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NON-LOCAL GEHRING LEMMAS IN SPACES OF HOMOGENEOUS

TYPE AND APPLICATIONS

PASCAL AUSCHER, SIMON BORTZ, MORITZ EGERT, AND OLLI SAARI

Abstract. We prove a self-improving property for reverse Hölder inequalities

with non-local right-hand side. We attempt to cover all the most important situa-

tions that one encounters when studying elliptic and parabolic partial differential

equations. We present applications to non-local extensions of A∞ weights and

fractional elliptic divergence form equations. We write our results in spaces of

homogeneous type.

Contents

1. Introduction 2

2. Metric spaces 3

3. Quasi-metric spaces 11

4. Variants 14

5. Global integrability 15

6. Self-improvement of the right-hand side 19

7. Extensions 23

8. Very weak A∞ weights 27

9. Application to a fractional divergence form equation 32

References 39

2010 Mathematics Subject Classification. Primary: 30L99; Secondary: 34A08, 42B25.

Key words and phrases. Gehring’s lemma, (non-local) Reverse Hölder inequalities, spaces

of homogeneous type, (very weak) A∞ weights, Cp weights, fractional elliptic equations, self-

improvement properties.

The first and third authors were partially supported by the ANR project “Harmonic Analysis

at its Boundaries”, ANR-12-BS01-0013. This material is based upon work supported by National

Science Foundation under Grant No. DMS-1440140 while the authors were in residence at the MSRI

in Berkeley, California, during the Spring 2017 semester. The second author was supported by the

NSF INSPIRE Award DMS 1344235. The third author was supported by a public grant as part of the

FMJH.

1



2 PASCAL AUSCHER, SIMON BORTZ, MORITZ EGERT, AND OLLI SAARI

1. Introduction

Gehring’s lemma [9] establishes the open-ended property of reverse Hölder

classes. If

(1.1)

(
1

|B|

∫

B

uq dx

)1/q

.
1

|B|

∫

B

u dx

with q > 1 and all Euclidean balls B ⊂ Rn, then

(
1

|B|

∫

B

uq+ǫ dx

)1/(q+ǫ)

.q

1

|B|

∫

B

u dx

for a certain ǫ > 0 and all Euclidean balls. This self-improving property has proved

to be an important tool when studying elliptic [7, 10] and parabolic [11] partial

differential equations as well as quasiconformal mappings [16]. In this case, one

has to enlarge the ball in the right hand side. We come back to this.

In this work, we are concerned with reverse Hölder inequalities when the right-

hand side is non-local. Understanding an analogue of Gehring’s lemma in this

generality turned out to be crucial in [4], where we prove Hölder continuity in time

for solutions of parabolic systems. The non-local nature arises from the use of half-

order time derivatives. The ambient space being quasi-metric instead of Euclidean

is also an assumption natural from the point of view of parabolic partial differential

equations. Hence, we shall explore these non-local Gehring lemmas in spaces of

homogeneous type.

It is well known that Gehring’s lemma holds for the so called weak reverse

Hölder inequality where the right-hand side of (1.1) is an average over a dilated

ball 2B. We replace the single dilate by a significantly weaker non-local tail such

as
∞∑

k=0

2−k 1

|2kB|

∫

2kB

u dx

and certain averages over additional functions f and h that have a special meaning

in applications. The main result of this paper is Theorem 3.2 asserting that a variant

of Gehring’s lemma, and in particular the local higher integrability of u still holds in

this setting. We present a core version of the theorem already in the next section. It

comes with the introduction of some necessary notation but we tried to keep things

simple to give the reader a first flavor of our results. Once the strategy is in place,

we discuss various consequences (Section 5), ways to generalize it (Sections 4 and

7) as well as self-improving properties for the right-hand side of the reverse Hölder

inequality with tail (Section 6). We aim at covering all the aspects that usually

arise from applications. Finally, we illustrate our main result by an application to

regularity of solutions to the fractional divergence form equation introduced in [25]

and investigated further for example in [24].

The context of our work is the following. Gehring’s lemma in a metric space

endowed with a doubling measure was proved in [29]. See also the book [6].

By [19], every quasi-metric space carries a compatible metric structure so that

Gehring’s lemma also holds in that setting. However, in the case of homogeneous

reverse Hölder inequalities, a very clean argument using self-improving properties
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of A∞ weights was used in [3] to give an intrinsically quasi-metric proof (see also

the very closely related work [14]). We do not attempt to review the literature

in the Euclidean n-space, but we refer to the excellent survey in [15] instead. In

addition, we want to point out the recent paper on Gehring’s lemma for fractional

Sobolev spaces [17]. That paper studies fractional equations, whose solutions are

self-improving in terms of both integrability and differentiability. Such phenomena

are different from what we encounter here, but we found the technical part of [17]

very inspiring.

Among generalizations, we mention that the tails may be replaced by some

supremum of averages taken over balls larger than the original ball on the left-

hand side and/or that one may work on open subsets. In this way, our methods

can also be applied to obtain a generalization of A∞ weights: In [3], a larger class

of weak A∞ weights, generalizing the one considered in [8, 28] was defined and

their higher (than one) integrability was proved (in spaces of homogeneous type).

This class of weights, larger than the usual A∞ Muckenhoupt class, is defined by

allowing a uniform dilation of the ball in the right-hand side compared to the one

on the left-hand side. Here, we show that, in fact, the dilation may be arbitrary

(depending on the ball) provided it is finite. Another family of weights covered

by our methods is the Cp class studied in [20, 22]. Precise definitions are given in

Section 8.

Acknowledgment. We thank Tuomas Hytönen for an enlightening discussion on

the topics of this work that led to the results extending the A∞ class and Carlos

Pérez for pointing out the connection to the Cp class. We also thank an anonymous

referee for suggesting that our results should apply to the fractional divergence

form equation of Shieh–Spector [25] rather than the toy model investigated in an

earlier version of our manuscript.

