Q(Ps), where the
one-bit quantization operation is defined as

Q(a) = sign(<(a)) + jsign(=(a)), (5)

with <(·) representing the real part, =(·) the imaginary part,
and sign(·) the sign of their arguments. Figure 1 gives a
graphical view of the assumed system, whose output is thus
given by

r =
√
ρHQ(Ps) + n . (6)

Fig. 1: System Model

In what follows, we will define 2ρ0 to be the total transmit
power, which implies that ρ = ρ0

M .

III. BUSSGANG ANALYSIS OF ONE-BIT QUANTIZED
PRECODING

Let xP = Ps represent the precoded vector before quanti-
zation. In this section, we use the Bussgang decomposition to
analyze the impact of the quantization on the signal of interest
and to quantify the level of quantization noise. This will allow
us in the sequel to approximate the SQINR.

A. Bussgang Decomposition

The one-bit quantization operation on the precoded vector
xP is modeled here using the Bussgang theorem [29]. We
assume that the vector of QPSK symbols s is random with
zero mean and covariance matrix σ2

sIK . Although this implies
that xP is not strictly Gaussian, each element of xP is formed
as a result of a linear mixture of the K i.i.d. elements of the
vector s, the Gaussian assumption is fulfilled for large enough
K. We thus apply the Bussgang theorem to write

x := Q(xP ) = FxP + q , (7)

where F is chosen to satisfy RxPq = E(xPqH) = 0. A simi-
lar property is demonstrated for transmit-side nonlinearities in
[35]. The Bussgang theorem provides a linear representation
of the quantization that is statistically equivalent up to the
second moments of the data. To define the decomposition, we
have

RxxP
= E(xxHP ) =E({FxP + q}xHP )

= FRxPxP
,

(8)

where
RxPxP

= σ2
sPPH . (9)

Note that the M ×M matrix in (9) is rank deficient, and thus
F cannot be solved for directly as in [16]. We will see shortly
that a unique expression for F is unnecessary, and that (8) is
sufficient.

Under the mutual Gaussian assumption between the com-
ponents of xP , the inter-correlation between the one-bit quan-
tized xk and unquantized xP,l is equal to the normalized inter-
correlation of the unquantized signals reduced by a factor of√

2/π, as in [36]:

E(xkx
∗
P,l) =

√
2

π

E(xP,kx
∗
P,l)

σxP,k

,
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where σxP,k
= {E(xP,kx

∗
P,k)} 1

2 . In matrix form this yields

RxxP
=

√
2

π

{
diag(E(xPxHP ))

}− 1
2 E(xPxHP )

=

√
2

π
σs
{

diag(PPH)
}− 1

2 PPH .

(10)

Thus, from (8),

FPPH =
1

σs

√
2

π

{
diag(PPH)

}− 1
2 PPH , (11)

and since P is full column rank, we have

FP =
1

σs

√
2

π

{
diag(PPH)

}− 1
2 P. (12)

Note that since PPH is not invertible, F can not be uniquely
defined. However, we will see in Section III-B that this poses
no problem since an expression for FP will be sufficient for
our analysis.

It is also useful to derive here the covariances of the
quantization noise q and the data vector x after quantization.
Using the arcsin law, for a hard limiting one-bit quantizer, we
have [36]

E(xkx
∗
l ) =

2

π
arcsin

(
<
(
E(xP,kx

∗
P,l)

σxP,k
σxP,l

))
+j

2

π
arcsin

(
=
(
E(xP,kx

∗
P,l)

σxP,k
σxP,l

))
,

(13)

which implies

Rxx =
2

π
arcsin{{diag(RxPxP

)}− 1
2< (RxPxP

)

× {diag(RxPxP
)}− 1

2 }

+ j
2

π
arcsin{{diag(RxPxP

)}− 1
2= (RxPxP

)

× {diag(RxPxP
)}− 1

2 }.

