A non-linear wave equation with fractional perturbation
Aurélien Deya

To cite this version:
| Aurélien Deya. A non-linear wave equation with fractional perturbation. 2017. <hal-01558548>

HAL Id: hal-01558548
https://hal.archives-ouvertes.fr/hal-01558548
Submitted on 8 Jul 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A non-linear wave equation with fractional perturbation

Aurélien Deya

Abstract: We study a d-dimensional wave equation model ($2 \leq d \leq 4$) with quadratic non-linearity and stochastic forcing given by a space-time fractional noise. Two different regimes are exhibited, depending on the Hurst parameter $H = (H_0, \ldots, H_d) \in (0,1)^{d+1}$ of the noise: if $\sum_{i=0}^d H_i > d - \frac{1}{2}$, then the equation can be treated directly, while in the case $d - \frac{3}{2} < \sum_{i=0}^d H_i \leq d - \frac{1}{2}$, the model must be interpreted in the Wick sense, through a renormalization procedure.

Our arguments essentially rely on a fractional extension of the considerations of [12] for the two-dimensional white-noise situation, and more generally follow a series of investigations related to stochastic wave models with polynomial perturbation.

Keywords: Stochastic wave equation; Fractional noise; Wick renormalization.

2000 Mathematics Subject Classification: 60H15, 60G22, 35L71.

1. Introduction and main results

In this paper, we propose to study the following non-linear stochastic wave equation:

\[
\begin{cases}
\partial_t^2 u - \Delta u + \rho^2 u^2 = \dot{B}, & t \in [0,T], \ x \in \mathbb{R}^d, \\
\ u(0,.) = \phi_0, & \partial_t u(0,.) = \phi_1
\end{cases}
\]

where ϕ_0, ϕ_1 are (deterministic) initial conditions in an appropriate Sobolev space, $\rho : \mathbb{R}^d \to \mathbb{R}$ is a smooth (deterministic) function with support included in a bounded domain $D \subset \mathbb{R}^d$, and $\dot{B} = \partial_t \partial_{x_1} \cdots \partial_{x_{d-1}} B$ for some space-time fractional Brownian motion $B = B^H$ of Hurst index $H = (H_0, H_1, \ldots, H_d) \in (0,1)^{d+1}$. For the sake of clarity, let us here recall the specific definition of this process:

Definition 1.1. Fix $d \geq 1$. For any $H = (H_0, H_1, \ldots, H_d) \in (0,1)^{d+1}$, a centered gaussian process $B : \Omega \times ([0,T] \times \mathbb{R}^d) \to \mathbb{R}$ is called a space-time fractional Brownian motion (or a fractional Brownian sheet) of Hurst index H if its covariance function is given by the formula

\[
\mathbb{E}[B(s,x_1,\ldots,x_d)B(t,y_1,\ldots,y_d)] = R_{H_0}(s,t) \prod_{i=1}^d R_{H_i}(x_i,y_i),
\]

where

\[
R_{H_i}(x,y) \Delta \frac{1}{2} |x|^{2H} + |y|^{2H} - |x-y|^{2H}.
\]

In particular, a space-time fractional Brownian motion of Hurst index $(\frac{1}{2},\ldots,\frac{1}{2})$ is a Wiener process (and in this case the derivative \dot{B} is a space-time white noise).

Since the pioneering works of Mandelbrot and Van Ness, fractional noises have been considered as very natural stochastic perturbation models, that offer more flexibility than classical white-noise-driven equations. The involvement of fractional inputs first occured in the setting of standard differential equations and, even in this simple context, is known to raise numerous difficulties due to the non-martingale nature of the process. Sophisticated alternatives to Itô theory must then come into the picture, whether fractional calculus, Malliavin calculus or rough paths theory, to mention just the most standard methods.

More recently, fractional (multiparameter) noises have also appeared within SPDE models. A first widely-used example is given by white-in-time colored-in-space Gaussian noises, that can be treated in the classical framework of Walsh’s martingale-measure theory [25], or with Da Prato-Zabczyk’s infinite-dimensional approach to stochastic calculus [6]. Such noise models have thus been applied to a large class

1Institut Élie Cartan, Université de Lorraine, BP 70239, 54506 Vandoeuvre-lès-Nancy, France. Email: aurelien.deya@univ-lorraine.fr
of PDE dynamics, and the properties of the solutions to the resulting SPDEs are often well understood (see [6] and the numerous references therein).

SPDEs involving a fractional-in-time noise are much more delicate to handle (Walsh and Da Prato-Zabczyk theories no longer apply in this case), and the related literature is in fact very scarce:

- In the parabolic setting, one can first mention [24] for the study of a homogeneous equation with additive fractional Brownian motion, and the series of papers [16, 17, 18] for the analysis of a linear multiplicative perturbation of the heat equation. Pathwise approaches to the parabolic fractional problem have also been considered in [9, 14] using rough-paths ideas, and in [7, 8] with the formalism of Hairer’s theory of regularity structures.

- For the wave equation, and to the best of our knowledge, the results are so far limited to the analysis of the specific one-dimensional ($d = 1$) situation [5, 10, 20], and to the study of affine models when $d \geq 2$: homogeneous equation with additive fractional noise in [2] and multiplicative linear noise in [1] (with time-fractional order $H_0 > 1/2$ and space covariance structure given by a Riesz kernel of order $\alpha > d - 2$).

In brief, SPDEs, and especially stochastic hyperbolic equations, driven by a space-time fractional noise remain a widely-open field at this point. Note in particular that the wave-equation case cannot be treated within the recently-introduced framework of regularity structures ([15]), due to the lack of regularization properties for the wave kernel with respect to space-time Sobolev topologies.

With this general background in mind, let us now go back to the consideration of equation (1). Our approach to the model will directly follow a series of investigations [3, 4, 12, 19, 23] devoted to the study of stochastic wave (or Schrödinger) equations involving a polynomial drift term. Our study can more specifically be seen as a fractional extension of the results of [12] for the white-noise situation. In the last five references, and in our study as well, the strategy to handle the equation relies (among others) on a central ingredient that is often referred to as the Da Prato-Debussche’s trick, and which (roughly speaking) consists in regarding the solution u of (1) as some “perturbation” of the solution Ψ to the associated “free” equation

$$
\begin{align*}
\partial_t^2 \Psi - \Delta \Psi &= \dot{B}, & t \in [0, T], & x \in \mathbb{R}^d, \\
\Psi(0,.) &= 0, & \partial_t \Psi(0,.) &= 0.
\end{align*}
$$

(2)

In fact, staying at a heuristic level, observe that the difference process $v \doteq u - \Psi$ satisfies (morally) the equation

$$
\begin{align*}
\partial_t^2 v - \Delta v + \rho^2 (v^2 + 2v \cdot \Psi + \Psi^2) &= 0, & t \in [0, T], & x \in \mathbb{R}^d, \\
v(0,.) &= \phi_0, & \partial_t v(0,.) &= \phi_1.
\end{align*}
$$

(3)

The key of the method then lies in the fact that, once endowed with a good understanding of the pair (Ψ, Ψ^2), equation (3) turns out to be much more tractable than the original equation (2), and can be solved with pathwise arguments. The procedure thus emphasizes the following idea: to some extent, the difficulties behind the analysis of equation (2) reduce to the difficulties in the study of the two processes Ψ and Ψ^2. Note in particular that this (widely-used) approach offers a clear splitting between the stochastic part of the analysis (i.e., the study of (Ψ, Ψ^2)), and the deterministic part of the problem (i.e., the pathwise study of (3)). This decomposition is very reminiscent of the spirit of rough paths (or regularity structures) theory, where the solution to the problem is also built in a deterministic way around a stochastically-constructed process.

The solution Ψ of (2) is therefore expected to play a fundamental role in the analysis, and a first step consists of course in providing a clear definition of this process (we recall that the space-time fractional setting is not exactly standard). To this end, we will appeal to a natural approximation procedure and construct Ψ as the limit of a sequence of (classical) solutions driven by a smooth approximation \dot{B}_n of \dot{B} (or equivalently a smooth approximation B_n of B). Just as in [7, 8], the approximation that we will consider here is derived from the so-called harmonizable representation of the space-time fractional
Brownian motion (see e.g. [22]), that is the formula (valid for every $H = (H_0, \ldots, H_d) \in (0,1)^{d+1}$)

$$B(t,x_1,\ldots,x_d) = c_H \int_{\xi \in \mathbb{R}} \int_{\eta \in \mathbb{R}^d} \tilde{W}(d\xi, d\eta) e^{it \xi} - 1 \prod_{i=1}^d e^{x_i \eta_i} - 1,$$

where $c_H > 0$ is a suitable constant and \tilde{W} is the Fourier transform of a space-time white noise in \mathbb{R}^{d+1}, defined on some filtered probability space Ω, F, \mathbb{P}. The approximation $(B_n)_{n \geq 1}$ of B is then defined as

$$B_n(t,x_1,\ldots,x_d) \triangleq c_H \int_{|\xi| \leq 2^n} \int_{|\eta| \leq 2^n} \tilde{W}(d\xi, d\eta) e^{it \xi} - 1 \prod_{i=1}^d e^{x_i \eta_i} - 1.$$ (4)

It is readily checked that for all fixed $H = (H_0, H_1, \ldots, H_d) \in (0,1)^{d+1}$ and $n \geq 1$, B_n defines a smooth function (almost surely). Accordingly, the associated equation

$$\begin{cases}
\partial_t^2 \Psi_n - \Delta \Psi_n = B_n, & t \in [0,T], \quad x \in \mathbb{R}^d, \\
\Psi_n(0, \cdot) = 0, & \partial_t \Psi_n(0, \cdot) = 0
\end{cases}$$ (5)

falls within the class of standard hyperbolic systems, for which a unique (global) solution Ψ_n is known to exist. Our first result now reads as follows:

Proposition 1.2. For all $d \geq 1$ and $(H_0, H_1, \ldots, H_d) \in (0,1)^d$, $(\Psi_n)_{n \geq 1}$ is a Cauchy sequence in the space $L^p(\Omega; L^\infty([0,T]; W^{-\alpha,p}(D)))$, for all $p \geq 2$ and

$$\alpha > d - \frac{1}{2} - \sum_{i=0}^d H_i.$$ (6)

In particular, $(\Psi_n)_{n \geq 1}$ converges to a limit in $L^p(\Omega; L^\infty([0,T]; W^{-\alpha,p}(D)))$, that we denote by Ψ.

Remark 1.3. In [2], the authors tackle the fractional model (2) using a Malliavin-calculus approach, which provides an interpretation and a solution of the equation that may be considered as more intrinsic. In fact, we think that this Malliavin-calculus solution to (2) could be identified with the limit process Ψ exhibited Proposition 1.2, but we will not dwell on this identification procedure, since we find it relatively removed from the purpose of our analysis (and this would require the introduction of the whole Malliavin-calculus framework). Observe that the results of [2] also highlights the threshold $\sum_{i=0}^d H_i = d - \frac{1}{2}$ (with the additional assumption $H_0 > \frac{1}{2}$) for Ψ to be either a function or a distribution.

Based on Proposition 1.2, the limit process Ψ will therefore be considered (almost surely) as a function when $\sum_{i=0}^d H_i > d - \frac{1}{2}$ and as a distribution otherwise. In the latter situation, and when turning to the study of the auxiliary equation (3), one must then cope with the problem of interpreting the product Ψ^2.

Just as in [12, 19], we will actually understand this product in the Wick sense, which, again, can be made rigorous through an approximation/renormalization procedure:

Proposition 1.4. Fix $d \geq 1$ and let $(H_0, H_1, \ldots, H_d) \in (0,1)^{d+1}$ such that

$$d - \frac{3}{4} < \sum_{i=0}^d H_i \leq d - \frac{1}{2},$$ (7)

and consider the Wick-renormalized product $\hat{\Psi}_n^2(t,y) \triangleq \Psi_n(t,y)^2 - \sigma_n(t,y)$, with $\sigma_n(t,y) \triangleq \mathbb{E}[\Psi_n(t,y)^2]$. Then $(\hat{\Psi}_n^2)_{n \geq 1}$ is a Cauchy sequence in the space $L^p(\Omega; L^\infty([0,T]; W^{-2\alpha, p}(D)))$, for all $p \geq 2$ and

$$\alpha > d - \frac{1}{2} - \sum_{i=0}^d H_i.$$ (8)

In particular, $(\hat{\Psi}_n^2)_{n \geq 1}$ converges to a limit in $L^p(\Omega; L^\infty([0,T]; W^{-2\alpha, p}(D)))$, that we denote by $\hat{\Psi}_n^2$.
Two distinct treatments of the problem (corresponding to the two regimes \(d - \frac{1}{2} - \sum_{i=0}^{d} H_i < \alpha < 0 \) and \(d - \frac{1}{2} - \sum_{i=0}^{d} H_i \geq \alpha \geq 0 \) in Proposition 1.2) are thus to occur in the sequel, with a clear transition phenomenon regarding the interpretation of the product \(\Psi^2 \) and the need for renormalization. In order to encompass these two regimes into a single framework, let us slightly extend the formulation of (3) and consider the more general (deterministic) equation

\[
\begin{aligned}
\begin{cases}
\partial_t^2 v - \Delta v + \rho^2 (v^2 + v \cdot \Pi^1 + \Pi^2) = 0, & t \in [0, T], \quad x \in \mathbb{R}^d, \\
v(0,.) = \phi_0, & \partial_t v(0,.) = \phi_1,
\end{cases}
\end{aligned}
\tag{9}
\]

where the two “parameters” \(\Pi^1 \) and \(\Pi^2 \) will be either functions or distributions in suitable Sobolev spaces. Our interpretation of the model (1) can now be expressed as follows:

Definition 1.5. Let \(\Psi \) and \(\hat{\Psi}^2 \) be the processes defined in Proposition 1.2 and Proposition 1.4.

