Online learning and transfer for user adaptation in dialogue systems

Nicolas Carrara 1, 2 Romain Laroche 3 Olivier Pietquin 2
2 SEQUEL - Sequential Learning
Inria Lille - Nord Europe, CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Abstract : We address the problem of user adaptation in Spoken Dialogue Systems. The goal is to quickly adapt online to a new user given a large amount of dialogues collected with other users. Previous works using Transfer for Reinforcement Learning tackled this problem when the number of source users remains limited. In this paper, we overcome this constraint by clustering the source users: each user cluster, represented by its centroid, is used as a potential source in the state-of-the-art Transfer Reinforcement Learning algorithm. Our benchmark compares several clustering approaches , including one based on a novel metric. All experiments are led on a negotiation dialogue task, and their results show significant improvements over baselines.
Type de document :
Communication dans un congrès
SIGDIAL/SEMDIAL joint special session on negotiation dialog 2017, Aug 2017, Saarbrücken, Germany
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01557775
Contributeur : Nicolas Carrara <>
Soumis le : jeudi 6 juillet 2017 - 15:39:33
Dernière modification le : mercredi 25 avril 2018 - 15:43:00
Document(s) archivé(s) le : mercredi 24 janvier 2018 - 03:18:57

Fichier

camera-ready.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01557775, version 1

Citation

Nicolas Carrara, Romain Laroche, Olivier Pietquin. Online learning and transfer for user adaptation in dialogue systems. SIGDIAL/SEMDIAL joint special session on negotiation dialog 2017, Aug 2017, Saarbrücken, Germany. 〈hal-01557775〉

Partager

Métriques

Consultations de la notice

442

Téléchargements de fichiers

112