(14)

For the quantization noise vector q, we have

Rqq =Rxx − FRxPx

+ FRxPxP
FH −RxxP

FH

=Rxx − FPPHFHσ2
s

=
2

π
{arcsin{{diag(PPH)}− 1

2<
(
PPH

)
× {diag(PPH)}− 1

2 }

+ j arcsin{{diag(PPH)}− 1
2=
(
PPH

)
× {diag(PPH)}− 1

2 }
− {diag(PPH)}− 1

2 PPH{diag(PPH)}− 1
2 }.

(15)

B. Impact on the Signal of Interest

Let s̃ be the noiseless received signal vector

s̃ =
√
ρHx =

√
ρ0√
M

Hx. (16)

The cross-correlation between the received s̃ and desired s is

Rs̃s =

√
ρ0√
M
E(HxsH)

=

√
ρ0√
M

HE{(FPs + q)sH}

=

√
ρ0σ

2
s√

M
HFP ,

(17)

where (17) results because

E(xPqH) = PE(sqH) = 0 . (18)

Since P is full column rank, we have

E(sqH) = 0 (19)

In the sequel, we denote G = HFP. Using (12), G =√
2
π

1
σs

H
{

diag(PPH)
}− 1

2 P and

Rs̃s =

√
2

π

√
ρ0σs√
M

H
{

diag(PPH)
}− 1

2 P. (20)

Equation (20) shows that, for any full rank precoder, the
impact of the one-bit quantization on the signal of interest
is the diagonal matrix

{
diag(PPH)

}− 1
2 and a scalar factor√

2
π .

C. SQINR and Probability of Error

Using the Bussgang decomposition, the received vector after
quantization can be represented as

r =

√
ρ0√
M

H(FPs + q) + n

=

√
ρ0√
M

Gs +

√
ρ0√
M

Hq + n .

(21)

Letting d = Hq, we denote the covariance matrix of the
received quantized noise as

Rdd = HRqqHH . (22)

With these definitions, the SQINR experienced by user k for an
arbitrary linear precoder P whose output is one-bit quantized
can be expressed as

SQINRk =
ρ0
|gkk|2σ2

s

M

ρ0
∑K
l=1,l 6=k

|gkl|2σ2
s

M + ρ0
[Rdd]kk

M + σ2
n

, (23)

where ρ0
∑K
l=1,l 6=k

|gkl|2σ2
s

M accounts for multi-user interfer-
ence and ρ0

[Rdd]kk

M for quantization noise. With the assump-
tion of equally likely Gray-mapped QPSK signaling, using
the nearest neighbour approximation, we can calculate the
probability of a decoding error for user k as

Pe =Pr(Q(rk) 6= sk) ' 2Q(
√
SQINRk)

=2Q

√√√√ ρ0
|gkk|2σ2

s

M

ρ0
∑K
l=1,l 6=k

|gkl|2σ2
s

M + ρ0
[Rdd]kk

M + σ2
n

 .

(24)
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IV. ASYMPTOTIC PERFORMANCE OF THE ONE-BIT
QUANTIZED ZERO-FORCING PRECODER

The previous section provides a closed-form expression for
the SQINR for any one-bit quantized linear precoder P. To get
additional insight into the impact of the one-bit DACs, here
we focus on the special case of the zero-forcing (ZF) precoder
defined by

P = HH(HHH)−1 . (25)

In addition, we will further simplify the resulting expressions
by adopting a massive MIMO assumption and letting both M
and K be large [3]. In the following analysis, the mathematical
results assume M and K to be approaching infinity while the
ratio γ = M

K > 1 is finite. In a physical sense of course
it is not possible for the number of antennas to grow to
infinity, as a certain separation between the antennas is crucial
for maintaining independence between the channel vectors of
distinct antennas [37]. However, as we show in our analysis
and simulation results, the approximations are very tight even
for small and realistic values of the system dimensions and
hence of practical value.