2. Metric spaces

A space of homogeneous type (X, d, µ) is a triple consisting of a set X, a function

d : X × X → [0,∞) satisfying the quasi-distance axioms

(i) d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x) for all x, y ∈ X, and

(iii) d(x, z) ≤ K(d(x, y) + d(y, z)) for a certain K ≥ 1 and all x, y, z ∈ X;

and a Borel measure µ that is doubling in the sense that

0 < µ(B(x, 2r)) ≤ Cd µ(B(x, r)) < ∞

holds for a certain Cd and all radii r > 0 and centers x ∈ X. If the constant K

appearing in the triangle inequality (iii) equals 1, we call (X, d, µ) a metric space

with doubling measure. The topology is understood to be the one generated by

the quasi-metric balls. For simplicity, we impose the additional assumption that all

quasi-metric balls are Borel measurable. In general, they can even fail to be open.

The doubling condition implies there is C > 0 so that for some D > 0,

(2.1)
µ(B(x,R))

µ(B(x, r))
≤ C

(
R

r

)D
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for all x ∈ X and R ≥ r > 0. We can always take D = log2 Cd. In the following

we call this number the homogeneous dimension (although there might be smaller

positive numbers D than log2 Cd for which this inequality holds: our proofs work

with any such D). For all these basic facts on analysis in metric spaces, we refer to

the book [6].

The following theorem is concerned with the special case of metric spaces, but it

has an analogue in the general case of quasi-metric spaces, see Theorem 3.2 below.

Theorem 2.2. Let (X, d, µ) be a metric space with doubling measure. Let s, β > 0

and q > 1 be such that s < q and β ≥ D(1/s − 1/q) where D is any number

satisfying (2.1). Let N > 1 and let (αk)k≥0 be a non-increasing sequence of positive

numbers with α :=
∑

k αk < ∞, and define

(2.3) au(B) :=

∞∑

k=0

αk

?
NkB

u dµ

for u ≥ 0 locally integrable and B a metric ball.

Suppose that u, f , h ≥ 0 with uq, f q, hs ∈ L1
loc(X, dµ) and A ≥ 0 is a constant

such that for every ball B = B(x,R),

(2.4)

(?
B

uq dµ

)1/q

≤ Aau(B) + (a f q (B))1/q + Rβ(ahs (B))1/s.

Then there exists p > q depending on α0, α, A, q, s,N and Cd such that for all balls

B,

(?
B

up dµ

)1/p

. au(NB) + (a f q (NB))1/q + Rβ(ahs (NB))1/s

+

(?
NB

f p dµ

)1/p

+ Rβ
(?

NB

hps/q dµ

)q/sp

,

(2.5)

with implicit constant depending on α0, α, A, q, s, β,N and Cd.

Remark 2.6. If one assumes the sequence (αk)k≥0 is finite, the functional is com-

parable to one single average on Nk0 B for some k0. This gives a proof of the

classical Gehring lemma with dilated balls. Note the shift from Nk0 B to Nk0+1B

in the conclusion. But well-known additional covering arguments show that the

dilation factor Nk0+1 can be changed to any number larger than 1. If one assumes

(2.7) ∃C < ∞ : ∀k ≥ 0 αk ≤ Cαk+1,

then it follows that au(NB) ≤ Cau(B) for all u ≥ 0 and all balls B. In that case,

one can replace NB by B in the right-hand side of (2.5). Geometric sequences,

which are typical in application, do satisfy this condition but this rules out finite

sequences. Finally, note that the higher integrability of u on B depends only on the

higher integrability of f and h on the first dilated ball NB.

Proof. We prove (2.5) for B = B(x0,R) with x0 ∈ X and R > 0. Throughout, we

reserve the symbol C for a constant that depends at most on α0, α, A, q, s, β,N and

Cd but that may vary from line to line.
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Step 1. Preparation. Having fixed B, we set gq := A
q
Rhs

1NB with AR a constant

so that for any ball Br with radius r contained in NB, we have

(2.8) rβ
(?

Br

hs dµ

)1/s

≤

(?
Br

gq dµ

)1/q

and

(2.9)

(?
NB

gq dµ

)1/q

≤ C1(NR)β
(?

NB

hs dµ

)1/s

for some C1 depending only on the doubling condition, s and q. Indeed, write

Br = B(x, r). As x ∈ NB, we have NB = B(x0,NR) ⊂ B(x, 2NR), hence

µ(NB)

µ(Br)
≤
µ(B(x, 2NR))

µ(B(x, r))
≤ C0

(
2NR

r

)D

≤ C02D

(
NR

r

)β(1/s−1/q)−1

where C0 depends only on the doubling condition. Unraveling this inequality and

setting C1 = (C02D)1/q−1/s yield

rβµ(Br)
1/q−1/s ≤ C1(NR)βµ(NB)1/q−1/s.

Hence, as q > s,

rβµ(Br)
1/q−1/s

(∫

Br

hs dµ

)1/s−1/q

≤ C1(NR)βµ(NB)1/q−1/s

(∫

NB

hs dµ

)1/s−1/q

so that

rβ
(?

Br

hs dµ

)1/s

= rβ
(?

Br

hs dµ

)1/s−1/q (?
Br

hs dµ

)1/q

≤ C1(NR)β
(?

NB

hs dµ

)1/s−1/q (?
Br

hs dµ

)1/q

.

Thus, we set

AR := C1(NR)β
(?

NB

hs dµ

)1/s−1/q

(2.10)

and (2.8) is proved. Observing that if Br = NB we have equalities with constant 1

in the inequalities above, the constant C1 works for (2.9).