(i) A stochastic process \((u(t,x))_{t \in [0,T], x \in \mathbb{R}^d} \) is said to be a solution (on \([0, T]\)) of the equation

\[
\begin{aligned}
\begin{cases}
\partial_t^2 u - \Delta u + \rho^2 u^2 = \hat{B}, & t \in [0, T], \quad x \in \mathbb{R}^d, \\
u(0,.) = \phi_0, & \partial_t u(0,.) = \phi_1
\end{cases}
\end{aligned}
\tag{10}
\]

if, almost surely, \(\Psi \) is a function and the auxiliary process \(v := u - \Psi \) is a mild solution (on \([0, T]\)) of Equation (9) with \(\Pi^1 \triangleq 2 \Psi \) and \(\Pi^2 \triangleq \hat{\Psi}^2 \).

(ii) A stochastic process \((u(t,x))_{t \in [0,T], x \in \mathbb{R}^d} \) is said to be a solution (on \([0, T]\)) of the Wick-renormalized equation

\[
\begin{aligned}
\begin{cases}
\partial_t^2 u - \Delta u + \rho^2 u^2 = \hat{B}, & t \in [0, T_0], \quad x \in \mathbb{R}^d, \\
u(0,.) = \phi_0, & \partial_t u(0,.) = \phi_1
\end{cases}
\end{aligned}
\tag{11}
\]

if, almost surely, the auxiliary process \(v := u - \Psi \) is a mild solution (on \([0, T]\)) of Equation (9) with \(\Pi^1 \triangleq 2 \Psi \) and \(\Pi^2 \triangleq \hat{\Psi}^2 \).

The results of Section 3 will in fact allow us to give a clear sense to the notion of a mild solution to (9) (with values in a specific space), thus completing the above definition. We are finally in a position to state the main results of our study.

Theorem 1.6. Let \((\phi_0, \phi_1) \in \mathcal{W}^{\frac{1}{2}}(\mathbb{R}^d) \times \mathcal{W}^{\frac{1}{2}}(\mathbb{R}^d) \). For any \(2 \leq d \leq 4 \), there exists a \((d, \frac{1}{4})\)-admissible pair \((q, r)\) (see Definition 3.4) such that the following (non-exhaustive) picture holds true:

(i) If \(\sum_{i=0}^{d} H_i > d - \frac{1}{2} \), then, almost surely, there exists a time \(T_0 > 0 \) such that the equation (10) admits a unique solution \(u \) in the set

\[
S_{T_0} \triangleq \Psi + X^\Psi(T_0), \quad \text{where} \quad X^\Psi(T_0) \triangleq L^\infty([0, T_0]; \mathcal{W}^{\frac{1}{2}}(\mathbb{R}^d)) \cap L^q([0, T_0]; L^r(\mathbb{R}^d)).
\tag{12}
\]

(ii) If \(d - \frac{3}{4} < \sum_{i=0}^{d} H_i \leq d - \frac{1}{2} \), then, almost surely, there exists a time \(T_0 > 0 \) such that the Wick-renormalized equation (11) admits a unique solution \(u \) in the (above-defined) set \(S_{T_0} \).

Using the continuity properties of the solution \(v \) of (9) with respect to \((\Pi^1, \Pi^2)\), we will also be able to “lift” the convergence statements for \(\Psi \) and \(\hat{\Psi}^2 \) (i.e., the results of Propositions 1.2 and 1.4) at the level of the equation, which offers the following alternative interpretation of the model:

Theorem 1.7. Let \((\phi_0, \phi_1) \in \mathcal{W}^{\frac{1}{2}}(\mathbb{R}^d) \times \mathcal{W}^{\frac{1}{2}}(\mathbb{R}^d) \). For any \(2 \leq d \leq 4 \), there exists a \((d, \frac{1}{4})\)-admissible pair \((q, r)\) (see Definition 3.4) such that the following (non-exhaustive) picture holds true:

(i) If \(\sum_{i=0}^{d} H_i > d - \frac{1}{2} \), consider the sequence \((u_n)_{n \geq 1} \) of (classical) solutions to the equation

\[
\begin{aligned}
\begin{cases}
\partial_t^2 u_n - \Delta u_n + \rho^2 u_n^2 = \hat{B}_n, & t \in [0, T_0], \quad x \in \mathbb{R}^d, \\
u(0,.) = \phi_0, & \partial_t u(0,.) = \phi_1
\end{cases}
\end{aligned}
\tag{13}
\]

Then, almost surely, there exists a time \(T_0 > 0 \) and a subsequence of \((u_n)\) that converges in \(L^\infty([0, T_0]; L^2(D)) \) to the solution \(u \) exhibited in Theorem 1.6 (item (i)).
(ii) If \(d - \frac{3}{2} < \sum_{i=0}^{d} H_i \leq d - \frac{1}{2} \), set \(\sigma_n(t) \overset{\Delta}{=} \mathbb{E}[\Psi_n(t, x)^2] \) and consider the sequence \((u_n)_{n \geq 1} \) of (classical) solutions to the renormalized equation

\[
\begin{cases}
\partial_t^2 u_n(t, x) - \Delta u_n(t, x) + \rho_n^2(x)(u_n(t, x)^2 - \sigma_n(t)) = \dot{B}_n(t, x), & t \in [0, T_0], x \in \mathbb{R}^d, \\
u_0(0, .) = \phi_0, & \partial_t u_n(0, .) = \phi_1.
\end{cases}
\]

Then

\[
s_n(t) \overset{n \to \infty}{\to} \begin{cases} c_{H_1} t 2^{n d - \frac{3}{2} - \sum_{i=0}^{d} H_i} & \text{if } \sum_{i=0}^{d} H_i < d - \frac{1}{2}, \\
c_{H_1} t n & \text{if } \sum_{i=0}^{d} H_i = d - \frac{1}{2}, \\
c_{H_1} t n & \text{if } \sum_{i=0}^{d} H_i > d - \frac{1}{2}.
\end{cases}
\]

for some constants \(c_{H_1}, c_{H_1}^2 \), and, almost surely, there exists a time \(T_0 > 0 \) and a subsequence of \((u_n) \) that converges in \(L^\infty([0, T_0]; W^{-\alpha, 2}(D)) \) to the solution \(u \) exhibited in Theorem 1.6 (item (ii)), for every \(\alpha > d - \frac{3}{2} - \sum_{i=0}^{d} H_i \).

The next sections are thus devoted to the proof of these successive statements. Let us conclude this introduction with a few additional remarks about Theorems 1.6 and 1.7.

Remark 1.8. The consideration of the linear combination \(\sum_{i=0}^{d} H_i \) in the above splitting must be compared with the role of the linear combination \(2H_0 + \sum_{i=1}^{d} H_i \) in the study of the fractional heat equation (see e.g. [7, Theorem 1.2]). These combinations naturally echo the hyperbolic and parabolic settings, with scaling coefficient \(s = (1, 1, \ldots, 1) \) and \(s = (2, 1, \ldots, 1) \), respectively.

Remark 1.9. The 'non-exhaustive' notification in Theorem 1.6 and Theorem 1.7 refers of course to the fact that the two situations (i) and (ii) do not cover the whole range of possibilities for the Hurst index \(H = (H_0, \ldots, H_d) \in (0, 1)^{d+1} \) of the noise. At this point, we must admit that we are not able to handle the rougher situation \(\sum_{i=0}^{d} H_i \leq d - \frac{1}{2} \). The main reason of this restriction lies in our computations towards Proposition 1.4 (Section 2.2), which lean in an essentially way on the possibility to pick \(\alpha < \frac{1}{4} \) and this can only be done if \(\sum_{i=0}^{d} H_i > d - \frac{3}{2} \), due to condition (8)).

Remark 1.10. The forthcoming proofs (and accordingly the above results) could certainly be extended to more general covariance structures, such as the ones considered for instance in [2]. Our arguments are indeed based on a Fourier-type analysis, which suggests that a suitable control on the Fourier transform of the covariance function might be sufficient for the computations to remain valid. Besides, we think that, just as in rough paths or regularity structures results, the above properties are in fact relatively independent of the choice of the approximation \(B_n \). For instance, using an appropriate Fourier transformation, the results should be the same when starting from an approximation of the form \(B_n \overset{\Delta}{=} \varphi_n * B \), for a given mollify sequence \((\varphi_n)_{n \geq 1} \) (the only possible difference may be the value of the constants \(c_{H_1}, c_{H_1}^2 \) in (15), as classically observed in regularity structures theory).

Remark 1.11. For \(d = 2 \), our results cover the white-noise situation \(H_0 = H_1 = H_2 = \frac{1}{2} \), and so we can consider Theorem 1.6 as a fractional extension of [12, Theorem 1.1] in the quadratic case (for the non-linearity). Our study thus offers an additional illustration of the flexibility of the general two-step procedure described above (i.e., we first study the free equation (2) and then the auxiliary equation (9)). Observe that the white-noise situation for \(d = 2 \) corresponds here to a “border case”, that is a case for which \(\sum_{i=0}^{d} H_i = d - \frac{3}{2} \), with specific rate of divergence in (15).

Remark 1.12. As the reader may have guessed it, the involvement of the smooth function \(\rho \) in (1) is only meant to bring the the computations back to a compact space-time domain (which will be often essential in the sequel). Thus, our results should morally be read as local results, both in time and in space, for the real “target” equation, that is the equation with \(\rho \equiv 1 \). What refrained us to formulate the problem on a torus (just as in [12, 19]) is the consideration of the fractional noise, which is more convenient to define and handle on the whole Euclidean space.
As we already pointed it out, our analysis will be clearly divided into a stochastic and a deterministic part. The organization of the paper will follow this splitting. Section 2 is first devoted to the stochastic analysis, that is the study of Ψ_n and the proof of Propositions 1.2 and 1.4. The estimation (15) of the renormalization constant (which is directly related to Ψ_n) will also be carried out in this section. In Section 3, we will focus on the deterministic study of the auxiliary equation (9), first in the “regular” case where Π^1 and Π^1 are functions (Proposition 3.6), and then in the distributional situation (Proposition 3.8). We will finally combine these successive results in Section 4 to derive the proof of Theorem 1.6 and Theorem 1.6.

2. Study of the (stochastic) linear equation

We here propose to tackle the issues related to the solution Ψ_n of the regularized equation (5).

For a fixed dimension $d \geq 1$, let us denote by G the Green function associated with the standard d-dimensional wave equation and recall that the (space) Fourier transform of G is explicitly given for all $t \geq 0$ and $x \in \mathbb{R}^d$ by the formula

$$\int_{\mathbb{R}^d} dy e^{-i(x,y)} G_t(y) = \frac{\sin(t|x|)}{|x|}.$$

Now, the solution Ψ_n of (5) can be written as

$$\Psi_n(t,x) = \int_0^t ds \left(G_{t-s} * \hat{B}_n(s) \right)(x)$$

$$= c \int_{|\xi| \leq 2^n} \int_{|\eta| \leq 2^n} \hat{W}(d\xi, d\eta) \frac{\xi}{|\xi||\eta|} \prod_{i=1}^d \eta_i^{\xi_i} \int_0^t ds \int_{\mathbb{R}} dy G_{t-s}(x-y) e^{i\xi y} e^{i\eta r}$$

$$= c \int_{|\xi| \leq 2^n} \int_{|\eta| \leq 2^n} \hat{W}(d\xi, d\eta) \frac{\xi}{|\xi||\eta|} \prod_{i=1}^d \eta_i^{\xi_i} \gamma_t(\xi, |\eta|),$$

(16)

where for all $t \geq 0$, $\xi \in \mathbb{R}$ and $r > 0$, we define the quantity $\gamma_t(\xi, r)$ as

$$\gamma_t(\xi, r) \triangleq e^{i\xi t} \int_0^t ds e^{-i\xi s} \frac{\sin(sr)}{r}.$$

(17)

Let us also set $\gamma_{s,t}(\xi, r) \triangleq \gamma_t(\xi, r) - \gamma_s(\xi, r)$.

With these notations in hand, our computations towards Proposition 1.2 and Proposition 1.4 will extensively rely on the two following elementary estimates.

