Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

Harmonic measure for biased random walk in a supercritical Galton-Watson tree

Abstract : We consider random walks $\lambda$-biased towards the root on a Galton-Watson tree, whose offspring distribution $(p_k)_{k\geq 1}$ is non-degenerate and has finite mean $m>1$. In the transient regime $\lambda\in (0,m)$, the loop-erased trajectory of the biased random walk defines the $\lambda$-harmonic ray, whose law is the $\lambda$-harmonic measure on the boundary of the Galton-Watson tree. We answer a question of Lyons, Pemantle and Peres by showing that the $\lambda$-harmonic measure has a.s. strictly larger Hausdorff dimension than the visibility measure, which is the harmonic measure corresponding to the simple forward random walk. We also prove that the average number of children of the vertices along the $\lambda$-harmonic ray is a.s. bounded below by $m$ and bounded above by $m^{-1}\sum k^2 p_k$. Moreover, at least for $0<\lambda \leq 1$, the average number of children of the vertices along the $\lambda$-harmonic ray is a.s. strictly larger than that of the $\lambda$-biased random walk trajectory. We observe that the latter is not monotone in the bias parameter $\lambda$.
Document type :
Preprints, Working Papers, ...
Complete list of metadatas

Cited literature [11 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01557744
Contributor : Shen Lin <>
Submitted on : Friday, November 10, 2017 - 3:31:50 PM
Last modification on : Saturday, March 28, 2020 - 2:13:38 AM
Document(s) archivé(s) le : Sunday, February 11, 2018 - 3:10:45 PM

File

harmonic_bias.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01557744, version 3
  • ARXIV : 1707.01811

Citation

Shen Lin. Harmonic measure for biased random walk in a supercritical Galton-Watson tree . 2017. ⟨hal-01557744v3⟩

Share

Metrics

Record views

159

Files downloads

314