Step 2. Local setup. For ℓ ∈ N, fix r0 and ρ0 real numbers satisfying R ≤ r0 <
ρ0 ≤ NR with Nℓ(ρ0−r0) = R. For x ∈ B(x0, r0), we have that NkNℓ(ρ0−r0) = NkR

for k ≥ 0 so

B(x,Nk(ρ0 − r0)) ⊂ B(x0,N
k+1R) ⊂ B(x,Nk+ℓ+ j(ρ0 − r0)),
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where j = 2 when N ≥ 2 and j = ⌈(log2 N)−1 + 1⌉ when 1 < N < 2, and

consequently for any positive µ-measurable function v,

?
B(x,Nk(ρ0−r0))

v dµ =
1

µ(B(x,Nk(ρ0 − r0)))

∫

B(x,Nk(ρ0−r0))

v dµ

≤
µ(B(x,Nk+ℓ+ j(ρ0 − r0)))

µ(B(x,Nk(ρ0 − r0)))

1

B(x0,Nk+1R)

∫

B(x0,Nk+1R)

v dµ

≤ C
ℓ+ j
N

?
B(x0,Nk+1R)

v dµ,

(2.11)

where we used (2.1) in the last line. The constant CN ≥ 1 only depends on the

doubling constant Cd and the number N.

Step 3. Beginning of the estimate. For m > 0, set um := min{u,m}, Br0
:=

B(x0, r0) and Bρ0
:= B(x0, ρ0). Using the Lebesgue-Stieltjes formulation of the

integral we have
∫

Br0

up−q
m uq dµ = (p − q)

∫ m

0

λp−q−1uq(Br0
∩ {u > λ}) dλ

= (p − q)

∫ λ0

0

λp−q−1uq(Br0
∩ {u > λ}) dλ

+ (p − q)

∫ m

λ0

λp−q−1uq(Br0
∩ {u > λ}) dλ

≤ λ
p−q
0 uq(Br0

) + (p − q)

∫ m

λ0

λp−q−1uq(Br0
∩ {u > λ}) dλ

=: I + II,

(2.12)

where uq(A) =
∫
A

uq dµ for any measurable setA ⊆ X and λ0 is a constant chosen

below.

Step 4. Choice of the threshold λ0. We define three functions

U(x, r) :=

?
B(x,r)

u dµ, F(x, r) :=

(?
B(x,r)

f q dµ

)1/q

, G(x, r) :=

(?
B(x,r)

gq dµ

)1/q

and for λ > λ0, we denote the relevant level sets by

Uλ := Br0
∩ {u > λ}, Fλ := Br0

∩ { f > λ}, Gλ := Br0
∩ {g > λ}.

It follows from (2.11) with k = 0 that for x ∈ Br0
,

U(x, ρ0 − r0) =

?
B(x,ρ0−r0)

u dµ ≤
C
ℓ+ j
N

α0

au(NB)

and one has the same observation for F with f q. For the last term, we use (2.11) in

conjunction with (2.9) to obtain

?
B(x,ρ0−r0)

gq dµ ≤ C
ℓ+ j
N

?
NB

gq dµ ≤ C
ℓ+ j
N C

q
1(NR)βq

(?
NB

hs dµ

)q/s
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≤
C

(ℓ+ j)q/s
N

α
q/s
0

C
q
1(NR)βqahs (NB)q/s,

where we used CN ≥ 1 and q/s > 1. Consequently, we choose

λ0 :=
C
ℓ+ j
N

α0

au(NB) +

(
C
ℓ+ j
N

α0

a f q(NB)

)1/q

+C1(NR)β

(
C
ℓ+ j
N

α0

ahs (NB)

)1/s

.

Finally, set

Ωλ :=
{

x ∈ Uλ ∪ Fλ ∪Gλ : x is a Lebesgue point for u, f q and gq
}
.

Step 5. Estimate of the measure of Uλ. We begin to estimate II in (2.12) so we

assume λ > λ0. For x ∈ Br0
,

(2.13) U(x, ρ0 − r0) + F(x, ρ0 − r0) +G(x, ρ0 − r0) ≤ λ0 < λ.

On the other hand, by definition of Uλ, Fλ and Gλ, if x ∈ Ωλ then

lim
r→0

U(x, r) + F(x, r) +G(x, r) > λ

Thus for x ∈ Ωλ we can define the stopping time radius

rx := sup
{

N−m(ρ0 − r0) : m ∈ N

and U(x,N−m(ρ0 − r0)) + F(x,N−m(ρ0 − r0)) +G(x,N−m(ρ0 − r0)) > λ
}
.

We remark that (2.13) implies that rx < ρ0 − r0. Of course Ωλ ⊂ ∪x∈ΩλB(x, rx/5).

By the Vitali Covering Lemma (5r-Covering Lemma) there exists a countable col-

lection of balls {B(xi, ri)} = {Bi} with ri = rxi
such that { 1

5
Bi} are pairwise disjoint

and Ωλ ⊂ ∪iBi. Let mi ≥ 1 such that Nmiri = ρ0 − r0.

We make three observations:

(i) For each i, either
>

Bi
u dµ > λ

3
, (
>

Bi
f q dµ)1/q > λ

3
, or (
>

Bi
gq dµ)1/q > λ

3
.

(ii) The radius of each Bi is less than ρ0 − r0 and xi ∈ Br0
so Bi ⊂ Bρ0

.

(iii) For 0 ≤ k < mi, Nkri = N−(mi−k)(ρ0 − r0) < ρ0 − r0, so Nkri is ‘above’ or at

the stopping time and

?
NkBi

u dµ +

(?
NkBi

f q dµ

)1/q

+

(?
NkBi

gq dµ

)1/q

≤ Cλ,

where C shows up since we have used doubling once in the case k = 0.