Lemma 2.1. For all $0 \leq s \leq t \leq 1$, $\xi \in \mathbb{R}$, $r > 0$ and $\kappa \in [0, 1]$, it holds that

$$|\gamma_{s,t}(\xi, r)| \lesssim |t-s|^\kappa \min \left(1 + \frac{1}{|\xi|^{1-\kappa}}, \frac{1}{|\xi|^\kappa}, \frac{r^\kappa + |\xi|^\kappa}{r \frac{|\xi|^{1-\kappa} - 1}} \right).$$

(18)

Proof. First, one has obviously

$$|\gamma_{s,t}(\xi, r)| \lesssim |e^{i\xi t} - e^{i\xi s}| \int_0^t du e^{-i\xi u} \frac{\sin(ur)}{r} + \int_s^t du e^{-i\xi u} \frac{\sin(ur)}{r} \lesssim |\xi|^\kappa |t-s|^\kappa + |t-s|.$$

Then observe that

$$\gamma_t(\xi, r) = e^{i\xi t} \int_0^t ds e^{-i\xi s} \frac{\sin(sr)}{r} = -\frac{\sin(t\xi)}{t\xi} + e^{i\xi t} \int_0^t ds e^{-i\xi s} \cos(sr),$$

which readily entails $|\gamma_{s,t}(\xi, r)| \lesssim \frac{|t-s|}{|\xi|^\kappa} + \frac{|t-s|^\kappa}{|\xi|^{1-\kappa}}$. Finally, it can be checked that

$$\gamma_t(\xi, r) = \frac{1}{2r} \left[\frac{e^{i\xi t} - e^{i\xi t}}{\xi - t} - \frac{e^{-i\xi t} - e^{-i\xi t}}{\xi + t} \right],$$

(19)

which easily leads to

$$|\gamma_{s,t}(\xi, r)| \lesssim \frac{|t-s|^\kappa (r^\kappa + |\xi|^\kappa)}{r \frac{|\xi|^{1-\kappa} - 1}}.$$
Corollary 2.2. For all $0 \leq s \leq t \leq 1$, $H \in (0, 1)$, $r > 0$, $\varepsilon \in (0, 1)$ and $\kappa \in [0, \inf(H, 1/2))$, it holds that

$$\int \frac{\gamma_{s,t}(\xi,r)^2}{|\xi|^{2H-1}} d\xi \lesssim |t-s|^{2\kappa} \min\left(1, \frac{1}{r^{2+2(H-\kappa)}} + \frac{1}{r^{1+2H-\varepsilon}}\right).$$

Proof. First,

$$\int \frac{\gamma_{s,t}(\xi,r)^2}{|\xi|^{2H-1}} d\xi \lesssim |t-s|^{2\kappa} \left[\int_{|\xi| \leq 1} \frac{d\xi}{|\xi|^{2H-1}} + \int_{|\xi| \geq 1} \frac{d\xi}{|\xi|^{2(H-\kappa)+1}} \right] \lesssim |t-s|^{2\kappa}.$$

Then consider the decomposition

$$\int \frac{\gamma_{s,t}(\xi,r)^2}{|\xi|^{2H-1}} d\xi = \int \frac{\gamma_{s,t}(\xi,r)^2}{|\xi|^{2H-1}} d\xi + \int \frac{\gamma_{s,t}(\xi,r)^2}{|\xi|^{2H-1}} d\xi \lesssim |t-s|^{2\kappa}.$$

On the other hand, it holds that

$$\int_{|\xi| \geq \frac{1}{r}} \frac{\gamma_{s,t}(\xi,r)^2}{|\xi|^{2H-1}} d\xi \lesssim \frac{|t-s|^{2\kappa}}{r^2} \int_{|\xi| \leq \frac{1}{r}} d\xi + \frac{|t-s|^{2\kappa}}{|\xi|^{2H-1}} \int_{|\xi| \geq \frac{1}{r}} d\xi \lesssim \frac{|t-s|^{2\kappa}}{r^2}.$$

On the other hand, for any $\lambda \in (0, 1]$, one has

$$\int_{|\xi| \leq \frac{1}{r}} \frac{\gamma_{s,t}(\xi,r)^2}{|\xi|^{2H-1}} d\xi \lesssim \frac{|t-s|^{2\kappa}}{r^2} \int_{|\xi| \leq \frac{1}{r}} d\xi + \frac{|t-s|^{2\kappa}}{|\xi|^{2H-1}} \int_{|\xi| \leq \frac{1}{r}} d\xi \lesssim \frac{|t-s|^{2\kappa}}{r^2}.$$

and we get the conclusion by taking $\lambda = \frac{1+\varepsilon}{2(1-\kappa)} \in (0, 1]$.

\[\square\]

2.1. Proof of Proposition 1.2. For the sake of clarity, we shall assume that $T \leq 1$ and set, for all $m, n \geq 1$, $\Psi_{n,m} = \Psi_m - \Psi_n$.

Step 1: Let us show that for all $m \geq n \geq 1$, $x \in \mathbb{R}^d$, $0 \leq s < t \leq 1$ that this, and let us first and $\varepsilon > 0$ small enough, one has

$$\mathbb{E}\left[|F^{-1}\{(1+|.|^2)^{-1/2} F(\Psi_{n,m}(t,.) - \Psi_{n,m}(s,.))(x)\}|^2 \right] \lesssim 2^{-2\kappa} |t-s|^{2\varepsilon},$$

where the proportional constant does not depend on m, n, s, t and x.

To this end, let us first write

$$\mathbb{E}\left[|F^{-1}\{(1+|.|^2)^{-1/2} F(\Psi_{n,m}(t,.) - \Psi_{n,m}(s,.))(x)\}|^2 \right] = \int_{\mathbb{R}^d} d\lambda \int_{\mathbb{R}^d} dy \int_{\mathbb{R}^d} d\tilde{\lambda} \int_{\mathbb{R}^d} d\tilde{y} \ e^{i(x,\tilde{\lambda})} \{1 + |\lambda|^2\} \tilde{\lambda} e^{-i(\lambda,y)} = \mathbb{E}\left[\{\Psi_{n,m}(t,y) - \Psi_{n,m}(s,y)\} \{\Psi_{n,m}(t,y) - \Psi_{n,m}(s,y)\} \right].$$

Then, with expression (16) in mind, note that

$$\mathbb{E}\left[\{\Psi_{n,m}(t,y) - \Psi_{n,m}(s,y)\} \{\Psi_{n,m}(t,y) - \Psi_{n,m}(s,y)\} \right] = c \int_{(\xi,\eta) \in D_{m,n}} d\xi d\eta \frac{1}{|\xi|^{2H-1}} \prod_{i=1}^d \frac{1}{|\eta_i|^{2H-1}} |\gamma_{s,t}(\xi,|\eta|)|^2 e^{i(x,y)} e^{-i(t,y)}.$$
where $D_{m,n} \triangleq (B^d_{-m} \times B^d_{m}) \setminus (B^d_{-m} \times B^d_{m})$, $B^d_{\lambda} \triangleq \{ \lambda \in \mathbb{R}^k, |\lambda| \leq 2^d \}$, and accordingly
\[
\mathbb{E}
\left[
\mathcal{F}^{-1}
\left(
(1 + |\cdot|^2)^{-\frac{1}{2}}
\mathcal{F}(\Psi_{n,m}(t,\cdot) - \Psi_{n,m}(s,\cdot))(x)
\right)^2
\right]
= c \int_{(\xi,\eta) \in D_{m,n}} d\xi d\eta \frac{1}{|\xi|^{2H_0-1}} \prod_{i=1}^d \frac{1}{|\eta_i|^{2H_1-1}} \left(1 + |\eta|^2\right)^{-\alpha} |\gamma_{s,t}(\xi,|\eta|)|^2
\lesssim \int_{2^n \leq |\xi| \leq 2^m} d\xi \int_{|\eta| \leq 2^m} d\eta \frac{1}{|\xi|^{2H_0-1}} \prod_{i=1}^d \frac{1}{|\eta_i|^{2H_1-1}} \left(1 + |\eta|^2\right)^{-\alpha} |\gamma_{s,t}(\xi,|\eta|)|^2
+ \int_{|\xi| \leq 2^n} d\xi \int_{2^n \leq |\eta| \leq 2^m} d\eta \frac{1}{|\xi|^{2H_0-1}} \prod_{i=1}^d \frac{1}{|\eta_i|^{2H_1-1}} \left(1 + |\eta|^2\right)^{-\alpha} |\gamma_{s,t}(\xi,|\eta|)|^2 \leq I_{m,n}(s,t) + II_{m,n}(s,t).
\]

Let us focus on the estimation of $I_{m,n}(s,t)$ (the treatment of $II_{m,n}(s,t)$ can be done along similar arguments). Using an elementary spherical change of variable for the η_i-coordinates, we get that for any $0 < \epsilon < H_0$
\[
I_{m,n}(s,t) \leq 2^{-2nc} \int_{\mathbb{R}} \frac{d\xi}{|\xi|^{2H_0-2\epsilon-1}} \int_0^\infty dr \frac{\{1 + r^2\}^{-\alpha}}{r^{d(2(1 + \cdots + H_d) - 2d + 2i + 1)}} |\gamma_{s,t}(\xi,|r|)|^2 \int_{[0,2\epsilon]^{d-1}} d\theta_1 \cdots d\theta_{d-1} \prod_{i=1}^{d-1} \frac{1}{\cos(\theta_i)^{2H_1-1}} \sin(\theta_i)^{2(1 + \cdots + H_d) - 2d + 2i + 1},
\]
and since $\max(2H_1 - 2, 2(1 + \cdots + H_d) - 2d + 2i + 1) < 1$ for every $i \in \{1, \ldots, d-1\}$, this yields
\[
I_{m,n}(s,t) \lesssim 2^{-2nc} \int_{\mathbb{R}} d\xi \int_0^\infty dr \frac{\{1 + r^2\}^{-\alpha}}{r^{d(2(1 + \cdots + H_d) - 2d + 2i + 1)}} |\gamma_{s,t}(\xi,|r|)|^2.
\]

It remains to check that for $\epsilon > 0$ small enough, the latter integral is finite. In fact, by applying Corollary 2.2, we can assert that for all $0 < \epsilon < \min(H_0, \frac{1}{2})$ and $\kappa \in (0, \inf(H_0 - \epsilon, \frac{1-2\epsilon}{2}))$,
\[
\int_{\mathbb{R}} d\xi \int_0^\infty dr \frac{\{1 + r^2\}^{-\alpha}}{r^{d(2(1 + \cdots + H_d) - 2d + 2i + 1)}} |\gamma_{s,t}(\xi,|r|)|^2 \lesssim |t - s|^{2\epsilon} \left[\int_0^1 \frac{dr}{r^{2(1 + \cdots + H_d) - 2d + 2i + 1}} \frac{1}{r^{2\alpha + 2(1 + \cdots + H_d) - 2d + 2i + 1}} \right]^{\frac{1}{2}}
\]
\[
\lesssim |t - s|^{2\epsilon} \left[\int_0^1 \frac{dr}{r^{2(1 + \cdots + H_d) - 2d + 2i + 1}} \frac{1}{r^{2\alpha + 2(1 + \cdots + H_d) - 2d + 2i + 1}} \right] \cdot \frac{1}{r^{2\alpha + 2(1 + \cdots + H_d) - 2d + 2i + 1}}.
\]

The conclusion is now a straightforward consequence of the fact that $2 \sum_{i=1}^d H_i - 2d + 1 < 1$ and
\[
\min(2\alpha + 2 \sum_{i=1}^d H_i - 2d + 3 - 2\kappa - 2\epsilon, 2\alpha + 2 \sum_{i=1}^d H_i - 2d + 2 - 4\epsilon) > 1,
\]
for all $0 < \epsilon < \min(H_0, \frac{1}{2}, \frac{1}{2}(\alpha - \left[d - \frac{1}{2} - \sum_{i=0}^d H_1\right]))$ and $\kappa \in (0, \inf(H_0 - \epsilon, \frac{1-2\epsilon}{2}))$.

Step 2: The rest of the proof follows a standard procedure. First, observe that we can use the hypercontractivity property of Gaussian variables to turn estimate (20) into an $L^p(\Omega)$-control, that is we have immediately for every $p \geq 1$
\[
\mathbb{E}
\left[
\mathcal{F}^{-1}
\left(
(1 + |\cdot|^2)^{-\frac{1}{2}}
\mathcal{F}(\Psi_{n,m}(t,\cdot) - \Psi_{n,m}(s,\cdot))(x)
\right)^{2p}
\right] \lesssim 2^{-2np} |t - s|^{2\epsilon p},
\]
where the proportional constant only depends on p. As the domain D is assumed to be bounded, this readily entails
\[
\mathbb{E}
\left[
\left|\Psi_{n,m}(t,\cdot) - \Psi_{n,m}(s,\cdot)\right|^{2p}_{W^{\alpha,2p}(D)}
\right] \lesssim 2^{-2np} |t - s|^{2\epsilon p}.
\]
and we can now conclude by applying the classical Garsia-Rodemich-Rumsey estimate: for any $\varepsilon_0 > 0$,
\[
\mathbb{E}\left[\mathcal{N}[\Psi_{n,m}; C_{\varepsilon_0}([0,T]; W^{\alpha,2p}(D))]^{2p}\right] \leq \int_{[0,1]^2} dsdt \frac{\mathbb{E}\left[\lVert \Psi_{n,m}(t, \cdot) - \Psi_{n,m}(s, \cdot)\rVert_{W^{\alpha,2p}(D)}^{2p}\right]}{|t-s|^{2c_0 p+2}} \lesssim 2^{-2nc_0} \int_{[0,1]^2} dsdt \frac{1}{|t-s|^{2(\varepsilon_0 c_0 p+2)}},
\]
noting that the latter integral is finite for all $0 < \varepsilon_0 < \varepsilon$ and p large enough.

2.2. Proof of Proposition 1.4. Due to condition (7), we can (and will) assume in the sequel that $\alpha < \frac{1}{2}$, which will be of importance in our estimates (see (26)). Also, for the sake of clarity, we shall again assume that $T \leq 1$. Finally, let us set, for all $m, n \geq 1$ and $0 \leq s, t \leq 1$, $\Psi_{n,m} \triangleq \Psi_m - \Psi_n$, $\hat{\Psi}_{n,m} \triangleq \hat{\Psi}_m - \hat{\Psi}_n$ and $f(s, t) \triangleq f(t, \cdot) - f(s, \cdot)$ for $f \in \{\Psi_{n,m}, \Psi_{n,m}^2, \hat{\Psi}_{n,m}^2\}$.

Just as in [12], the success of the renormalization procedure essentially lies in the following elementary
property, which can be readily derived from the classical Wick formula:

Lemma 2.3. For all $m, n \geq 1$, $s, t \geq 0$ and $y, \tilde{y} \in \mathbb{R}$, it holds that
\[
\mathbb{E}[\hat{\Psi}_{n,m}^2(t, y) \hat{\Psi}_{n,m}^2(s, \tilde{y})] = 2\mathbb{E}[\Psi_{n,m}(t, y)\Psi_{n,m}(s, \tilde{y})]^2.
\]

We can now turn to the proof of Proposition 1.4, that we present as a two-step procedure (just as the proof of Proposition 1.2).

