D. N. Basov, R. D. Averitt, D. Van-der-marel, M. Dressel, and K. Haule, Electrodynamics of correlated electron materials, Reviews of Modern Physics, vol.34, issue.2, p.471, 2011.
DOI : 10.1103/PhysRevB.11.4383

URL : http://arxiv.org/abs/1106.2309

Y. Kozuka, M. Kim, C. Bell, B. Kim, Y. Hikita et al., Two-dimensional normal-state quantum oscillations in a superconducting heterostructure, Nature, vol.428, issue.7272, p.487, 2009.
DOI : 10.1038/nature08566

L. Li, C. Richter, J. Mannhart, and R. Ashoori, Coexistence of magnetic order and two-dimensional superconductivity at??LaAlO3/SrTiO3 interfaces, Nature Physics, vol.80, issue.10, p.762, 2011.
DOI : 10.1103/PhysRevLett.107.056802

URL : http://arxiv.org/abs/1105.0235

J. A. Bert, B. Kalisky, C. Bell, M. Kim, Y. Hikita et al., Direct imaging of the coexistence of ferromagnetism and superconductivity at??the??LaAlO3/SrTiO3 interface, Nature Physics, vol.7, issue.10, p.767, 2011.
DOI : 10.1063/1.1406931

A. Brinkman, M. Huijben, M. Van-zalk, J. Huijben, U. Zeitler et al., Magnetic effects at the interface between non-magnetic oxides, Nature Materials, vol.399, issue.7, p.493, 2007.
DOI : 10.1038/nmat1931

URL : http://arxiv.org/pdf/cond-mat/0703028

X. Ariando, G. Wang, Z. Baskaran, J. Liu, J. Huijben et al., Electronic phase separation at the LaAlO3/SrTiO3 interface, Nature Communications, vol.7, p.188, 2011.
DOI : 10.1116/1.577174

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.204.4854

W. Rice, P. Ambwani, M. Bombeck, J. Thompson, G. Haugstad et al., Persistent optically induced magnetism in oxygen-deficient strontium titanate, Nature Materials, vol.2, issue.5, p.481, 2014.
DOI : 10.1063/1.345628

URL : http://arxiv.org/abs/1401.1871

S. Thiel, G. Hammerl, A. Schmehl, C. Schneider, and J. Mannhart, Tunable Quasi-Two-Dimensional Electron Gases in Oxide Heterostructures, Science, vol.313, issue.5795, p.1942, 2006.
DOI : 10.1126/science.1131091

A. Santander-syro, O. Copie, T. Kondo, F. Fortuna, S. Pailhes et al., Two-dimensional electron gas with universal subbands at the surface of SrTiO3, Apertet, P. Lecoeur, A. Barthélémy, and M. Rozenberg, p.189, 2011.
DOI : 10.1038/nature08234

URL : https://hal.archives-ouvertes.fr/in2p3-00771952

W. Meevasana, P. King, R. He, S. Mo, M. Hashimoto et al., Creation and control of a two-dimensional electron liquid at the bare SrTiO3 surface, Nature Materials, vol.10, issue.2, p.114, 2011.
DOI : 10.1103/PhysRevLett.97.237601

A. H. Kahn and A. J. Leyendecker, Electronic Energy Bands in Strontium Titanate, Physical Review, vol.26, issue.5A, p.1321, 1964.
DOI : 10.1103/PhysRev.111.1108

L. F. Mattheiss, Conduction Bands, Physical Review B, vol.9, issue.12, p.4740, 1972.
DOI : 10.1016/0038-1098(71)90115-3

R. Ahuja, O. Eriksson, and B. Johansson, Electronic and optical properties of BaTiO3 and SrTiO3, Journal of Applied Physics, vol.65, issue.4, p.1854, 2001.
DOI : 10.1103/PhysRevLett.51.597

M. I. Cohen and R. F. Blunt, in the Region of the Absorption Edge, Physical Review, vol.28, issue.3, p.929, 1968.
DOI : 10.1016/0022-3697(67)90099-6

M. Capizzi and A. Frova, Optical Gap of Strontium Titanate (Deviation from Urbach Tail Behavior), Physical Review Letters, vol.21, issue.18, p.1298, 1970.
DOI : 10.1103/PhysRevLett.21.1256

D. Bäuerle, W. Braun, V. Saile, G. Sprssel, and E. Koch, Vacuum ultraviolet reflectivity and band structure of SrTiO3 and BaTiO3, Zeitschrift f???r Physik B Condensed Matter and Quanta, vol.4, issue.3, p.179, 1978.
DOI : 10.1103/PhysRev.140.A651

J. L. Servoin, Y. Luspin, and F. Gervais, at high temperature, Physical Review B, vol.97, issue.11, p.5501, 1980.
DOI : 10.1002/pssb.2220920107

G. E. Jellison, L. A. Boatner, D. H. Lowndes, R. A. Mc-kee, and M. Godbole, Optical functions of transparent thin films of SrTiO_3, BaTiO_3, and SiOx determined by spectroscopic ellipsometry, Applied Optics, vol.33, issue.25, p.6053, 1994.
DOI : 10.1364/AO.33.006053

S. Zollner, A. A. Demkov, R. Liu, P. L. Fejes, R. B. Gregory et al., Optical properties of bulk and thin-film SrTiO[sub 3] on Si and Pt, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.18, issue.4, p.2242, 2000.
DOI : 10.1116/1.1303741

K. Van-benthem, C. Elsässer, and R. French, Bulk electronic structure of SrTiO3: Experiment and theory, Journal of Applied Physics, vol.30, issue.12, p.6156, 2001.
DOI : 10.1088/0953-8984/12/15/315

K. F. Mak, J. Shan, and T. F. Heinz, Seeing Many-Body Effects in Single- and Few-Layer Graphene: Observation of Two-Dimensional Saddle-Point Excitons, Physical Review Letters, vol.106, issue.4, p.46401, 2011.
DOI : 10.1021/nl070193p

I. Santoso, P. K. Gogoi, H. B. Su, H. Huang, Y. Lu et al., Observation of room-temperature high-energy resonant excitonic effects in graphene, Physical Review B, vol.596, issue.8, p.81403, 2011.
DOI : 10.1103/PhysRevB.55.4999

L. Yang, J. Deslippe, C. Park, M. L. Cohen, and S. G. Louie, Excitonic Effects on the Optical Response of Graphene and Bilayer Graphene, Physical Review Letters, vol.103, issue.18, p.186802, 2009.
DOI : 10.1103/PhysRevB.75.201304

P. E. Trevisanutto, M. Holzmann, M. Côté, and V. Olevano, high-energy excitonic effects in graphite and graphene, Physical Review B, vol.81, issue.12, p.121405, 2010.
DOI : 10.1103/RevModPhys.74.601

URL : https://hal.archives-ouvertes.fr/hal-00496011

H. Fujiwara, Spectroscopic ellipsometry: principles and applications, 2007.
DOI : 10.1002/9780470060193

G. Onida, L. Reining, and A. Rubio, Electronic excitations: density-functional versus many-body Green???s-function approaches, Reviews of Modern Physics, vol.41, issue.118, p.601, 2002.
DOI : 10.1002/pssb.19700410103

URL : https://digital.csic.es/bitstream/10261/98472/1/Electronic%20excitations.pdf

P. Y. Yu and M. Cardona, Fundamentals of semiconductors, 1996.

D. Aspnes, M. Garriga, L. Vina, and M. Cardona, Handbook on semiconductors, Phys. Rev. B, vol.2, issue.36, p.4821, 1980.