Using that µ((Uλ ∪ Fλ ∪Gλ) \Ωλ) = 0, Ωλ ⊂ ∪iBi and (2.4), we obtain

uq(Uλ) ≤ uq(Uλ ∪ Fλ ∪Gλ) ≤
∑

i

uq(Bi)

≤
∑

i

µ(Bi)[Aau(Bi) + (a f q (Bi))
1/q + r

β
i (ahs (Bi))

1/s]q.
(2.14)
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Then using mi ≥ 1,
∑

k αk = α and observation (iii) we obtain

a f q(Bi) =

∞∑

k=0

αk

?
NkBi

f q dµ =

mi−1∑

k=0

αk

?
NkBi

f q dµ +

∞∑

k=mi

αk

?
NkBi

f q dµ

≤ Cqαλq +

∞∑

k=0

αk+mi

?
B(xi,Nk(ρ0−r0))

f q dµ,

(2.15)

where we simply re-indexed the second sum and used that Nmi ri = ρ0 − r0. Now

we use (2.11) and that αk+mi
≤ αk to deduce

a f q (Bi) ≤ Cqαλq +C
ℓ+ j
N

∞∑

k=0

αk

?
Nk+1B

f q dµ

≤ Cqαλq +C
ℓ+ j
N a f q (NB) ≤ Cqαλq + α0λ

q
0

≤ Cλq,

where we used the definition of λ0 in Step 4 and λ > λ0. Similarly, au(Bi) ≤ Cλ.
For hs, using mi ≥ 1, we obtain

(ri)
βsahs(Bi)

=

∞∑

k=0

αk(ri)
βs

?
NkBi

hs dµ

=

mi−1∑

k=0

αk(ri)
βs

?
NkBi

hs dµ +

∞∑

k=mi

αk(ri)
βs

?
NkBi

hs dµ

≤

mi−1∑

k=0

αk

(?
Nk Bi

gq dµ

)s/q

+ (ri)
βs
∞∑

k=0

αk+mi

?
B(xi,Nk(ρ0−r0))

hs dµ,

where we used (2.8) and NkBi ⊂ NB when k < mi for the first sum, re-indexed the

second sum and used that Nmiri = ρ0 − r0. With
∑

k αk = α and observation (iii)

for the first sum and αk+mi
≤ αk along with (2.11) for the second one, we deduce

(ri)
βsahs (Bi) ≤ Csαλs +C

ℓ+ j
N (NR)βs

∞∑

k=0

αk

?
Nk+1B

hs dµ

≤ Csαλs +C
ℓ+ j
N (NR)βsahs(NB) ≤ Csαλs + α0λ

s
0C−s

1

≤ Cλs,

where we used λ > λ0. Combining the above estimates with (2.14) we obtain

(2.16) uq(Uλ) ≤ Cλq
∑

i

µ(Bi) ≤ CC3
dλ

q
∑

i

µ
(

1
5

Bi

)
≤ CC3

dλ
qµ (∪iBi)

where we used that { 1
5

Bi} are pairwise disjoint. Now we use (i) and (ii) to conclude

that

(2.17) ∪i Bi ⊂ {M(u1Bρ0
) > λ/3}∪{M( f q

1Bρ0
) > (λ/3)q}∪{M(gq

1Bρ0
) > (λ/3)q},

where M is the uncentered maximal function.
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Step 6. Estimate of II and I. Plugging (2.16) and (2.17) into II we obtain

II = (p − q)

∫ m

λ0

λp−q−1uq(Uλ) dλ

≤ C(p − q)

∫ m

0

λp−1µ({M(u1Bρ0
) > λ/3}) dλ

+C(p − q)

∫ m

0

λp−1µ({M( f q
1Bρ0

) > (λ/3)q}) dλ

+C(p − q)

∫ m

0

λp−1µ({M(gq
1Bρ0

) > (λ/3)q}) dλ

=: II1 + II2 + II3.

We handle II2 and II3 in the same way. Using the Hardy-Littlewood maxi-

mal theorem for spaces of homogeneous type to the effect that for p ∈ (q, 2q) the

Lp/q → Lp/q operator norm of the maximal function is bounded by C
p/q

(p/q)−1
, see

Theorem 3.13 in [6], we obtain

II3 = C(p − q)

∫ m

0

λp−1µ({M(gq
1Bρ0

) > (λ/3)q)}) dλ

≤ C
p − q

p

∫

X

(M(gq
1Bρ0

))p/q dµ

≤ C

( p

p − q

)p/q−1
∫

NB

gp dµ,

where we used Bρ0
⊂ NB in the last step. Similarly we have that

II2 ≤ C
( p

p − q

)p/q−1
∫

NB

f p dµ.

To handle II1 we notice that

{M(u1Bρ0
) > λ/3} ⊂ {M(u1Bρ0∩{u>λ/6}

) > λ/6}.

From this estimate and the weak type (1,1) bound for the Hardy-Littlewood maxi-

mal function for spaces of homogeneous type, see Lemma 3.12 in [6], we have

µ({M(u1Bρ0
) > λ/3}) ≤

C

λ

∫

Bρ0∩{u>λ/6}

u dµ.

Using this bound in II1 yields

II1 ≤ C(p − q)

∫ m

0

λp−2

∫

Bρ0∩{u>λ/6}

u dµ dλ

= C(p − q)

∫

Bρ0

u

∫ max{m,6u}

0

λp−2 dλ dµ

= C6p−1 p − q

p − 1

∫

Bρ0

u
p−1
m/6u dµ

≤ C6p−1 p − q

p − 1

∫

Bρ0

up−q
m uq dµ,

(2.18)
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and we note that we can make the constant in front of the integral arbitrarily small

by choice of p > q. Combining our estimates for II1, II2 and II3 we obtain for any

p ∈ (q, 2q),

(2.19) II ≤ ǫp

∫

Bρ0

up−q
m uq dµ +Cǫ−1

p

∫

NB

f p dµ +Cǫ−1
p

∫

NB

gp dµ,

where ǫp := C(p − q).