Step 1: Let us show that for all $m \geq n \geq 1$, $x \in \mathbb{R}^d 0 \leq s \leq t \leq 1$ and $\varepsilon > 0$ small enough, one has
\[
\mathbb{E}\left[\left|\mathcal{F}^{-1}\left\{(1 + |z|^2)^{-\alpha} \mathcal{F}(\hat{\Psi}_{n,m}^2(s, t, \cdot))\right\}(x)\right|^2\right] \leq 2^{-n\varepsilon}|t-s|^\varepsilon,
\]
where the proportional constant does not depend on m, n, s, t and x.

One has
\[
\mathbb{E}\left[\left|\mathcal{F}^{-1}\left\{(1 + |z|^2)^{-\alpha} \mathcal{F}(\hat{\Psi}_{n,m}^2(s, t, \cdot))\right\}(x)\right|^2\right] = \int_{\mathbb{R}^d} d\lambda \int_{\mathbb{R}^d} d\gamma \int_{\mathbb{R}^d} d\tilde{\lambda} \int_{\mathbb{R}^d} d\tilde{\gamma} e^{i(x,\lambda)} (1 + |\lambda|^2)^{-\alpha} e^{-i(\lambda, y)} e^{-i(x,\gamma)} (1 + |\gamma|^2)^{-\alpha} e^{i(\gamma, y)} \mathbb{E}[\hat{\Psi}_{n,m}^2(s, t; y)\hat{\Psi}_{n,m}^2(s, t; \tilde{y})],
\]
and, using Lemma 2.3, it is readily checked that
\[
\frac{1}{2} \mathbb{E}[\hat{\Psi}_{n,m}^2(s, t; y)\hat{\Psi}_{n,m}^2(s, t; \tilde{y})] \leq \mathbb{E}[\Psi_{n,m}(t, y)\Psi_{n,m}(s, \tilde{y})] \mathbb{E}[\Psi_{n,m}(t, y)\Psi_{n,m}(s, t)] + \mathbb{E}[\Psi_{n,m}(t, y)\Psi_{n,m}(s, y)] \mathbb{E}[\Psi_{n,m}(t, y)\Psi_{n,m}(s, \tilde{y})] + \mathbb{E}[\Psi_{n,m}(s, y)\Psi_{n,m}(t, \tilde{y})] \mathbb{E}[\Psi_{n,m}(s, y)\Psi_{n,m}(t, \tilde{y})] + \mathbb{E}[\Psi_{n,m}(s, \tilde{y})\Psi_{n,m}(t, \tilde{y})] \mathbb{E}[\Psi_{n,m}(s, \tilde{y})\Psi_{n,m}(t, \tilde{y})] \triangleq \sum_{i=1,\ldots,8} A^i_{n,m}(s, t; y, \tilde{y}).
\]

It turns out that the eight terms derived from $A^i_{n,m}(s, t; y, \tilde{y})$ ($i \in \{1, \ldots, 8\}$) can be handled with the same arguments, and therefore we will only focus on the treatment of $A^1_{n,m}(s, t; y, \tilde{y})$. In fact, just as in (21), one has
\[
\mathbb{E}[\Psi_{n,m}(t, y)\Psi_{n,m}(s, \tilde{y})] = c \int_{\mathbb{R}^d} d\xi d\eta \frac{1}{|\xi|^{2H_0 - 1}} \prod_{i=1}^{d} \frac{1}{|\eta_i|^{2H_0 - 1}} e^{i(\xi, y) - i(\eta, \tilde{y})} \gamma_i(\xi, \eta) \gamma_i(t, \tilde{t} \xi, \eta)\]
\[\mathbb{E} \left[\Psi_m(t, y) \left(\Psi_m + \Psi_n \right)(t, y) \right] = c \int_{\mathbb{R}^d} d\xi d\eta \frac{1}{|\xi|^{2H_0-1}} \prod_{i=1}^{d} \frac{1}{|\eta_i|^{2H_1-1}} \left| \gamma_t(\xi, \eta) \right|^2 e^{i(\xi, \eta)} e^{-i(\tilde{\xi}, \tilde{\eta})} \left\{ 1_{(\xi, \eta) \in B^I_m \times B^I_n} + 1_{(\xi, \eta) \in B^I_n \times B^I_m} \right\} , \]

where \(D_{m,n} \triangleq (B^I_m \times B^I_n) \setminus (B^I_n \times B^I_m) \) and \(B^I_k \triangleq \{ \lambda \in \mathbb{R}^k, |\lambda| \leq 2^k \} \). Therefore,

\[\left| \int_{\mathbb{R}^d} d\lambda \int_{\mathbb{R}^d} d\eta \int_{\mathbb{R}^d} d\tilde{\lambda} \int_{\mathbb{R}^d} d\tilde{\eta} \int_{\mathbb{R}^d} d\tilde{\xi} d\tilde{\eta} \left(1 + |\lambda|^2 \right)^{-\alpha} e^{-i(\lambda, y)} e^{-i(x, \lambda)} \left(1 + |\tilde{\lambda}|^2 \right)^{-\alpha} e^{i(\tilde{\lambda}, \tilde{\eta})} A_{m,n}(s, t; y, \tilde{y}) \right| = c \int_{(\xi, \eta) \in D_{m,n}} d\xi d\eta = c \int_{(\xi, \eta) \in D_{m,n}} d\xi d\eta \frac{1}{|\xi|^{2H_0-1}} \prod_{i=1}^{d} \frac{1}{|\eta_i|^{2H_1-1}} \gamma_t(\xi, \eta) \gamma_{s,t}(\xi, \eta) \]

\[\leq c \int_{|\xi| \geq 2^n} d\xi \int_{|\eta| \geq 2^n} d\eta \frac{1}{|\xi|^{2H_0-1}} \prod_{i=1}^{d} \frac{1}{|\eta_i|^{2H_1-1}} \left| \gamma_t(\xi, \eta) \right| \left| \gamma_{s,t}(\xi, \eta) \right| \]

\[+ \int_{|\eta| \geq 2^n} d\eta \left(1 + |\eta|^2 \right)^{-2\alpha} \left\{ 1_{(\xi, \eta) \in B^I_n \times B^I_m} + 1_{(\xi, \eta) \in B^I_m \times B^I_n} \right\} . \]

As in the proof of Proposition 1.2, we will restrict our attention to \(I_n(s, t) \). For \(0 < \varepsilon < H_0 \), one has

\[I_n(s, t) \lesssim 2^{-2n\varepsilon} \int_{\mathbb{R}^d} d\xi d\eta \int_{\mathbb{R}^d} d\tilde{\xi} d\tilde{\eta} \left(1 + |\eta - \tilde{\eta}|^2 \right)^{-2\alpha} \]

\[\lesssim 2^{-2n\varepsilon} \int_{\mathbb{R}^d} d\xi d\eta \int_{\mathbb{R}^d} d\tilde{\xi} d\tilde{\eta} \left(1 + ||\eta| - |\tilde{\eta}|^2 \right)^{-2\alpha} \]

\[\leq 2^{-2n\varepsilon} \int_{|\xi|^{2H_0-1}} d\xi d\eta \int_{|\eta|^{2H_1-1}} d\tilde{\xi} d\tilde{\eta} \left(1 + |\gamma_t(\xi, \eta)| \right) \left(1 + |\gamma_{s,t}(\xi, \eta)| \right) \frac{1}{|\xi|^{2H_0-1}} \prod_{i=1}^{d} \frac{1}{|\eta_i|^{2H_1-1}} \left| \gamma_t(\xi, \eta) \right|^2 . \tag{24} \]

Now let us split the integration domain as \((\mathbb{R} \times \mathbb{R}^d)^2 = D_1 \cup D_2\), with

\[D_1 \triangleq \left\{ (\xi, \eta, \tilde{\xi}, \tilde{\eta}) : \frac{|\eta|}{2} < |\tilde{\eta}| < \frac{3|\eta|}{2} \right\} \quad \text{and} \quad D_2 \triangleq \left\{ (\xi, \eta, \tilde{\xi}, \tilde{\eta}) : 0 < |\tilde{\eta}| < \frac{|\eta|}{2} \text{ or } |\eta| > \frac{3|\eta|}{2} \right\} . \]
For \((\xi, \eta, \tilde{\xi}, \tilde{\eta}) \in D_2\), one has \(|\eta| - |\tilde{\eta}| > \max \left(\frac{|\eta|}{2}, \frac{|\tilde{\eta}|}{2} \right)\), and so

\[
\int_{D_2} \frac{d\xi d\eta d\tilde{\xi} d\tilde{\eta}}{\{1 + |\eta| - |\tilde{\eta}|\}^{2\alpha} |\xi|^{2(2H_0 - \varepsilon)-1} \prod_{i=1}^d \frac{1}{|\eta_i|^{2H_i-1}} |\gamma_s(\xi, |\eta|)| |\gamma_s(\xi, |\eta|)| |\xi|^{2H_0 - 1} \prod_{i=1}^d \frac{1}{|\tilde{\eta}_i|^{2H_i-1}} |\gamma_s(\tilde{\xi}, |\tilde{\eta}|)|^2
\]
\[
\lesssim \left(\int_{\mathbb{R}^d} \frac{d\xi d\eta}{\{1 + |\eta|\}^{2\alpha} |\xi|^{2(2H_0 - \varepsilon)-1} \prod_{i=1}^d \frac{1}{|\eta_i|^{2H_i-1}} |\gamma_s(\xi, |\eta|)|^2} \right)^{1/2}
\]
\[
\lesssim \left(\int_{\mathbb{R}^d} \frac{d\xi d\eta}{\{1 + |\eta|\}^{2\alpha} |\xi|^{2(2H_0 - \varepsilon)-1} \prod_{i=1}^d \frac{1}{|\eta_i|^{2H_i-1}} |\gamma_s(\xi, |\eta|)|^2} \right)^{1/2}
\]
\[
\left(\int_{\mathbb{R}^d} \frac{d\tilde{\xi} d\tilde{\eta}}{\{1 + |\tilde{\eta}|\}^{2\alpha} |\tilde{\xi}|^{2(2H_0 - \varepsilon)-1} \prod_{i=1}^d \frac{1}{|\tilde{\eta}_i|^{2H_i-1}} |\gamma_s(\tilde{\xi}, |\tilde{\eta}|)|^2} \right).
\]

At this point, observe that we are exactly in the same position as in the proof of Proposition 1.2 (see (22)), and so we can rely on the same arguments to assert that for \(\varepsilon > 0\) small enough, the above integral (over \(D_2\)) is indeed bounded by \(c|\varepsilon - s|^\gamma\), for some finite constant \(c\).

In order to deal with the integral over the domain \(D_1\), observe first that

\[
\int_{|\tilde{\eta}| < \frac{1}{2} |\eta|} \frac{d\tilde{\eta}}{\{1 + |\eta| - |\tilde{\eta}|\}^{2\alpha} |\gamma_s(\tilde{\xi}, |\tilde{\eta}|)|^2} \prod_{i=1}^d \frac{1}{|\tilde{\eta}_i|^{2H_i-1}}
\]
\[
= |\eta|^{-2(H_1 + \ldots + H_d) + 2d} \int_{|\tilde{\eta}| < \frac{1}{2} |\eta|} \frac{d\tilde{\eta}}{\{1 + |\eta| (1 - |\eta|)\}^{2\alpha} |\gamma_s(\tilde{\xi}, |\tilde{\eta}|)|^2} \prod_{i=1}^d \frac{1}{|\tilde{\eta}_i|^{2H_i-1}}
\]
\[
\lesssim |\eta|^{-2(H_1 + \ldots + H_d) + 2d} \int_{\frac{1}{2} |\eta|}^{\frac{1}{2} |\eta|} \frac{dr}{\{1 + |\eta| (1 - r)\}^{2\alpha} |\gamma_s(\tilde{\xi}, |r|)|^2},
\]
and so
\[
\int_{D_1} \frac{d\xi d\eta d\tilde{\eta}}{(1 + ||\eta - \tilde{\eta}||^2)^{2n}} \frac{1}{|\xi(2H_0-\epsilon)-1|} \prod_{i=1}^{d} \frac{1}{|\eta_i(2H_0-\epsilon)-1|} |\chi(\xi, |\eta|)||\chi_s(t, |\eta|)| \frac{1}{|\xi|^{2tH_0-1}} \prod_{i=1}^{d} \frac{1}{|\eta_i|^{2tH_0-1}} |\chi(\xi, |\eta|)|^2 \\
\leq \int_{\mathbb{R}^d} \frac{d\eta}{|\eta|^2(2H_1+\ldots+H_d)-2d} \prod_{i=1}^{d} \frac{1}{|\eta_i|^{2H_0-1}} \int_{\frac{1}{2}}^{2} \frac{dr}{(1 + |\eta|^2(1 - r)^2)^{2n}} \\
\int_{\mathbb{R}} d\xi \frac{|\chi(\xi, |\eta||)| |\chi_s(t, |\eta||)|}{|\xi|^{2(2H_0-\epsilon)-1}} \int_{\mathbb{R}} d\xi \frac{|\chi(\xi, |\eta||)|}{|\xi|^{2H_0-1}}^2 \\
\leq \int_{\mathbb{R}^d} \frac{d\eta}{|\eta|^2(2H_1+\ldots+H_d)-2d} \prod_{i=1}^{d} \frac{1}{|\eta_i|^{2H_0-1}} \int_{\frac{1}{2}}^{2} \frac{dr}{(1 + |\eta|^2(1 - r)^2)^{2n}} \\
\left(\int_{\mathbb{R}} d\xi \frac{|\chi(\xi, |\eta||)|}{|\xi|^{2(2H_0-\epsilon)-1}} \right)^{1/2} \left(\int_{\mathbb{R}} d\xi \frac{|\chi_s(t, |\eta||)|^2}{|\xi|^{2H_0-1}} \right)^{1/2} \int_{\mathbb{R}} d\xi \frac{|\chi(\xi, |\eta||)|^2}{|\xi|^{2H_0-1}} \\
\leq |t - s|^{\kappa} \left[\int_{0}^{1} \frac{dp}{\rho^4(\xi_0+\ldots+H_d)-4d+1} + \int_{1}^{\infty} \frac{dp}{\rho^4(\xi_0+\ldots+H_d)-4d+3} \right]^{\frac{1}{2}} \left(\int_{1}^{\infty} \frac{dr}{(1 + \rho^2(1 - r)^2)^{2n}} \right) \\
\leq \int_{1}^{\infty} \frac{dp}{\rho^4(\xi_0+\ldots+H_d)-4d+3} \int_{\frac{1}{2}}^{2} \frac{dr}{(1 + \rho^2(1 - r)^2)^{2n}} < \infty.
\]
for any \(\kappa \in [0, \inf(H_0 - \epsilon, 1 - 2\epsilon]) \), where we have used Corollary 2.2 to derive the last inequality. Finally, since \(\alpha < \frac{1}{4} \), it is readily checked that for every \(0 < \epsilon < \min \{ H_0, \alpha - (d - \frac{1}{2} - \sum_{i=0}^{d} H_i) \} \),
\[
\int_{1}^{\infty} \frac{dp}{\rho^4(\xi_0+\ldots+H_d)-4d+3} \int_{\frac{1}{2}}^{2} \frac{dr}{(1 + \rho^2(1 - r)^2)^{2n}} < \infty.
\]
(26)

