Computational methods for comparing and integrating multiple probing assays to predict RNA secondary structure
Afaf Saaidi, Delphine Allouche, Yann Ponty, Bruno Sargueil, Mireille Regnier

To cite this version:
Afaf Saaidi, Delphine Allouche, Yann Ponty, Bruno Sargueil, Mireille Regnier. Computational methods for comparing and integrating multiple probing assays to predict RNA secondary structure.
Doctorial journey Interface, Ecole polytechnique, Palaiseau, Nov 2016, Palaiseau, France. 10. hal-01558227

HAL Id: hal-01558227
https://hal.archives-ouvertes.fr/hal-01558227
Submitted on 7 Jul 2017
Computational methods for comparing and integrating multiple probing assays to predict RNA secondary structure

Afaf Saaidi1,2,3, Delphine Allouche3,4

1-Introduction
- RNA is key to understand many biological processes.
- RNA maintains a stable tertiary structure.
- The determination of the structure allows understanding its operating mechanism.
- We study the 444nt long VIH1 Gag-IRES.

RNA Structure determination
- 3D structure can be resolved experimentally \{remains expensive and time-consuming\}.
- Computational methods allow to have accurate secondary structure predictions (PPV \approx 75\%). Less accurate predictions for long RNA.
- \textit{+} Experimental Data [Chemical\text{\textbackslash SHAPE} \text{\textbackslash Enzymatic}] improve predictions.

3-Results

Optimal centroid structures from 140 [8000 structures]

2-Material & Methods

2-1 Experimental data

SHAPE-Map experiments

High Throughput Sequencing

SHAPE reactivity calculation

Boltzmann probability to observe a structure S:

$$ P(S) = \frac{e^{-U(S)}}{Z} $$

with Z the partition function:

$$ Z = \sum_{S} e^{-U(S)} $$

V-Enzymatic cleavage targets paired nucleotides. Cleavage reveals unpaired nucleotides.

2-2 Sampling/Clustering workflow

Data processing

Structure sampling

Set of ensemble structures

Clustering[Affinity propagation]

Optimal clusters?

Coherence Diversity Stability

Maximization \textarrow{\rightarrow} Pareto Frontier

Optimal Centroid Structures

References

Acknowledgments

PhD funded by the "Fondation pour la Recherche Médicale"