Now we bound I. Note that B ⊂ Br0
⊂ NB. By definition of λ0 and using (2.4),

I ≤ λ
p−q
0 uq(NB)

≤ λ
p−q
0 µ(NB)

(
Aau(NB) + (a f q (NB))1/q + (NR)β(ahs (NB))1/s

)q

≤ C(C̃
ℓ+ j
N )p−qµ(NB)αp(NB),

(2.20)

where we denoted αp(NB) :=
(
au(NB) + (a f q (NB))1/q + (NR)β(ahs (NB))1/s

)p
and

put C̃N := max(CN ,C
1/s
N ) ≥ 1 on recalling that we allow for s < 1.

Step 7. Conclusion. Setting

ϕ(t) :=

∫

B(x0,t)

up−q
m uq dµ

and combining estimates (2.12), (2.19) and (2.20), we may summarize our esti-

mates as

ϕ(r0) ≤ Cµ(NB)αp(NB)C̃
(p−q)(ℓ+ j)
N + ǫpϕ(ρ0) +Cǫ−1

p

∫

NB

f p dµ +Cǫ−1
p

∫

NB

gp dµ,

whenever R ≤ r0 < ρ0 ≤ NR and Nℓ(ρ0 − r0) = R and where j depends at most on

N, see Step 2. For notational convenience set

M1 := Cµ(NB)αp(NB),

M2 := C

∫

NB

f p dµ +C

∫

NB

gp dµ,

so that

ϕ(r0) ≤ M1C̃
(p−q)ℓ
N + ǫpϕ(ρ0) + ǫ−1

p M2.(2.21)

Now, we set up an iteration scheme to conclude: We fix K ∈ N large enough to

guarantee
∑∞
ℓ=0 N−Kℓ ≤ N, initiate with t0 := R and put tℓ+1 := tℓ + N−K(ℓ+1)R for

ℓ = 0, 1, . . . . Then R ≤ tℓ < tℓ+1 ≤ NR and NK(ℓ+1)(tℓ+1 − tℓ) = R so that

ϕ(tℓ) ≤ M1C̃
(p−q)K(ℓ+1)
N + ǫ−1

p M2 + ǫpϕ(tℓ+1).(2.22)

Iterating the above inequality we obtain for any ℓ0 ∈ N

ϕ(t0) ≤ M1

ℓ0∑

ℓ=1

C̃
(p−q)Kℓ
N · ǫℓ−1

p + M2

ℓ0∑

ℓ=1

ǫℓ−2
p + ǫℓ0p ϕ(tℓ0 )

≤ CM1 +CM2 +Cǫℓ0p ϕ(NR)

provided that ǫp ≤ (2C̃
(p−q)K
N )−1 ≤ 1/2 by now fixing p ∈ (q, 2q) with p − q small

enough.
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Noting that ϕ(NR) < ∞ (by truncation of u) and t0 = R, we may let ℓ0 → ∞
above to conclude

ϕ(R) ≤ CM1 +CM2.

Upon replacing M1,M2, αp(NB) and ϕ(R) we obtain
∫

B

up−q
m uq dµ ≤ Cµ(NB)

(
au(NB) + (a f q (NB))1/q + (NR)β(ahs (NB))1/s

)p

+C

∫

NB

f p dµ +C

∫

NB

gp dµ.

(2.23)

Dividing both sides of the inequality by µ(B), taking p−th roots and letting m→ ∞

we obtain (2.5) except for the presence of the term (
>

NB
gp dµ)1/p. We handle this

term using the definition of g in terms of h and the definition of AR in (2.10),

obtaining

(?
NB

gp dµ

)1/p

= AR

(?
NB

hps/q dµ

)1/p

= C1(NR)β
(?

NB

hs dµ

)1/s−1/q (?
NB

hps/q dµ

)1/p

≤ C1(NR)β
(?

NB

hps/q dµ

)q/ps−1/p (?
NB

hps/q dµ

)1/p

= C1(NR)β
(?

NB

hps/q dµ

)q/sp

. �

3. Quasi-metric spaces

In Theorem 2.2, it is possible to relax the structural assumption of (X, d, µ) being

a metric space by allowing the constant K in the quasi triangle inequality to take

values greater than one. The proof of Theorem 2.2 does not carry over as such (or

rather it becomes very technical) but we can take advantage of the fact that every

quasi-metric (K > 1) is equivalent to a power of a proper metric (K = 1). See

[2, 19, 21]. The following proposition is from [21].

Proposition 3.1. Let (X, ρ) be a quasi-metric space and let 0 < δ ≤ 1 be given by

(2K)δ = 2. Then there is another quasi-metric ρ̃ such that ρ̃δ is a metric and for all

x, y ∈ X,

E−1ρ(x, y) ≤ ρ̃(x, y) ≤ Eρ(x, y),

where E ≥ 1 is a constant only depending on the quasi triangle inequality constant

of ρ.

With Proposition 3.1 at hand, the following theorem is a straightforward conse-

quence of its metric counterpart. For the reader’s convenience and since akin re-

ductions to the metric case will be used at other occasions in this paper, we present

the full details here.

Theorem 3.2. Let (X, ρ, µ) be a space of homogeneous type. Let s, β > 0 and

q > 1 be such that s < q and β ≥ D(1/s − 1/q) where D is any number satisfying
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(2.1). Let N > 1 and (αk)k≥0 be a non-increasing sequence of positive numbers

with α :=
∑

k αk < ∞. Define

au(B) :=

∞∑

k=0

αk

?
NkB

u dµ

for u ≥ 0 locally integrable and B a quasi-metric ball.

Suppose that u, f , h ≥ 0 with uq, f q, hs ∈ L1
loc(X, dµ) and there exists a constant

A such that for every ball B = B(x,R),

(3.3)

(?
B

uq dµ

)1/q

≤ Aau(B) + (a f q (B))1/q + Rβ(ahs (B))1/s.