Going back to (24), we have thus shown (23).

Step 2: Once endowed with estimate (23), we can of course use the same arguments as in Step 2 of the proof of Proposition 1.2 to obtain that, for \(0 < \epsilon_0 < \epsilon \) and \(p \) large enough,
\[
E \left[\mathcal{N}(\tilde{\Psi}_{n,m}; C^0([0, T]; \mathcal{W}^{-2n, 2p}(D))) \right]^{2n} \lesssim 2^{-ncp},
\]
which completes the proof of our assertion.

2.3. Estimation of the renormalization constant. Let us conclude this section with the asymptotic analysis of the renormalization constant \(\sigma_n(t) \triangleq E \left[\Psi_n(t, x)^2 \right] \) at the core of the above renormalization procedure. In other words, our aim here is to show (15). To this end, fix \(d \geq 2 \) and \((H_0, H_1, \ldots, H_d) \in (0, 1)^d \) such that
\[
d - \frac{3}{4} < \sum_{i=0}^{d} H_i \leq d - \frac{1}{2},
\]
and, with expression (16) in mind, write the renormalization constant as
\[
\sigma_n(t) = E[\Psi_n(t, x)^2] = c \int_{|\xi| \leq 2^n} \frac{d\xi}{|\xi|^{2tH_0-1}} \prod_{i=1}^{d} \frac{d\eta_i}{|\eta_i|^{2tH_0-1}} |\chi(\xi, |\eta||)|^2 \\
= c \int_{0}^{2^n} \frac{dr}{\gamma(2H_1+\ldots+H_d)-2d+1} \int_{|\xi| \leq 2^n} \frac{d\xi}{|\xi|^{2tH_0-1}} |\chi(\xi, r||)|^2.
\]
The asymptotic estimate (15) is now a straightforward consequence of the following technical result (take $\alpha \triangleq 2H_0 \in (0, 2)$ and $\kappa \triangleq 2(d - \frac{1}{2} - \sum_{i=1}^{d} H_i) \in [0, 1)$):

Proposition 2.4. There exists a constant $c > 0$ such that for all $\alpha \in (0, 2)$ and $\kappa \in [0, 1)$, one has, as n tends to infinity,

$$
\int_1^{2^n} \frac{dr}{r^{\alpha-\kappa}} \int_{|\xi| \leq 2^n} \frac{d\xi}{|\xi|^{\alpha-1}} |\gamma_t(\xi, r)|^2 = c t \int_1^{2^n} \frac{dr}{r^{\alpha-\kappa}} + O(1).
$$

(27)

Proof. First, observe that using (18), we have

$$
\left| \int_0^1 \frac{dr}{r^{\alpha-\kappa}} \int_{|\xi| \leq 2^n} \frac{d\xi}{|\xi|^{\alpha-1}} |\gamma_t(\xi, r)|^2 \right| \lesssim t^4 \int_0^1 \frac{dr}{r^{2H_0-\kappa}} \int_{|\xi| \leq 1} \frac{d\xi}{|\xi|^{\alpha-1-\epsilon}} + t^2 \int_0^1 \frac{dr}{r^{\alpha-\kappa}} \int_{|\xi| \geq 1} \frac{d\xi}{|\xi|^{1+\alpha}}.
$$

and accordingly it suffices to focus on the estimation of the integral

$$
\int_1^{2^n} \frac{dr}{r^{\alpha-\kappa}} \int_{|\xi| \leq 2^n} \frac{d\xi}{|\xi|^{\alpha-1}} |\gamma_t(\xi, r)|^2.
$$

To this end, we will rely on the following expansion, which can be readily derived from (19):

$$
|\gamma_t(\xi, r)|^2 = \frac{c}{r^2} \left\{ \frac{1 - \cos(t(\xi + r))}{(\xi + r)^2} - \frac{\cos(tr)\{\cos(tr) - \cos(t\xi)\}}{(\xi - r)(\xi + r)} \right\} + \frac{c}{r^2} \left\{ \frac{1 - \cos(t(\xi - r))}{(\xi - r)^2} - \frac{\cos(tr)\{\cos(tr) - \cos(t\xi)\}}{(\xi - r)(\xi + r)} \right\}
$$

$$
= : \Gamma_t(\xi, r) + \tilde{\Gamma}_t(\xi, r).
$$

For obvious symmetry reasons, we have in fact

$$
\int_1^{2^n} \frac{dr}{r^{\alpha-\kappa}} \int_{|\xi| \leq 2^n} \frac{d\xi}{|\xi|^{\alpha-1}} |\gamma_t(\xi, r)|^2 = 2 \int_1^{2^n} \frac{dr}{r^{\alpha-\kappa}} \int_{|\xi| \leq 2^n} \frac{d\xi}{|\xi|^{\alpha-1}} \Gamma_t(\xi, r)
$$

$$
= 2 \int_1^{2^n} \frac{dr}{r^{\alpha-\kappa}} \int_0^r \frac{d\xi}{|\xi|^{\alpha-1}} \Gamma_t(\xi, r) + 2 \int_1^{2^n} \frac{dr}{r^{\alpha-\kappa}} \int_r^{2^n} \frac{d\xi}{|\xi|^{\alpha-1}} \Gamma_t(\xi, r)
$$

$$
+ 2 \int_1^{2^n} \frac{dr}{r^{\alpha-\kappa}} \int_0^1 \frac{d\xi}{|\xi|^{\alpha-1}} \Gamma_t(-\xi, r) =: J_{n,t}^1 + J_{n,t}^2 + J_{n,t}^3.
$$

(28)

Study of $J_{n,t}^1$. Let us introduce the additional notation

$$
\Gamma_t^1(\xi, r) := \frac{1 - \cos(t(\xi - r))}{r^2(\xi - r)^2}, \quad \Gamma_t^2(\xi, r) := \frac{\cos(tr)\{\cos(t\xi) - \cos(tr)\}}{r^2(\xi - r)(\xi + r)},
$$

so that

$$
\Gamma_t(\xi, r) = c\{\Gamma_t^1(\xi, r) + \Gamma_t^2(\xi, r)\}.
$$

(29)

Now on the one hand, for any $0 < \epsilon < 1$,

$$
\left| \int_1^{2^n} \frac{dr}{r^{\alpha-\kappa}} \int_0^r \frac{d\xi}{|\xi|^{\alpha-1}} \Gamma_t^1(\xi, r) \right| \leq \int_1^{2^n} \frac{dr}{r^{\alpha-\kappa}} \int_0^1 \frac{d\xi}{|\xi|^{2H_0 - \kappa - \epsilon}} \frac{\cos(tr)\{\cos(tr\xi) - \cos(tr)\}}{(\xi - 1)\xi + 1}
$$

$$
\lesssim t^\epsilon \int_1^{2^n} \frac{dr}{r^{\alpha-\kappa}} \int_0^1 \frac{d\xi}{|\xi|^{\alpha-1-\epsilon}} \frac{1}{|1 + \xi|}
$$

and the latter integral is finite for any $\epsilon > 0$ such that $\kappa + \epsilon < 1$ and $\epsilon < \alpha$, which shows that

$$
\int_1^{2^n} \frac{dr}{r^{\alpha-\kappa}} \int_0^r \frac{d\xi}{|\xi|^{\alpha-1}} \Gamma_t^1(\xi, r) = O(1).
$$
On the other hand,
\[
\int_1^{2^n} \frac{dr}{r^{1-a-\kappa}} \int_0^r \frac{d\xi}{|\xi|^{a-1}} \frac{1 - \cos(t(1 - \xi))}{|1 - \xi|^{a-1} \xi^2} \\
= \int_1^{2^n} \frac{dr}{r^{1-\kappa}} \int_0^1 \frac{d\xi}{|\xi|^{a-1}} \frac{1 - \cos(t(1 - \xi))}{|1 - \xi|^{a-1} \xi^2} + \int_1^{2^n} \frac{dr}{r^{1-\kappa}} \int_1^1 \frac{d\xi}{|1 - \xi|^{a-1} \xi^2},
\]
with
\[
\left| \int_1^{2^n} \frac{dr}{r^{1-\kappa}} \int_0^1 \frac{d\xi}{|1 - \xi|^{a-1} \xi^2} \right| \lesssim \int_1^{\infty} \frac{dr}{r^{1-\kappa}} \int_1^1 \frac{d\xi}{|1 - \xi|^{a-1}}
\]
and
\[
\left| \int_1^{2^n} \frac{dr}{r^{1-\kappa}} \int_0^1 \frac{d\xi}{|1 - \xi|^{a-1} \xi^2} \right| \lesssim \int_1^{\infty} \frac{dr}{r^{1-\kappa}} \int_1^1 \frac{d\xi}{|1 - \xi|^{a-1}}
\]

By applying the below technical Lemma 2.5, we can easily conclude that
\[
\mathcal{J}_{n,t}^1 = c t \int_1^{2^n} \frac{dr}{r^{1-\kappa}} + O(1) \quad (30)
\]

Study of \(\mathcal{J}_{n,t}^2 \). We will here use the (readily-checked) decomposition
\[
\Gamma_t^{3}(\xi, r) = c \left\{ \Gamma_t^{3}(\xi, r) + \Gamma_t^{4}(\xi, r) \right\}
\]
with
\[
\Gamma_t^{3}(\xi, r) := \frac{1 - \cos(t(\xi - r))}{r(\xi - r)^2(\xi + r)} \quad \text{and} \quad \Gamma_t^{4}(\xi, r) := \frac{1 - \cos(t(\xi - r)) - \cos(tr)(\cos(tr) - \cos(t\xi))}{r^2(\xi - r)(\xi + r)}
\]

Now observe on the one hand that for every \(\varepsilon \in (0, 1) \),
\[
\left| \int_1^{2^n} \frac{dr}{r^{1-a-\kappa}} \int_0^r \frac{d\xi}{|\xi|^{a-1}} \Gamma_t^{4}(\xi, r) \right| \\
\lesssim t^\varepsilon \int_1^{2^n} \frac{dr}{r^{1-a-\kappa}} \int_r^\infty \frac{d\xi}{|\xi|^{a-1}|\xi - r|^{1-\varepsilon}|\xi + r|} \lesssim t^\varepsilon \int_1^{\infty} \frac{dr}{r^{2-\kappa-\varepsilon}} \int_1^{\infty} \frac{d\xi}{|\xi|^{a-1}|1 - \xi|^{1-\varepsilon}|1 + \xi|}
\]

and the latter integrals are finite provided \(\varepsilon < \min(1 - \kappa, \alpha) \). On the other hand,
\[
\left| \int_1^{2^n} \frac{dr}{r^{1-a-\kappa}} \int_0^r \frac{d\xi}{|\xi|^{a-1}} \Gamma_t^{3}(\xi, r) \right| = \int_1^{2^n} \frac{dr}{r^{1-a-\kappa}} \int_0^{2^n-r} \frac{d\xi}{|\xi + r|^{a-1}|\xi + r|} \frac{1 - \cos(t\xi)}{\xi^2} \\
= \int_1^{2^n} \frac{dr}{r^{1-a-\kappa}} \int_0^{2^n-r} \frac{d\xi}{|\xi + r|^{a-1}|\xi + r|} \frac{1 - \cos(t\xi)}{\xi^2} + \frac{1}{2r^\alpha} \int_0^{2^n-r} \frac{1 - \cos(t\xi)}{\xi^2}
\]