A. Approximations for the Asymptotic Case

In our asymptotic analysis, we let M and K grow large
while maintaining a finite value for the ratio γ > 1. In what
follows, we recall and extend some results on the asymptotic
behaviour of the matrix (HHH)−1 needed for analyzing the
ZF precoder. As mentioned earlier, the channel matrix is
assumed to be described as

H = ΣH̃ , (26)

where Σ = Diag(σ1, ..., σK) denotes the individual chan-
nel gains, and we assume that the elements of H̃ are
i.i.d. circularly symmetric Gaussian random variables with
<(h̃kl) ∼ N (0, 1) independent of =(h̃kl) ∼ N (0, 1), ∀k =
1, 2, . . . ,K and l = 1, 2, . . . ,M .

It is shown in [38] that Z = 2HHH is a complex Wishart
matrix (see [39]) with distribution

WK(M,Σ2; Z) =
|Z|M−K−1

2 exp
(
− 1

2 trace(Σ−2Z))
)

2
MK
2 ΓK(M2 )|Σ2|M2

(27)

where

ΓK(M) = π
K(K−1)

4

K∏
l=1

Γ(M +
1− l

2
) ,

is the Gamma function. In our case, Σ is diagonal so that

(det 2(Σ))2M = 22KM
K∏
k=1

σ2M
k .

The variance of the elements of Y = Z−1, due to the property
of the Wishart distribution [39], is given by

V ar(ykl) =
1

(2M −K)(2M −K − 1)(2M −K − 3)σ2
kσ

2
l

for k 6= l and

V ar(ykk) =
2

(2M −K − 1)2(2M −K − 3)σ4
k

otherwise. Note that, for large values of M > K, the
variance goes to zero proportionally to 1

M3 , for all elements
of (HHH)−1.

In the asymptotic case, the rows of H become quasi-
orthogonal and the diagonal terms of (HHH)−1 have been
studied in [38] (or [40] when Σ = IK). Given the Wishart
distribution (27), we have

(H̃H̃
H

)−1 −−−−→
M→∞

1

2K(γ − 1)
IK (28)

and

(HHH)−1 −−−−→
M→∞

1

2K(γ − 1)
Σ−2 , (29)

where −−−−→
M→∞

denotes almost sure convergence (i.e., conver-
gence with probability one). Because the variance of the ele-
ments of these matrices scale as 1/M3, convergence to these
mean values is very tight, even though they are asymptotically
proportional to 1/M . We will see in the simulations that the
resulting approximations are very accurate even for practical
values of M .

From (25) and (29),

P = H̃HΣ{ΣH̃H̃HΣ}−1 −−−−→
M→∞

1

2K(γ − 1)
H̃HΣ−1 .

(30)
From (30),

PPH = HH(HHH)−2H −−−−→
M→∞

1

4K2(γ − 1)2
H̃HΣ−2H̃.

(31)
In what follows, we use these asymptotic approximations to
analyze the one-bit quantized ZF precoder.

B. Asymptotic Received Downlink Signal

Using the results of the previous section, we have

FP =
1

σs

√
2

π

{
diag(PPH)

}− 1
2 P

−−−−→
M→∞

1

2Kσs(γ − 1)

√
2

π

{
diag(PPH)

}− 1
2

H̃HΣ−1,

(32)

G = HFP

−−−−→
M→∞

1

2Kσs(γ − 1)

√
2

π
ΣH̃

{
diag(PPH)

}− 1
2

H̃HΣ−1.

(33)

Although the expression for PPH in (31) is rank deficient for
any finite value of K, in the limit as both M and K go to
infinity (with γ = M/K being finite), PPH converges to the
following full-rank diagonal matrix assuming that there is not
a significant variation among the channel gains [41]:

PPH −−−−−−→
K,M→∞

ς

2K(γ − 1)2
IM , (34)
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where we have defined ς = 1
K

∑K
i=1 σ

−2
i to be the average of

the inverse squared channel gains. Thus, using (34) and (28)
in (33),

ΣH̃
{

diag(PPH)
}− 1

2

H̃HΣ−1

−−−−−−→
K,M→∞

2K
√

2K(γ − 1)2
√
ς

IK ,

(35)

so that

G −−−−−−→
K,M→∞

2
√
K(γ − 1)

σs
√
πς

IK . (36)

Using (20) and (32)-(36), the cross-covariance matrix of s̃
and s can be expressed as

Rs̃s =

√
2

π

√
ρ0σs√
M

H
{

diag(PPH)
}− 1

2 P

=

√
ρ0σ

2
s√

M
G

−−−−−−→
K,M→∞

2σs
√
ρ0(γ − 1)
√
πςγ

IK = βIK .