Then there exists p > q depending on α0, α, A, q, s,K,N and Cd such that for all

balls B,

(?
B

up dµ

)1/p

. ãu(NB) + (ã f q (NB))1/q + Rβ(ãhs (NB))1/s

+

(?
NE2/δB

f p dµ

)1/p

+ Rβ
(?

NE2/δB

hps/q dµ

)q/sp

.

(3.4)

Here, ãu is obtained from au by replacing the sequence αk with αmax(0,k− j0− j1),

where j0 and j1 are the minimal integers with E2 ≤ N j0 and E2/δ ≤ N j1 and

E, δ are the constants from Proposition 3.1. The implicit constant depends on

α0, α, A, q, s, β,K,N and Cd.

Remark 3.5. The same remarks as after Theorem 2.2 apply.

Proof. Let d be the metric so that d1/δ with δ ∈ (0, 1] is equivalent to ρ, provided by

Proposition 3.1. Then there is a constant E > 1 only depending on the quasi-metric

constant K of ρ so that

Bρ(x, r) = {z : ρ(z, x) < r} ⊆ {z : E−1d1/δ(z, x) < r} = Bd(x, (Er)δ)

and

Bρ(x, r) = {z : ρ(z, x) < r} ⊇ {z : Ed1/δ(z, x) < r} = Bd(x, (E−1r)δ).

In total Bd(x, (E−1r)δ) ⊆ Bρ(x, r) ⊆ Bd(x, (Er)δ). Consequently µ is doubling with

respect to the metric d, and we also see that the hypothesis (3.3) implies that

(?
Bd(x,(E−1R)δ)

uq dµ

)1/q

.

∞∑

k=0

αk

?
Nδk EδBd(x,Rδ)

u dµ

+

(
∞∑

k=0

αk

?
NδkEδBd(x,Rδ)

f q dµ

)1/q

+ Rβ

(
∞∑

k=0

αk

?
NδkEδBd(x,Rδ)

hs dµ

)1/s
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holds for all x ∈ X and R > 0. Setting R′ := (E−1R)δ, we can rewrite this as

(?
Bd(x,R′)

uq dµ

)1/q

.

∞∑

k=0

αk

?
NδkBd(x,E2δR′)

u dµ

+

(
∞∑

k=0

αk

?
NδkBd(x,E2δR′)

f q dµ

)1/q

+ (R′)β/δ

(
∞∑

k=0

αk

?
NδkBd(x,E2δR′)

hs dµ

)1/s

.

We set N′ := Nδ. Then j0 is the smallest positive integer so that E2δ ≤ (N′) j0 .

We note that

∞∑

k=0

αk

?
(N′)kBd(x,E2δR′)

u dµ .

∞∑

k=0

αk

?
(N′)k+ j0 Bd(x,R′)

u dµ ≤

∞∑

k=0

α′k

?
(N′)kBd(x,R′)

udµ,

where α′k := αmax(k− j0 ,0). Analogous estimates hold with f q and hs in place of u.

Finally, we set β′ := β/δ so that (2.4) is satisfied in the metric space (X, d, µ) with

(α′k)k, β
′,N′ replacing (αk)k, β,N there. We also have control over the homoge-

neous dimension of (X, d, µ). Indeed, for x ∈ X and R > r, we see that ER > E−1r

and therefore

µ(Bd(x,Rδ))

µ(Bd(x, rδ))
≤
µ(Bρ(x, ER))

µ(Bρ(x, E−1r))
.

(
E2R

r

)D

,

where D is a number satisfying (2.1) for (X, ρ, µ).

It follows that D′ = Dδ−1 satisfies (2.1) for (X, d, µ). As a consequence, β′ =
β/δ ≥ D′(1/s − 1/q), and we can apply Theorem 2.2.

We obtain

(?
Bd

up dµ

)1/p

.

∞∑

k=0

α′k

?
(N′)k+1Bd

u dµ +

(
∞∑

k=0

α′k

?
(N′)k+1Bd

f q dµ

)1/q

+ (R′)β
′

(
∞∑

k=0

α′k

?
(N′)k+1Bd

hs dµ

)1/s

+

(?
N′Bd

f p dµ

)1/p

+ (R′)β
′

(?
N′Bd

hps/q dµ

)q/sp

for all balls Bd with radius R′. Note that R′ is arbitrary. Comparing the d-balls

with ρ-balls once again, we see that Bρ(x, (E−1r)1/δ) ⊂ Bd(x, r) ⊂ Bρ(x, (Er)1/δ).

Arguing as in the beginning of the proof and denoting R = (E−1R′)1/δ, we can get

back to an inequality in the quasi-metric space (X, ρ, µ): We only need to recall

that N′ = Nδ, that j1 is the smallest integer so that E2/δ ≤ N j1 and set α′′k :=

α′max(0,k− j1) = αmax(0,k− j0− j1). This together with the doubling condition implies

that (3.4) holds. �
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4. Variants

One might wonder whether one can use in the proof of Theorem 2.2 the frac-

tional maximal operator Mβs where

Mβv(x) := sup
B∋x

r(B)β
?

B

|v|, x ∈ X, β > 0,

to control the terms stemming from hs more efficiently. (Here r(B) denotes the

radius of B.) However, this operator has no boundedness property in this generality

and one has to assume volume lower bound in the following sense:

(4.1) ∃Q > 0 : ∀ balls B, µ(B) & r(B)Q.

Lemma 4.2. Let (X, ρ, µ) be a space of homogeneous type. Assume that the volume

has a lower bound with exponent Q > 0. Then Mβ is bounded from Lp(X) to Lp∗(X)

when 1 < p and 0 < β < Q/p with p∗ =
pQ

Q−βp
. For p = 1, it is weak type (1, 1∗).