Using Lemma 2.6, we can then assert that for \(\varepsilon \in (0, 1 - \kappa) \),
\[
\left| \int_1^{2^n} \frac{dr}{r^{1-a-\kappa}} \int_0^{2^n-r} \frac{d\xi}{|\xi + r|^{a-1}|\xi + r|} \frac{1 - \cos(t\xi)}{\xi^2} \right| \\
\lesssim \int_1^{2^n} \frac{dr}{r^{2-\kappa-\varepsilon}} + \int_1^{2^n} \frac{dr}{r^{1-a-\kappa}} \int_0^{2^n-r} \frac{d\xi}{|\xi + r|^{a-1}|\xi + r|} \frac{1 - \cos(t\xi)}{\xi^2} \leq \int_1^{\infty} \frac{dr}{r^{2-\kappa-\varepsilon}} + 2^{-\alpha(1-\varepsilon)} \int_1^{1} \frac{dr}{r^{1-\kappa}|1 - r|^{1-\varepsilon}}.
\]
Going back to (32), we have thus shown that
\[
\mathcal{J}_{n,t}^2 = c t \int_1^{2^n} \frac{dr}{r^{1-\kappa}} + O(1) .
\]

Study of \(\mathcal{J}_{n,t}^3 \). Using decomposition (29), it is readily checked that for \(\varepsilon \in (0,1) \) and for all \(\xi, r > 0 \),
\[
|\Gamma_t(-\xi, r)| \lesssim \frac{1}{r^\varepsilon} \left[\frac{1}{|\xi + r|^2} + \frac{t^{\varepsilon}}{|\xi + r||\xi - r|^{1-\varepsilon}} \right]
\]
and so
\[
\left| \int_1^{2^n} \frac{dr}{r^{1-\alpha-\kappa}} \int_0^1 \frac{d\xi}{|\xi - r|^{\alpha - 1}} \Gamma_t(-\xi, r) \right| \lesssim \int_1^{2^n} \frac{dr}{r^{1-\alpha-\kappa}} \int_0^1 \frac{d\xi}{|\xi - r|^{\alpha - 1}} \left[\frac{1}{|\xi + r|^2} + \frac{|\xi + r|^2}{|\xi + r||\xi - r|^{1-\varepsilon}} \right]
\]
\[
\lesssim \int_1^\infty \frac{dr}{r^{1-\alpha-\kappa}} \int_0^\infty \frac{d\xi}{|\xi - r|^{\alpha - 1}} \left[\frac{1}{|\xi + 1|^2} + \frac{t^{\varepsilon}}{|\xi + 1||\xi - 1|^{1-\varepsilon}} \right].
\]

The latter integral being finite as soon as \(\varepsilon \in (0, \min(1 - \kappa, \alpha)) \), this shows that \(\mathcal{J}_{n,t}^3 = O(1) \). Injecting this result, together with (30) and (33), into (28) yields the expected decomposition (27).

Lemma 2.5. Given \(\alpha \in (0,2) \) and \(\varepsilon \in (0,1) \), one has, for all \(r > 0 \),
\[
\left| \int_0^\infty \frac{d\xi}{|1 - \frac{\xi}{r}|^{\alpha - 1}} \frac{1}{\xi^2} \right| \leq c_{\alpha, \varepsilon} \left(\frac{1}{r^\varepsilon} + \frac{1}{r^{1-\varepsilon}} \right).
\]

Proof. Write the difference as
\[
\int_0^\infty \frac{d\xi}{|1 - \frac{\xi}{r}|^{\alpha - 1}} \frac{1}{\xi^2} \approx \int_0^\infty \frac{d\xi}{|1 - \frac{\xi}{r}|^{\alpha - 1}} \frac{1}{\xi^2} + \int_0^\infty \frac{d\xi}{|1 - \frac{\xi}{r}|^{\alpha - 1}} \frac{1}{\xi^2}.
\]

Then observe that
\[
\left| \int_0^\infty \frac{d\xi}{|1 - \frac{\xi}{r}|^{\alpha - 1}} \frac{1}{\xi^2} \right| \lesssim \frac{1}{r^{1-\varepsilon}} \int_0^\infty \frac{d\xi}{|\xi|^{1+\varepsilon}}
\]
and
\[
\left| \int_0^\infty \frac{d\xi}{|1 - \frac{\xi}{r}|^{\alpha - 1}} \frac{1}{\xi^2} \right| \lesssim \frac{1}{r^{1-\varepsilon}} \int_0^\infty \frac{d\xi}{|\xi|^{1+\varepsilon}}
\]

hence the conclusion.

Lemma 2.6. Given \(\alpha \in (0,2) \) and \(\varepsilon \in (0,1) \), one has, for all \(t > 0, n \geq 0 \) and \(1 < r < 2^n \),
\[
\left| \int_0^{2^n-r} \frac{d\xi}{|\xi + r|^{\alpha - 1}} \frac{1}{\xi^2} \right| \lesssim c_{\alpha, \varepsilon} \left[\frac{t^\varepsilon}{r^{1+\alpha-\varepsilon}} + \frac{t^\varepsilon}{r^n |2^n - r|^{1-\varepsilon}} \right].
\]

Proof. Let us decompose the difference as
\[
\int_0^{2^n-r} \frac{d\xi}{|\xi + r|^{\alpha - 1}} \frac{1}{\xi^2} \approx \frac{1}{r^{\alpha-1}} \int_0^\infty \frac{d\xi}{|\xi + 2r|^2} \frac{1}{\xi^2} + \frac{1}{r^{\alpha-1}} \int_0^{2^n-r} \frac{d\xi}{|\xi + r|^{\alpha - 1}} \frac{1}{\xi^2} \frac{1}{2r} \frac{1}{\xi^2} \lesssim \frac{1}{2r^\alpha} \int_0^{2^n-r} \frac{d\xi}{\xi^2} \frac{1}{\xi^2}.
\]

Then observe that
\[
\left| \int_0^{2^n-r} \frac{d\xi}{|\xi + r|^{\alpha - 1}} \frac{1}{\xi^2} \frac{1}{\xi^2} \right| \lesssim \frac{1}{r} \int_0^\infty \frac{d\xi}{|\xi + r|^{\alpha - 1}} \frac{1}{\xi^2} \frac{1}{\xi^2} \lesssim \frac{1}{r^{1+\alpha-\varepsilon}} \int_0^\infty \frac{d\xi}{|\xi|^{1+\varepsilon}}.
\]
and
\[
\frac{1}{r^{n+1}} \left| \int_0^{2^n r} d\xi \left[\frac{1}{|\xi + 2r|} - \frac{1}{2r} \right] \frac{1 - \cos(t\xi)}{\xi^2} \right| \lesssim \frac{1}{r^n} \int_0^\infty \frac{d\xi}{|\xi + 2r|} \frac{1 - \cos(t\xi)}{\xi|} \lesssim \frac{1}{r^{1+\alpha}} \int_0^\infty d\xi \frac{1 - \cos(t\xi)}{|\xi|^{1+\varepsilon}}.
\]

Finally, one has of course
\[
\left| \int_0^\infty d\xi \frac{1 - \cos(t\xi)}{\xi^2} \right| \lesssim \frac{1}{|2^n - r|^1 - \varepsilon} \int_0^\infty d\xi \frac{1 - \cos(t\xi)}{|\xi|^{1+\varepsilon}}.
\]

\[\square\]

3. Study of the (Deterministic) Auxiliary Equation

Let us now turn to the analysis of the deterministic equation associated with our quadratic model (1), that is the equation
\[
\left\{ \begin{array}{l}
\frac{\partial^2_t v - \Delta v + \rho^2 (v^2 + v \cdot \Pi^1 + \Pi^2)}{v(0,\cdot) = \phi_0, \quad \partial_t v(0,\cdot) = \phi_1}
\end{array} \right.
\]
(34)

where \(\Pi^1, \Pi^2\) are two (fixed) elements living in appropriate Sobolev spaces. We are actually interested in the exhibition of a (unique) mild solution to (34), which will be achieved by means of a standard fixed-point argument. In other words, for fixed \(\Pi \equiv (\Pi^1, \Pi^2)\) and \(T > 0\), we will focus on the study of the map \(\Gamma_{T,\Pi}\) defined as
\[
\Gamma_{T,\Pi}(v)(t,x) \equiv \partial_t(G(t,\cdot) \ast \phi_0)(x) + (G(t,\cdot) \ast \phi_1)(x) + (G * [\rho^2 v^2 + \rho \Pi^1 \cdot \rho v + \rho^2 \Pi^2])(t,x),
\]
(35)

where \(G\) stands for the Green function of the standard \(d\)-dimensional wave equation. This map is thus essentially built upon two successive operations: multiplication of \(v\) with itself or with \(\Pi^1\), and convolution with \(G\). Accordingly, before we specify the space on which we will study \(\Gamma_{T,\Pi}\), let us recall a few general results on pointwise multiplication and convolution with the wave kernel.

3.1. Pointwise Multiplication. Recall that, with the results of Section 2 in mind, one of our purposes is to handle situations where the elements \(\Pi^1, \Pi^2\) involved in (35) are not functions but only distributions. Thus, even if we expect the solution \(v\) itself to be a function, we will need to rely on specific results about the (non-standard) multiplication of a function with a distribution. We will actually use the following general statement, borrowed from [21, Section 4.5.1].

Proposition 3.1. (i) For all \(\alpha, \beta > 0\) and \(0 < p, p_1, p_2 \lesssim \infty\) such that
\[
1 < \frac{1}{p} + \frac{1}{p_1} + \frac{1}{p_2}, \quad 0 < \alpha < \beta < \frac{d}{p}, \quad \min \left(\frac{d}{p} + \alpha, d \right) > \left(\frac{d}{p_1} + \alpha \right) + \left(\frac{d}{p_2} - \beta \right),
\]
one has
\[
\|f \cdot g\|_{W^{-\alpha, p}(\mathbb{R}^d)} \lesssim \|f\|_{W^{-\alpha, p_1}(\mathbb{R}^d)} \|g\|_{W^{\alpha, p_2}(\mathbb{R}^d)}.
\]
(ii) For all \(\beta > \frac{d}{2}\), \(0 < \alpha < \beta\) and \(p > 2\), one has
\[
\|f \cdot g\|_{W^{-\alpha, p}(\mathbb{R}^d)} \lesssim \|f\|_{W^{-\alpha, p}(\mathbb{R}^d)} \|g\|_{W^{\alpha, p}(\mathbb{R}^d)}.
\]

3.2. Generalized Strichartz Inequalities and Admissible Pairs. The wave kernel is known to satisfy specific regularization properties, the so-called Strichartz inequalities, a central ingredient for the analysis of (34). Let us sum up these fundamental properties through the two following statements, both taken from [11, Proposition 3.1].

Proposition 3.2. Fix \(d \geq 2\) and let \(w\) be the solution of the equation
\[
\left\{ \begin{array}{l}
\partial_t^2 w - \partial^2_x w = 0, \quad t \in [0,T], \quad x \in \mathbb{R}^d,
\end{array} \right.
\]
(38)

\[
w(0,\cdot) = \phi_0, \quad \partial_t w(0,\cdot) = \phi_1.
\]
Then for all \(s \in \mathbb{R}, \ 2 \leq q \leq \infty, \ 2 \leq r < \infty \) such that
\[
\frac{2}{q} + \frac{d-1}{r} \leq \frac{d-1}{2}
\] and \(\left(\frac{2}{q}, (d-1) \left(\frac{1}{2} - \frac{1}{r} \right) \right) \neq (1,1), \)
one has, by setting \(\mu \equiv s + \frac{d}{2} - \left(\frac{1}{q} + \frac{d}{r} \right) \),
\[
\mathcal{N}[w; L^q([0,T]; W^{s,t}(\mathbb{R}^d))] + \mathcal{N}[\partial_t w; L^q([0,T]; W^{s-1,r}(\mathbb{R}^d))] \lesssim \|\phi_0\|_{W^{s,2}} + \|\phi_1\|_{W^{s-1,2}}.
\]

Proposition 3.3. Fix \(d \geq 2 \) and let \(w \) be the solution of the equation
\[
\begin{cases}
\partial_t^2 w - \partial_2^2 w = f, \quad t \in [0,T], \ x \in \mathbb{R}^d, \\
w(0,.) = \partial_t w(0,.) = 0.
\end{cases}
\] (39)

Then for all \(s_1, s_2 \in \mathbb{R}, \ 1 \leq \tilde{q} \leq q \leq \infty, \ 1 < \tilde{r} \leq 2 \leq r < \infty \) such that
\[
\frac{2}{q} + \frac{d-1}{r} \leq \frac{d-1}{2}, \quad \frac{2}{\tilde{q}} + \frac{d-1}{\tilde{r}} \geq 2 + \frac{d-1}{2},
\] \[
\left(\frac{2}{q}, (d-1) \left(\frac{1}{2} - \frac{1}{r} \right) \right) \neq (1,1), \quad \left(\frac{2}{\tilde{q}}, (d-1) \left(\frac{1}{2} - \frac{1}{\tilde{r}} \right) \right) \neq (1,1),
\]
and
\[
s_1 - \left(\frac{1}{q} + \frac{d}{r} \right) = 2 - s_2 - \left(\frac{1}{\tilde{q}} + \frac{d}{\tilde{r}} \right),
\] (40)
one has
\[
\mathcal{N}[w; L^q([0,T]; W^{s_1,t}(\mathbb{R}^d))] + \mathcal{N}[\partial_t w; L^q([0,T]; W^{s_2-1,r}(\mathbb{R}^d))] \lesssim \mathcal{N}[f; L^q([0,T]; W^{s_2-\tilde{r}}(\mathbb{R}^d))].
\] (41)

As classically reported in the (deterministic/stochastic) wave literature, the above condition (40) leads us to the consideration of a natural admissibility condition for the (future) regularity coefficients.