(37)

When the channel gains are all equal to σ, this expression
becomes

Rs̃s −−−−−−→
K,M→∞

2σsσ
√
ρ0(γ − 1)
√
πγ

IK . (38)

We observe that for large M and K, Rs̃s is diagonal with
positive real diagonal entries. This indicates that s̃k and sl are
uncorrelated for k 6= l, and hence the multi-user interference
disappears, and also that the received signal constellation is
not rotated. In addition, we see that the signal of interest is
received with a gain of β

σ2
s

, which grows as
√
γ. Hence, the

larger the value of γ = M/K, the deeper the received signal
will be pushed into the correct decision region, and hence the
lower the probability of a decoding error in the presence of
noise at the receiver.

In Fig. 2, we plot the scaling factor, β
σ2
s

found by simulation
when averaging over all K = 20 users and over 104 channel
realizations for a case with σs =

√
2, ρ0 = 1 and σi = σ =

1,∀i. The simulation curve is compared with the asymptotic
formula in (38), and shows very good accuracy for γ ≥ 10.

C. Asymptotic SQINR and Probability of Error

As described above, the matrix PPH asymptotically be-
comes a scaled identity matrix in (34). Using this result
together with (15), we have

Rdd = HRqqHH =ΣH̃RqqH̃
H

Σ

−−−−−−→
K,M→∞

2

(
1− 2

π

)
K(γ − 1)Σ2,

(39)

Substituting Eq. (39) and (36) into the general SQINR expres-
sion (23) yields

SQINRk −−−−−−→
K,M→∞

ρ0
σ2
n

4
πς

(
γ + 1

γ − 2
)

ρ0
σ2
n

2
(
1− 2

π

) (
1− 1

γ

)
σ2
k + 1

. (40)

2 4 6 8 10 12 14 16 18 20

1

1.5

2

2.5

3

3.5

4

4.5 Simulation

Asymptotic analyses

Fig. 2: Asymptotic and simulated average scaling factor, β
σ2
s

with respect to γ.

As before, assuming equally likely Gray-mapped QPSK sym-
bols, we have the probability of error for the kth user as

Pe =Pr(Q(rk) 6= sk) ' 2Q(
√
SQINRk)

−−−−−−→
K,M→∞

2Q


√√√√√ ρ0

σ2
n

4
πς

(
γ + 1

γ − 2
)

ρ0
σ2
n

2
(
1− 2

π

) (
1− 1

γ

)
σ2
k + 1

 .
(41)

In the case of equal channel gains,

SQINRk −−−−−−→
K,M→∞

ρ0
σ2
n

4σ2

π

(
γ + 1

γ − 2
)

ρ0
σ2
n

2σ2
(
1− 2

π

) (
1− 1

γ

)
+ 1

, (42)

so that

Pe ' 2Q


√√√√√ ρ0

σ2
n

4σ2

π

(
γ + 1

γ − 2
)

ρ0
σ2
n

2σ2
(
1− 2

π

) (
1− 1

γ

)
+ 1

 . (43)

For high SNR scenarios, the SQINRk can be approximated
by the signal to quantization and interference ratio (SQIRk)

SQIRk '
2
π (γ − 1)(

1− 2
π

)
σ2
kς
, (44)

and thus the probability of error will experience the following
error floor

Pe '2Q(
√
SQIRk)

'2Q

(√
2
π(

1− 2
π

)√γ − 1

σ2
kς

)
.