Proof. See e.g. Section 2 in [13] for a simple proof on metric spaces with doubling

measure that applies verbatim in the quasi-metric setting. In fact, the result fol-

lows from the inequality Mβv(x) . Mv(x)1−β/Q‖v‖
β/Q
1 using the lower bound, the

uncentered maximal function M and interpolation. �

We obtain the following variant in the presence of a volume lower bound.

Theorem 4.3. Let (X, ρ, µ) be a space of homogeneous type having a volume lower

bound with exponent Q. Let s > 0, β ≥ 0 and q > 1 be such that s < q and

β ≤ Q(1/s − 1/q). Suppose that u, f , h ≥ 0 with uq, f q, hs ∈ L1
loc(X, dµ) and (3.3)

holds. Then there exists p > q such that (3.4) holds with Rβ(
>

NE2/δB
hps/q dµ)q/sp

replaced by µ(B)β/Q(
>

NE2/δB
hp∗ dµ)1/p∗ where p∗ =

pQ
Q+βp

.

Proof. It suffices to give a proof for (X, ρ, µ) a metric space with doubling measure.

Then we can apply the general reduction argument from the previous section. In

this regard, we note that if ρ is equivalent to d1/δ, then d has lower volume bound

with exponent Q′ := Q/δ.

For any p > q set σ :=
pQ

s(Q+βp)
=

p∗
s

. Note the condition βqs ≤ Q(q − s) ensures

for all p > q the bound βps < Q(p − s). Hence σ > 1. Now we indicate the

changes in the proof of Theorem 2.2.

One does not introduce the function g in Step 1 and the function G in Step 4

becomes H(x, t) = rβ
( >

B(x,t)
hs dµ

)1/s
. The choice of λ0 is similar and then we can

follow the argument until we need to estimate II3 in Step 6. Here we now have

II3 = C(p − q)

∫ m

0

λp−1µ({Mβs(hs
1Bρ0

) > (λ/3)s}) dλ

.

∫

X

(Mβs(hs
1Bρ0

))p/s dµ

.

(∫

NB

hsσ dµ

)p/(sσ)

=

(∫

NB

hp∗ dµ

)p/p∗
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by definition of σ and we used the Lσ(X) → Lp/s(X) boundedness of Mβs from

Lemma 4.2. Recall near then end of Theorem 2.2 we divide by µ(B) then take p-th

roots. Thus, the power of µ(B) in front of (
>

NB
hp∗ dµ)1/p∗ comes from the equality

µ(B)−1

(∫

B

hp∗ dµ

) p
p∗

= µ(B)βp/Q

(?
B

hp∗ dµ

) p
p∗

.

�

Remark 4.4. Assume β = 1, s = 2n
n+2

and q = 2 in the Euclidean space Rn with

Lebesgue measure, which is typical of elliptic equations. Then the Lebesgue ex-

ponent for h in Theorem 3.2 is
ps
q
=

pn
n+2

while above we get p∗ =
pn

n+p
, which

is smaller. If β = 0, then p∗ = p. Of course the interest is to have β as large as

possible so that p∗ is as small as possible, but in applications to PDEs the value of

β is usually not free to choose but determined by scaling arguments. Finally note

that the admissible ranges for β in the two theorems are almost complementary in

this example: Indeed, since D = Q = n, we have β ≥ n(1/s − 1/q) in Theorem 2.2

and β ≤ n(1/s − 1/q) in Theorem 3.2.

Another variant is to replace powers of the radius by powers of the volume al-

ready in the assumption and then no further hypothesis on the measure is required.

Theorem 4.5. Let (X, ρ, µ) be a space of homogeneous type. Let s > 0, γ ≥ 0 and

q > 1 be such that s < q and γ ≤ 1/s−1/q. Suppose that u, f , h ≥ 0 with uq, f q, hs ∈

L1
loc(X, dµ) and (3.3) holds with Rβ(ahs (B))1/s replaced by µ(B)γ(ahs (B))1/s. Then

there exists p > q such that (3.4) holds with Rβ(
>

NE2/δB
hps/q dµ)q/sp replaced with

µ(B)γ(
>

NE2/δB hsσ dµ)1/sσ, where sσ = p
1+γp

.

Remark 4.6. Note that one can take γ = 0 in which case sσ = p. In accordance

with Remark 4.4 we note that the higher γ the smaller the integrability needed on

h.

Proof. Once again it suffices to treat the metric case. The modification to the proof

of Theorem 2.2 are the same as in the above argument, except for now using instead

of Mβs the modified fractional maximal operator M̃γs, 0 ≤ γ < 1, where

M̃γsv(x) := sup
B∋x

(µ(B))γs

?
B

|v|, x ∈ X.

It maps Lσ(X) into L
σ

1−γsσ (X) when 1 < σ and γsσ < 1, see Remark 2.4 in [13]. �

5. Global integrability

A typical application of Gehring’s lemma is to prove higher integrability locally

and globally. To extract a conclusion at the level of global spaces Lp(X), we need

some further hypotheses. We say that the space of homogeneous type (X, ρ, µ) is

φ-regular if it satisfies

φ(r) ∼ µ(B(x, r))

for all x ∈ X and r > 0, where φ : (0,∞) → (0,∞) is a non-decreasing function

with φ(r) > 0 and φ(2r) ∼ φ(r) for r > 0. An important subclass of such spaces

are the Ahlfors–David regular metric spaces where φ(r) = rQ for some Q > 0. The
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case of local and global different dimensions which occur on connected nilpotent

Lie groups (see [27]) is also covered with φ(r) ∼ rd for r ≤ 1 and φ(r) ∼ rD for

r ≥ 1.