Definition 3.4. Fix \(0 < s < \frac{d}{2} \). A pair \((q, r)\) is said to be \((d, s)\)-admissible if
\[
2 \leq q \leq \infty, \quad 2 \leq r < \infty, \quad \frac{2}{q} + \frac{d-1}{r} \leq \frac{d-1}{2} \quad \text{and} \quad \frac{1}{q} + \frac{d}{r} = \frac{d}{2} - s.
\] (42)

A pair \((\tilde{q}, \tilde{r})\) is said to be \((d, s)\)-dual-admissible if
\[
1 \leq \tilde{q} \leq 2, \quad 1 < \tilde{r} \leq 2, \quad \frac{2}{\tilde{q}} + \frac{d-1}{\tilde{r}} \geq 2 + \frac{d-1}{2} \quad \text{and} \quad \frac{1}{\tilde{q}} + \frac{d}{\tilde{r}} = 2 + \frac{d}{2} - s.
\] (43)

We are now in a position to introduce the class of spaces at the core of our analysis (here again, we just take up the standard setting used in the classical wave literature and derived from inequality (41)). Namely, for a given \(0 < s < \frac{d}{2} \) and a given \((d, s)\)-admissible pair \((q, r)\), we set
\[
X^s(T) = X^{s, (\tilde{q}, \tilde{r})}(T) \equiv \mathcal{N}^{\infty}([0,T]; W^{s-2,2}(\mathbb{R}^d)) \cap L^q([0,T]; L^r(\mathbb{R}^d)).
\] (44)

The aim of the next two sections is thus to show that, for \(T > 0 \) small enough and \(\Pi^1, \Pi^2 \) in given Sobolev spaces, the map \(\Gamma_{T, \Pi} \) defined by (35) is a contraction on \(X^s(T) \), for a suitable coefficient \(s \) and a suitable \((d, s)\)-admissible pair \((q, r)\). Due to the quadratic term \(G \circ (p^2 v^2) \) involved in \(\Gamma_{T, \Pi} \), we will actually be forced to consider additional constraints on these coefficients, beyond admissibility. In brief, since \(p^2 v^2 \) is expected to be controlled in \(L^q([0,T]; L^r(\mathbb{R}^d)) \) with \((\tilde{q}, \tilde{r})\) \((d, s)\)-dual-admissible (take \(s_2 = 0 \) in (41)), we need to ensure that
\[
L^q([0,T]; L^r(D)) \subset L^{2\tilde{q}}([0,T]; L^{2\tilde{r}}(D)).
\]

In view of this constraint, let us highlight the following existence result, which will in fact determine the limit of applications of our study (see Section 4.3 for more details).

Proposition 3.5. For all \(2 \leq d \leq 4 \) and \(s \in \left(\frac{1}{4}, \frac{1}{2} \right) \), one can find a \((d, s)\)-admissible pair \((q, r)\) and a \((d, s)\)-dual-admissible pair \((\tilde{q}, \tilde{r})\) such that
\[
q > 2\tilde{q} \quad \text{and} \quad r \geq 2\tilde{r}.
\] (45)
Proof. One can check that the pairs \((q, r)\) and \((\tilde{q}, \tilde{r})\) given by

\[
q \triangleq \frac{d+1}{s(d-1)}, \quad r \triangleq \frac{2(d+1)}{d+1-4s}, \quad \tilde{q} \triangleq \frac{d+1}{2s(d-1)}, \quad \tilde{r} \triangleq \frac{2(d+1)}{5+4d-4s},
\]

meet the required conditions. \(\square\)

3.3. First situation. Let us first consider the situation where the pair \(\Pi = (\Pi^1, \Pi^2)\) involved in (34) (or in (35)) belongs to the space

\[
E \triangleq L^\infty([0, T]; L^\infty(D))^2.
\]

Thus, for the moment, \(\Pi^1\) and \(\Pi^2\) are merely (bounded) functions. When going back to the stochastic model (1) and with the result of Proposition 1.2 in mind, this situation will correspond to the “regular” case \(\sum_{i=0}^{d}H_i > d - \frac{1}{2}\) (along the splitting of Theorem 1.6 or Theorem 1.7).

Proposition 3.6. Given \(0 < s < 1\), assume that there exists a \((d,s)\)-admissible pair \((q,r)\) and a \((d,s)\)-dual-admissible pair \((\tilde{q}, \tilde{r})\) such that (45) is satisfied, and define the space \(X^s(T)\) along (44). Then, for all \(T > 0\), \((\phi_0, \phi_1) \in \mathcal{W}^{s,2}(\mathbb{R}^d) \times \mathcal{W}^{s-1,2}(\mathbb{R}^d), \Pi_1 = (\Pi_1^1, \Pi_1^2) \in \mathcal{E}, \Pi_2 = (\Pi_2^1, \Pi_2^2) \in \mathcal{E}\) and \(v, v_1, v_2 \in X^s(T)\), the following bounds hold true:

\[
\mathcal{N}[\Gamma_{T, \Pi_1}(v); X^s(T)] \lesssim \|\phi_0\|_{W^{s,2}} + \|\phi_1\|_{W^{s-1,2}} + T^{\frac{1}{2}} - \tilde{\tilde{q}} N[v; X^s(T)]^2 + T T^{\frac{1}{2}} \tilde{q} N[v; X^s(T)] + T^2 ||\Pi_1||, (46)
\]

and

\[
\mathcal{N}[\Gamma_{T, \Pi_1}(v_1) - \Gamma_{T, \Pi_1}(v_2); X^s(T)] \lesssim T^{\frac{1}{2}} - \tilde{\tilde{q}} N[v_1 - v_2; X^s(T)] + T \|\Pi_1 - \Pi_2\| N[v_1; X^s(T)] + T \|\Pi_1 - \Pi_2\|, (47)
\]

where the proportional constants only depend on \(s\) and the norm \(||\cdot||\) is naturally defined as

\[
||\Pi|| = ||\Pi||_E \triangleq \|\Pi^1\|_{L^\infty([0, T]; L^\infty(D))} + \|\Pi^2\|_{L^\infty([0, T]; L^\infty(D))}.
\]

By combining the two bounds (46) and (47), it is now easy to show that for \(T_0 > 0\) small enough, the map \(\Gamma_{T_0, \Pi}: X^s(T_0) \to X^s(T_0)\) is a contraction on appropriate (stable) balls of \(X^s(T_0)\), which immediately yields the expected (local) well-posedness result:

Corollary 3.7. Under the assumptions of Proposition 3.6, and for all (fixed) \((\phi_0, \phi_1) \in \mathcal{W}^{s,2}(\mathbb{R}^d) \times \mathcal{W}^{s-1,2}(\mathbb{R}^d), \Pi = (\Pi^1, \Pi^2) \in \mathcal{E}\), there exists a time \(T_0 > 0\) such that Equation (34) admits a unique solution in \(X^s(T_0)\).

Proof of Proposition 3.6. The procedure is standard: we bound each term in the expression of \(\Gamma_{T, \Pi}\) separately.

Initial conditions: using Proposition 3.2, we get immediately

\[
\mathcal{N}[\partial_t(G(t, \cdot) \ast \phi_0) + G(t, \cdot) \ast \phi_1; X^s(T)] \lesssim \|\phi_0\|_{W^{s,2}} + \|\phi_1\|_{W^{s-1,2}}.
\]

Bound on \(G \ast (\rho^2v^2)\): By Proposition 3.3, it holds that

\[
\mathcal{N}[G \ast (\rho^2v^2); X^s(T)] \lesssim \mathcal{N}[\rho^2v^2; L^\tilde{q}([0, T]; L^\tilde{r}(\mathbb{R}^d))].
\]

Then, as \(\rho\) is supported by some compact domain \(D\), we can use (45) to assert that

\[
\mathcal{N}[\rho^2v^2; L^\tilde{q}([0, T]; L^\tilde{r}(\mathbb{R}^d))] = \mathcal{N}[\rho v; L^{\tilde{q}+\frac{d}{2}}(\mathbb{R}^d))]^2 \lesssim T^{\frac{1}{2}} - \tilde{\tilde{q}} N[v; L^q([0, T]; L^r(\mathbb{R}^d))] \lesssim T^{\frac{1}{2}} - \tilde{\tilde{q}} N[v; X^s(T)]^2.
\]

Bound on \(G \ast (\rho \Pi^1 \cdot \rho v)\): Let us introduce the additional parameter \(1 < \tilde{r}_1 \leq 2\) such that

\[
\frac{1}{2} + \frac{1 - s}{d}.
\]

First, by Proposition 3.3, it holds that

\[
\mathcal{N}[G \ast (\rho \Pi^1 \cdot \rho v); X^s(T)] \lesssim \mathcal{N}[\rho \Pi^1 \cdot \rho v; L^\tilde{q}([0, T]; L^\tilde{r}(\mathbb{R}^d))].
\]
Then one has of course, for every $t \geq 0$,
\[
\|\rho(\cdot)\Pi_1^1(t,\cdot)\rho(\cdot)v(t,\cdot)\|_{L^1(\mathbb{R}^d)} \lesssim \|\Pi_1^1(t,\cdot)\|_{L^\infty(D)}\|v(t,\cdot)\|_{L^2(\mathbb{R}^d)} \lesssim \|\Pi_1^1(t,\cdot)\|_{L^\infty(D)}\|v(t,\cdot)\|_{W^{s,2}(\mathbb{R}^d)}
\]
and so
\[
\mathcal{N}[\rho\Pi_1^1 \cdot \rho v; L^1([0,T]; L^{\tilde{s}}(\mathbb{R}^d))] \lesssim \mathcal{N}[\Pi_1^1; L^\infty([0,T]; L^{\tilde{s}}(D))]\|\rho v; L^1([0,T]; W^{s-2,2}(\mathbb{R}^d))] \\
\lesssim T\mathcal{N}[\Pi_1^1; L^\infty([0,T]; L^{\tilde{s}}(D))]\|\rho v; L^\infty([0,T]; W^{s-2,2}(\mathbb{R}^d))] \\
\lesssim T\|\Pi_1\|\|\rho v; X^s(T)\|.
\]

Bound on $G \ast (\rho^2 \Pi_2^2)$: Using the same parameter $1 < \tilde{r}_2 \leq 2$ as above, one has, by Proposition 3.3,
\[
\mathcal{N}[G \ast (\rho^2 \Pi_2^2); X^s(T)] \lesssim \mathcal{N}[\rho^2 \Pi_2^2; L^1([0,T]; L^{\tilde{r}_2}(\mathbb{R}^d))] \lesssim T\|\Pi_1\|
\]

Combining the above estimates provides us with (46). It is then clear that (47) can be derived from similar arguments: for instance,
\[
\mathcal{N}[G \ast (\rho^2(v_1^2 - v_2^2)); X^s(T)] \lesssim \mathcal{N}[v_1^2 - v_2^2; L^\delta([0,T]; L^\xi(D))] \\
\lesssim \mathcal{N}[v_1 - v_2; L^2([0,T]; L^{2\xi}(D))]\|v_1 + v_2; L^{2\delta}([0,T]; L^{2\xi}(D))] \\
\lesssim T^{\frac{1}{2} - \frac{s}{\tilde{r}_2}}\mathcal{N}[v_1 - v_2; X^s(T)]\|v_1 + v_2; X^s(T)] .
\]

\[
\Box
\]

3.4. **Second situation.** We now turn to the “irregular” case of our analysis, that will later correspond to item (ii) in Theorem 1.6 or Theorem 1.7. With the result of Proposition 1.4 in mind, we are thus led to consider the situation where the pair $\Pi = (\Pi_1, \Pi_2)$ in (35) belongs to the space
\[
\mathcal{E}_{\alpha,p} \triangleq L^\infty([0,T]; W^{-\alpha,p}(D)) \times L^\infty([0,T]; W^{-2\alpha,p}(D)),
\]
for some positive coefficient α and some integer $p \geq 2$. In particular, Π_1 and Π_2 are now both regarded as distributions.

Proposition 3.8. Given $0 < \alpha < s < 1$ such that $2\alpha + s < 1$, assume that there exists a (d,s)-admissible pair (q,r) and a (d,s)-dual-admissible pair (\tilde{q},\tilde{r}) such that (45) is satisfied, and define the space $X^s(T)$ along (44). Besides, let $p > d$ be defined by
\[
\frac{1}{p} = \frac{1 - (\alpha + s)}{d} .
\]
Then, for all $T > 0$, $(\phi_0, \phi_1) \in W^{s-2}(\mathbb{R}^d) \times W^{s-1,2}(\mathbb{R}^d)$, $\Pi_1 = (\Pi_1^1, \Pi_1^2) \in \mathcal{E}_{\alpha,p}$, $\Pi_2 = (\Pi_2^1, \Pi_2^2) \in \mathcal{E}_{\alpha,p}$ and $v, v_1, v_2 \in X^s(T)$, the two bounds (46) and (47) hold true, with proportional constants depending only on α, s, and with norm $\|\cdot\|$ understood as
\[
\|\Pi\| = \|\Pi\|_{\mathcal{E}_{\alpha,p}} \triangleq \mathcal{N}[\Pi_1^1; L^\infty([0,T]; W^{-\alpha,p}(D))] + \mathcal{N}[\Pi_2^2; L^\infty([0,T]; W^{-2\alpha,p}(D))] .
\]

Remark 3.9. Let us briefly compare this result with the situation treated in [12, Proposition 3.5]. At the level of the process Ψ (and so at the level of Π in the above formulation), the latter situation corresponds to taking $\alpha = \varepsilon$, for $\varepsilon > 0$ as small as one wishes. This possibility allows the authors of [12] to consider a general non-linearity of order k in the model (instead of the quadratic non-linearity in (1)): morally, the condition $2\alpha + s < 1$ in Proposition 3.8 turns into $k\varepsilon + s < 1$, which, by taking ε small enough, can indeed be satisfied. Our aim here, with the result of Proposition 1.4 in mind, is to handle situations where α may be close to $\frac{1}{2}$, which accounts for our restriction to a non-linearity of low order.