(45)

For equal channel gains, the high-SNR SQIRk is given by

SQIRk '
2
π

1− 2
π

(γ − 1) , (46)

so that the error floor becomes

Pe ' 2Q

(√
2
π

1− 2
π

(γ − 1)

)
. (47)
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Fig. 3: Variation of one-bit ZF precoding SER with the ratio
γ in the noiseless case.
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Fig. 4: Variation of SER with SNR, for varying number of
users, K and BS antennas, M .

In all cases we note the critical dependence of the SQINR
and probability of error on the quantity γ = M/K; in
particular, the SQINR increases approximately linearly with
γ. In Fig. 3, we have plotted the symbol error rate (SER) for
the case of no additive noise as a function of γ for various
choices of M and K averaged over 106 channel realizations.
We see that the simulations match the analysis very well,
and illustrate the importance of the ratio γ on performance.
Massive MIMO systems are typically envisioned to operate
with loading factors on the order of γ ' 10, and we see that
for this case the SER due to the one-bit quantization alone is
below 10−4, which bodes well for the use of the quantized
ZF precoder in practical scenarios.

-30 -20 -10 0 10 20 30

SNR

10
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10
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10
0

Simulation (M = 100)

Asymptotic Analysis (M = 100)

Simulation (M = 200)

Asymptotic Analysis (M = 200)

Fig. 5: Variation of SER with SNR for K = 20 users with
unequal channel gains and varying values of BS antennas M .

D. Simulations

In Fig. 4, we have plotted both the predicted and simulated
SER1 for one-bit quantized ZF precoding at the BS for
varied number of users as a function of the SNR, 2ρ0

σ2
n

, as
described in Section II-C. Again, 106 channel realizations were
used to generate the results, assuming equal channel gains,
σi = 1,∀i = 1, . . . ,K. We note the excellent match between
the simulations and analytical approximation in (43), which
validates our analysis. As expected, we observe that the SER
approaches an error floor at high SNR; for example, with
M ∼ 10K, the SER floor is of the order of 10−4. To see how
the analysis holds for non-asymptotic values of K and M ,
we have also performed the simulation for the case of K = 5
users. We observe that our asymptotic analysis is accurate even
for this non-asymptotic value. The results of simulation are
similar for K = 5 and K = 20 for both M/K = 5, 10. This
result reinforces the observation that performance is governed
by the ratio γ = M/K, independent of their specific values.

In Fig 5, we plot the average SER for the quantized ZF
precoding scenario, again with K = 20. Unlike the previous
example, we have assumed here that the users have unequal
channel gains; in this simulation, the square of the gains
were chosen as independent log-normal random variables,
such that ln(σ2

i ) ∼ N (µ, v2), ∀ i = 1, . . . ,K with parameters
v = 0.125 and µ = −v2/2, so that for large enough K,
1
K

∑K
k=1 σ

2
k → eµ+

v2

2 = 1. The results were generated using
105 channel realizations. For this case also, we can see that
the SER approaches an error floor of the order of 10−4 when
M ∼ 10K for high SNR. The simulations agree very well
with the asymptotic analysis.

In Fig. 6 we compare the NLS encoding approach (3) with
the quantized ZF precoder. Due to the complexity of the NLS
encoder, we can only perform the simulation for the relatively

1Assuming a Grey-encoded QPSK constellation, the bit-error rate (BER)
will typically equal 1/2 the SER except for cases with extremely low
SNR where performance is not particularly of interest. We observed this
correspondence in our simulation results; in the several cases we tested, there
was virtually no difference between the BER and 1/2 the SER.



8

-30 -20 -10 0 10 20 30

SNR

10
-2

10
-1

10
0

A
v
e
rg

a
 S

E
R

NLS precoding (Simulation)

One-bit ZF precoding (Asymptotic Analysis)

One-bit ZF precoding (Simulation)

Fig. 6: Variation of SER versus SNR for K = 2 users and
M = 10 BS antennas for one-bit ZF precoding and NLS
encoding for equal channel gains.

small values M = 10 and K = 2. The gains of the channel
rows are assumed to be equal: σ1 = σ2 = 1, and 104 channel
realizations were generated to compute the results. The value
of δ for the NLS approach was chosen to be δ = 1/

√
2σ2M ,

which makes the average norm of ‖Hx‖ ≈
√

2σ2KM equal
to that of ‖s‖ =

√
2K for QPSK signals.2 While the NLS

encoder is superior at high SNR, there is a broad range of low-
to medium-SNRs where the simple quantized ZF precoder
provides the same or slightly better performance, although the
complexity of the NLS approach prevents us from establishing
this in general for anything but systems with small M and
K. Still, the observed performance bodes well for the simple
quantized ZF precoder, since the low- to medium-SNR range
is of particular interest for massive MIMO implementations.

For the next example, we take the special case of K = 4
and assume that each user is being sent a different symbol.
In particular, the desired user symbols are chosen to be
s = [1 + j, 1 − j,−1 + j,−1 − j]T . In Fig. 7, we plot the
signals received by each of the four users (different symbol
for each user) and for M = 20, 100, 300 (different color for
each M ), assuming no receiver noise (the only source of error
here is the quantization at the transmitter). The simulations
have been performed over 102 independent channel realiza-
tions. We clearly see that as the value of M increases, the
average distance of the symbols from the decision boundary
increases, which indicates an increased robustness with respect
to additive noise with increasing γ.

V. BUSSGANG ADAPTED ONE-BIT ZF PRECODER

In this section, we use insights gained from our analysis
of the quantized ZF precoder to improve its performance.
We have seen that the cross-covariance matrix of s̃ and

2Note that better performance for NLS can be obtained by using a value
of δ that is optimized to change at the symbol rate with each x and s, as in
[32]. However, allowing an infinite precision (unquantized) gain that varies
at the symbol rate can be viewed as being at odds with the assumption of
simple one-bit DACs.
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Fig. 7: Plot of the received vector in a noiseless sce-
nario, for K = 4, and different values of M , M =
20 (red), 100 (green), 300 (blue). Different components of the
received vector are shown as different symbols.

intended vector s (37) reduces asymptotically with M and K
to a diagonal matrix with positive diagonal elements when
using the ZF precoder. This is a desirable property since
it implies that multiuser interference is eliminated, and the
received signal constellation is not rotated. Our objective in the
approach we present here is to enforce this diagonal structure

of H
{

diag(PPH)
}−1/2

P for any value of M and K, by
an improved choice of P. We will refer to this method as
“Bussgang-adapted” since the expression for Rs̃s we wish to
diagonalize was derived using the Bussgang theorem.

A. Principle

For H
{

diag(PPH)
}−1/2

P to be diagonal, we must
choose P so that{

diag(PPH)
}−1/2

P = H†D, (48)

where H† = HH(HHH)−1 and D represents some real-
valued positive diagonal matrix. For this to be true, we can
see that P must satisfy,

P = ΛH†D, (49)

with Λ =
{

diag(PPH)
}1/2

. Using (49) in (48), the following
condition must then hold:

Λ−1/2{diag(H†D2(H†)H)}−1/2Λ1/2H† = H†,

which simplifies to

diag(H†D2(H†)H) = IM . (50)

Note that Λ has vanished from (50) indicating that it does not
affect the signal of interest, and thus we take Λ = IM for
simplicity.
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Denoting T = H†, (50) becomes diag(TD2TH) = IM . It
can be written with respect to the diagonal entries of D =
Diag(d1, d2, . . . , dK) as

|t11|2 . . . |t1K |2
|t21|2 . . . |t2K |2

. . .
|tM1|2 . . . |tMK |2



d21
d22
. . .
d2K

 = 1M , (51)

where 1M is an M×1 vector of ones. Now define the M×K
matrix

T̃ =


|t11|2 . . . |t1K |2
|t21|2 . . . |t2K |2

. . .
|tM1|2 . . . |tMK |2


so that 

d21
d22
. . .
d2K

 = (T̃HT̃)−1T̃H1M . (52)