Just as in the previous section, we easily deduce from Proposition 3.8:

Corollary 3.10. Under the assumptions of Proposition 3.8, and for all (fixed) $(\phi_0, \phi_1) \in W^{s-2}(\mathbb{R}^d) \times W^{s-1,2}(\mathbb{R}^d)$, $\Pi = (\Pi_1, \Pi_2) \in \mathcal{E}_{\alpha,p}$, there exists a time $T_0 > 0$ such that Equation (34) admits a unique solution in $X^s(T_0)$.
Proof of Proposition 3.8. It is readily checked that the only differences with the situation treated in the previous section lie in the fourth and fifth terms composing \(\Gamma_{T, \Pi} \), and therefore will only focus on these terms.

Bound on \(G \ast (\rho \Pi^1 \cdot \rho v) \): Let us introduce the additional parameter \(1 < \tilde{r}_1 \leq 2 \) such that

\[
\frac{1}{\tilde{r}_1} = \frac{1}{2} + \frac{1 - (\alpha + s)}{d}.
\]

First, by Proposition 3.3, it holds that

\[
N[G \ast (\rho \Pi^1 \cdot \rho v); X^s(T)] \lesssim N[\rho \Pi^1 \cdot \rho v; L^1([0, T]; W^{-\alpha, \tilde{r}_1}(\mathbb{R}^d))].
\]

Then, using Proposition 3.1, it can be checked that for every \(t \geq 0 \),

\[
\|\rho(\cdot)\Pi^1(t, \cdot)\rho(v(t, \cdot))\|_{W^{-\alpha, \tilde{r}_1}(\mathbb{R}^d)} \lesssim \|\rho(\cdot)\Pi^1(t, \cdot)\|_{W^{-\alpha, \rho}(\mathbb{R}^d)}\|\rho(v(t, \cdot))\|_{W^{\rho, 2}(\mathbb{R}^d)}
\]

so that

\[
N[\rho \Pi^1 \cdot \rho v; L^1([0, T]; W^{-\alpha, \tilde{r}_1}(\mathbb{R}^d))] \lesssim N[\Pi^1; L^{\infty}([0, T]; W^{-\alpha, \rho}(\mathbb{R}^d))]N[v; L^1([0, T]; W^{\rho, 2}(\mathbb{R}^d))]
\]

\[
\lesssim T \|\Pi\|_1 N[v; X^s(T)].
\]

Bound on \(G \ast (\rho^2 \Pi^2) \): Consider the additional parameter \(1 < \tilde{r}_2 \leq 2 \) such that

\[
\frac{1}{\tilde{r}_2} = \frac{1}{2} + \frac{1 - (2\alpha + s)}{d}.
\]

By Proposition 3.3, one has just as above

\[
N[G \ast (\rho^2 \Pi^2); X^s(T)] \lesssim N[\rho^2 \Pi^2; L^1([0, T]; W^{-2\alpha, \tilde{r}_2}(\mathbb{R}^d))],
\]

and then

\[
N[\rho^2 \Pi^2; L^1([0, T]; W^{-2\alpha, \tilde{r}_2}(\mathbb{R}^d))] = N[\rho^2 \Pi^2; L^1([0, T]; W^{-2\alpha, \tilde{r}_2}(\mathbb{R}^d))]
\]

\[
\lesssim N[\Pi^2; L^1([0, T]; W^{-2\alpha, \rho}(\mathbb{R}^d))]
\]

\[
\lesssim N[\Pi^2; L^{\infty}([0, T]; W^{-2\alpha, \rho}(\mathbb{R}^d))]
\]

\[
\lesssim T \|\Pi\|_1 N[v; X^s(T)].
\]

where we have used the basic Sobolev embedding \(W^{-2\alpha, \rho}(\mathbb{R}^d) \subset W^{-2\alpha, \tilde{r}_2}(\mathbb{R}^d) \) and the bound (37). \(\square \)

4. **Proof of the main results**

4.1. **Proof of Theorem 1.6.** Fix \(2 \leq d \leq 4 \). Let \((q, r)\) and \((\bar{q}, \bar{r})\) be a \((d, \frac{1}{2})\)-admissible pair and a \((d, \frac{1}{2})\)-dual admissible pair (respectively) that satisfy (45), as given by Proposition 3.5. Then consider the two situations of the statement:

(i) Since \(\sum_{i=0}^d H_i > d - \frac{1}{2} \), we can pick \(0 < \lambda < \sum_{i=0}^d H_i - d + \frac{1}{2} \) and then \(p \) large enough so that the continuous embedding \(W^{\lambda, p}(D) \subset L^{\infty}(D) \) holds true. By Proposition 1.2, this puts us in a position to apply Corollary 3.7 (almost surely) with \(\Pi^1 \triangleq 2\Psi, \Pi^2 \triangleq \Psi^2 \) and \(s = \frac{1}{2} \). The result immediately follows.

(ii) Pick \(\alpha > 0 \) such that \(d - \frac{1}{2} - \sum_{i=0}^d H_i < \alpha < \frac{1}{2} \), so that, using Proposition 1.2 and Proposition 1.4, one has, for every \(p \geq 2, \Psi \in L^{\infty}([0, T]; W^{-\alpha, p}(D)) \) and \(\bar{\Psi}^2 \in L^{\infty}([0, T]; W^{-2\alpha, p}(D)) \) a.s. It now suffices to observe that \(2\alpha + \frac{1}{2} < 1 \), which allows us to get the result by applying Corollary 3.10 with \(\Pi^1 \triangleq 2\Psi, \Pi^2 \triangleq \bar{\Psi}^2 \) and \(s = \frac{1}{2} \).
4.2. Proof of Theorem 1.7. Fix $2 \leq d \leq 4$, $s = \frac{d}{2}$, and let $(q, r), (\tilde{q}, \tilde{r})$ be defined as in Section 4.1.

(i) Let (u_n) be the sequence of classical solutions of (13) and set $v_n \triangleq u_n - \Psi_n$, so that for each fixed $n \geq 1$, v_n clearly satisfies Equation (34) with $\Pi^1 = \Pi^1_n \triangleq 2\Psi_n$ and $\Pi^2 = \Pi^2_n \triangleq \Psi_n^2$. We can thus apply (46) and assert that for every $T > 0$,

\[N[v_n; X^s(T)] \lesssim \|v_0\|_{W^{s,2}} + \|\phi_1\|_{W^{s-1,2}} + T^{\frac{\tilde{q}}{\tilde{r}}} \frac{\bar{C}}{\bar{C}} N[v_n; X^s(T)]^2 + T\|\Pi_n\| \|v_n; X^s(T)\| + T\|\Pi_n\| , \]

where the proportional constant only depends on s. Besides, using a standard Sobolev embedding, we know that for all $\lambda > 0$ and p large enough (dependig on λ),

\[\|\Pi_n - \Pi\| = \|\Pi_n - \Pi\|_p \lesssim \|\Psi_n - \Psi\|_{L_\infty([0,T];W^{\lambda,p}(D))} + \|\Psi_n^2 - \Psi^2\|_{L_\infty([0,T];W^{\lambda,p}(D))} , \]

and so, using Proposition 1.2, we get that for a subsequence of (Ψ_n) (that we still denote by (Ψ_n)),

\[\|\Pi_n - \Pi\| \to 0 \] almost surely. In particular, $\sup_n \|\Pi_n\| < \infty$ a.s. Going back to (48) and setting $f_n(T) \equiv N[v_n; X^s(T)]$, we deduce that for all $0 < T_0 \leq 1$ and $0 < T \leq T_0$,

\[f_n(T) \leq C_1 \{A + T_0 f_n(T)^2\} , \]

for some coefficient $\bar{C} > 0$, some (random) constant $C_\lambda > 1$, and where we have also set $\lambda \equiv 1 + \|\phi_0\|_{W^{s,2}} + \|\phi_1\|_{W^{s-1,2}}$. At this point, let us fix the (random) time $T_1 > 0$ satisfying $1 - 4C_\lambda^2 A T_1^2 = \frac{1}{3}$, in such a way that for every $0 < T_0 < T_1$, the equation $C_1 T_0^2 x^2 - x + C_1 A = 0$ admits two positive solutions $x_1 T_0 < x_2 T_0$. As a result, for all $0 < T < \inf(1, T_1)$ and $0 < T \leq T_0$, one has either $f_n(T) \leq x_1 T_0$ or $f_n(T) \geq x_2 T_0$. In fact, due to the continuity of f_n (a straightforward consequence of the regularity of v_n), one has either $f_n(T) \leq x_1 T_0$ or $f_n(T) \geq x_2 T_0$. Moreover, if we define $T_2 > 0$ through the relation $2C_1 T_2^2 \|\phi_0\| = 1$, it can be explicitly checked that for every $0 < T_0 \leq \inf(1, T_1, T_2)$, $f_n(0) = \|\phi_0\| \leq x_1 T_0$, and we are therefore in a position to assert that for such a time T_0 (that we fix from now on),

\[\sup_{n \geq 1} N[v_n; X^s(T_0)] = \sup_{n \geq 1, T \in [0, T_0]} f_n(T) \leq x_1 T_0 . \]

By injecting this uniform bound into (47), we easily derive that, for some time $0 < T_0 \leq T_0$ (uniform in n),

\[N[v_n; v; \tilde{T}_0] \lesssim \|\Psi - \Psi_n\| , \]

where the proportional constant is also uniform in n. Finally,

\[N[v_n; u - L^\infty([0, \tilde{T}_0]; L^2(D))] \lesssim N[\Psi_n - \Psi; L^\infty([0, \tilde{T}_0]; L^2(D))] + N[v_n; v; X^s(\tilde{T}_0)] \]

and the convergence immediately follows.

(ii) We can of course use the very same arguments as above, by noting that if (u_n) satisfies (14) and $v_n \triangleq v_n - \Psi_n$, then v_n satisfies (34) with $\Pi^1 = \Pi^1_n \triangleq 2\Psi_n$ and $\Pi^2 = \Pi^2_n \triangleq \Psi_n^2$. The bound (49) must then be replaced with

\[\|\Pi_n - \Pi\| = \|\Pi_n - \Pi\|_{L_\infty, p} \lesssim N[2\Psi_n - 2\Psi; L^\infty([0, T]; W^{\alpha,p}(D))] + N[\Psi_n^2 - \Psi^2; L^\infty([0, T]; W^{2\alpha,p}(D))] , \]

which allows us to apply Proposition 1.2 and Proposition 1.4 in the procedure. Observe finally that

\[N[u_n - u; L^\infty([0, T]; W^{\alpha,2}(D))] \lesssim N[\Psi_n - \Psi; L^\infty([0, T]; W^{\alpha,2}(D))] + N[v_n - v; X^s(T)] , \]

which yields the expected convergence.

4.3. Optimality. Keeping in mind the results of Proposition 1.2, Proposition 1.4 and Proposition 3.8, let us conclude the study with a brief discussion about the limits of our approach with respect to the dimension parameter d, that is, about the restriction on d in Theorem 1.6 or Theorem 1.7. To do so, let us only focus on the “irregular” situation described in item (ii) of these theorems, and which essentially relies on the application of Proposition 3.8.

First, note that the latter application can only be considered for $2 \leq d \leq 6$. Indeed, it can be checked that the admissibility conditions (42) and (43) entail that $r \leq r_{\text{max}} \triangleq \frac{2(d+1)}{d-4}$ and $\tilde{r} \geq \tilde{r}_{\text{min}} \triangleq \frac{2(d+1)}{d-4}$. Thus, for the condition $\frac{\tilde{q}}{\tilde{r}} \geq 2$ to be satisfied, one must have $d - 3 \geq 4s < 4$ and accordingly $d < 7$.
Besides, taking the constraints (7) and (8) into account, observe that we are specifically interested in the possibility to cover the whole domain $\alpha \in (0, \frac{1}{4})$ in Proposition 3.8, which, due to $0 < \alpha < s < 1$ and $2\alpha + s < 1$, yields the additional condition $\frac{1}{2} \leq s \leq \frac{1}{2}$. In this case, $d - 3 \leq 4s \leq 2$ and so $2 \leq d \leq 5$.

Finally, in the specific case $d = 5$, one must have both $\frac{1}{4} \leq s \leq \frac{1}{2}$ and $4s \geq 2$, so $s = \frac{1}{2}$. Then it can be checked that $\frac{r_{\max}}{r_{\min}} = 2$, and therefore the only possible choice for the pair (r, \tilde{r}) satisfying $r \geq 2\tilde{r}$ is $(r, \tilde{r}) = (r_{\max}, r_{\min})$, with associated pair $(q, \tilde{q}) = (3, \frac{3}{2})$. But now $\frac{3}{4} = 2$, which contradicts the required condition $q > 2\tilde{q}$. This observation rules out the case $d = 5$ from our analysis, and to this extent, we can consider the statement of item (ii) in Theorem 1.6 (or Theorem 1.7) as optimal with respect to the dimension parameter d (at least along our strategy based on Proposition 3.8).

Remark 4.1. The above arguments also point out the fact that in the “regular” situation treated in item (i) of Theorem 1.6 (or Theorem 1.7), our result could perhaps be extended to any dimension $2 \leq d \leq 6$ (with a sharper choice of $(s, (q, r))$). We refrain from exploring this possibility though, since our main objective in this study is to offer a clear view on the transition phenomenon occurring when both the “regular” and the “irregular” situations can be considered.

References