Solving (52), we can immediately deduce D.
For the precoder we obtain solving (48), the cross-

covariance matrix between s̃ and s is

Rs̃s =

√
ρ0HFP
√
M

Rss =

√
2ρ0
Mπ

σsD , (53)

indicating that all multi-user interference has been canceled.
The received signal can thus be described as

r =

√
2ρ0
Mπ

1

σs
Ds +

√
ρ0
M

Hq + n. (54)

The SQINR for the kth received symbol will be

SQINRk =
2ρ0
Mπd

2
k

ρ0
M [HRqqHH ]kk + σ2

n

, (55)

and the SER for the kth user for QPSK modulation and equally
likely signaling is

Pe ' 2Q

√ 2ρ0
Mπd

2
k

ρ0
M [HRqqHH ]kk + σ2

n

 (56)

B. Proposed Algorithm

Since we know H, it is easy to check whether or not
the Bussgang-adapted precoded vector induces fewer errors at
the receiver than the ZF precoder. Therefore, we propose the
algorithm shown in the table labeled “Algorithm 1” below.
For a given vector s and channel matrix, H, the initial ZF
precoding matrix P = H† is estimated. It is then checked
whether the channel output of the precoded matrix, when
subjected to quantization, gives an output that is equal to the
vector s. If it is, then the precoding matrix is taken to be
P = H† without further computation. If not, we compute the
Bussgang-adapted precoder, P̃ = H†D, where D is calculated
from (52), and we compare the number of symbol errors
produced at the receivers by both precoders after quantization
and multiplication by the channel matrix H. If the Bussgang-
adapted precoder P̃ produces fewer errors than the quantized
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Fig. 8: Variation of SER for one-bit quantized Bussgang
adapted and ZF precoding versus SNR for K = 3 users and
varying values of M .

ZF precoder P, then we reset P to be P̃. Mathematically, we
can write this condition as

‖1Q(HQ(Ps)) 6=s‖1 > ‖1Q(HQ(P̃s)) 6=s‖1 ,

where we define 1a6=b to be a vector whose k-th element is
1 when ak 6= bk and is 0 otherwise.

Algorithm 1: Bussgang adapted precoding algorithm
Input: s,H
Let P = H†

if Q(HQ(Ps)) 6= s then
Let P̃ = H†D, where D is found using eq. (52)
if ‖1Q(HQ(Ps)) 6=s‖1 > ‖1Q(HQ(P̃s))6=s‖1 then

P = P̃
end

end
Output: Resulting precoded vector is xP = Ps

In Figs. 8 and 9, we compare the SER performance of the
Bussgang adapted precoder with quantized ZF precoding as
a function of the SNR for a case with K = 3 and K = 10
users respectively. We see that the new algorithm achieves a
lower error floor in all cases compared with ZF precoding.
Also, we can observe that for a fixed number of users, K,
the improvement with respect to the ZF precoding increases
slightly with an increasing number of BS antennas, M .

VI. CONCLUSION

We have studied the use of quantized linear precoding for
the massive MIMO downlink scenario with one-bit DACs. We
derived closed form expressions for the SQINR and SER for
any linear precoder using the Bussgang decomposition. We
provided an analysis to show that asymptotically in the number
of antennas M and the number of users K, the algorithm
yields signals at the user terminals that are scaled versions of
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Fig. 9: Variation of SER for one-bit quantized Bussgang
adapted and ZF precoding versus SNR for K = 10 users and
varying values of M .

the desired symbols, with the scaling increasing proportion-
ally to

√
M/K. Simulations suggest that, at least for small

system dimensions, the algorithm can achieve slightly better
performance than the NLS encoder for low to moderate SNRs,
at a fraction of the computational cost. We also presented
a modified version of the quantized ZF precoder that yields
lower SERs at high SNR.
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