Theorem 5.1. Let (X, ρ, µ) be a φ-regular space of homogeneous type. In addition

to assumptions of Theorem 3.2, suppose that uq, f q, hs ∈ L1(X, dµ). Then

‖u‖Lp(X) . ‖u‖Lq(X) + ‖ f ‖Lp(X) + ‖h‖Lps/q(X)

with the implicit constant depending on u, f , h only through the parameters quan-

tified in the assumption.

Proof. For the sake of simplicity let us assume N = 2 in the statement of Theo-

rem 3.2. We shall see in Section 6.2 below that upon changing the sequence (αk)k

we can do so without loss of generality. Alternatively, we could also adapt the

following argument to cover the general case.

Take any R > 0 and choose a maximal R separated set of points {xi}, that is,

ρ(xi, x j) ≥ R for all i , j and for every y ∈ X there exists xi such that ρ(y, xi) < R.

Since we assume that X is doubling, such a collection necessarily has only finitely

many members in any fixed ball, hence, it is countable. The balls Bi := B(xi,R)

cover X, and there is C only depending on K and Cd such that

∑

i

1Bi
(x) ≤ C

for every x ∈ X. Also the balls (2K)−1Bi are disjoint. Further, we have

(5.2)
∑

i

12kBi
(x) ∼

φ(2kR)

φ(R)

for every x ∈ X and every integer k ≥ 1. Indeed, fix k ≥ 1 and x ∈ X. We can

assume that 2k−1 ≥ K, since otherwise we can just use that the left- and right-hand

sides are comparable to constants depending only on K, Cd and φ. Let Ix be the set

of i giving a non zero contribution, and Nx be the cardinal of Ix, that is, the value

of the sum. Clearly, Nx is not exceeding the number of i for which ρ(x, xi) ≤ 2kR.

As the balls (2K)−1Bi, i ∈ Ix, are disjoint and contained in B(x,K(2k + (2K)−1)R),

we have

φ(R/2K)Nx .

∑

i∈Ix

µ((2K)−1Bi) . µ(B(x,K(2k + (2K)−1)R)) . φ(K2k+1R).

Also the balls Bi, i ∈ Ix, cover B(x, (K−12k − 1)R), hence

φ(R/2K)Nx &

∑

i∈Ix

µ((2K)−1Bi) &
∑

i∈Ix

µ(Bi) & µ(B(x, (K−12k − 1)R))

& φ((K−12k − 1)R)≥ φ(K−12k−1R)

by the assumption on k. The claim follows using the comparability φ(K2k+1R) ∼

φ(K−12k−1R) ∼ φ(2kR) and φ(R/2K) ∼ φ(R).
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Applying Theorem 3.2 in each Bi and denoting by α̃k := αmax(0,k− j0− j1) the sum-

mable sequence appearing in the conclusion of that theorem, we see that

φ(R)−1

∫

X

up dµ .
∑

i

?
Bi

up dµ .
∑

i

(
ãu(2Bi)

p + ã f p (2Bi) + Rβãhps/q (2Bi)
q/s
)

=: I + II + III,

where we used φ-regularity, Hölder’s inequality ã f q (2Bi)
1/q
. ã f p (2Bi)

1/p and ab-

sorbed the term with f p in (2.5) in ã f p(2Bi) and similarly for the terms with h. Let

us treat III: From the continuous embedding ℓ1(N) ⊂ ℓq/s(N) and (5.2) we obtain

∑

i

ãhps/q (2Bi)
q/s ≤

∑

i

( ∞∑

k=0

α̃k

?
2k+1Bi

hps/q dµ

)q/s

≤

(∑

i

∞∑

k=0

α̃k

?
2k+1Bi

hps/q dµ

)q/s

≤

( ∞∑

k=0

α̃k

∑

i

?
2k+1Bi

hps/q dµ

)q/s

.

( ∞∑

k=0

α̃k φ(2
k+1R)−1

∫

X

∑

i

12k+1Bi
hps/q dµ

)q/s

.

(
α̃φ(R)−1

∫

X

hps/q dµ

)q/s

,

where α̃ :=
∑

k α̃k. Doing the same for I and II, implies

(5.3) ‖u‖Lp(X) . φ(R)1/p−1/q ‖u‖Lq(X) + ‖ f ‖Lp(X) + Rβφ(R)(1/p)−(q/sp) ‖h‖Lps/q(X) .

Note that since R is fixed (R = 1 for example), this concludes the proof. �

Remark 5.4. We note that the implicit constant in (5.3) does not depend on R. If

h = 0, then we may let R→ ∞ as p > q and obtain ‖u‖Lp(X) . ‖ f ‖Lp(X).

We have a global analogue of Theorem 4.3, which might be of independent

interest as it can be proved directly in the quasi-metric setting without recursing to

Section 3.

Theorem 5.5. Let (X, d, µ) be a space of homogeneous type having volume lower

bound with exponent Q. Let s > 0, β ≥ 0 and q > 1 be such that s < q and

β ≤ Q(1/s − 1/q). Suppose that uq, f q, hs ∈ L1(X, dµ) and that (3.3) holds. Then

there exists p > q such that

‖u‖Lp(X) . ‖ f ‖Lp(X) + ‖h‖Lp∗ (X) ,

where p∗ =
pQ

Q+βp
. The implicit constant depends on u, f , h only through the pa-

rameters quantified in the assumption.

As for the choice of β, the same comments as in Remark 4.4 apply.

Proof. We indicate the modification to the argument of Theorem 2.2, which, as

said, works directly in the quasi-metric setting for this result. This is basically the

one in [4].



18 PASCAL AUSCHER, SIMON BORTZ, MORITZ EGERT, AND OLLI SAARI

There is no need for the first and second steps and the proof begins as in Step 3

without the balls Br0
and Bρ0

and we have
∫

X

up−q
m uq dµ = (p − q)

∫ m

0

λp−q−1uq({u > λ}) dλ.

There is also no need for a threshold λ0 and we set for x ∈ X and r > 0,

U(x, r) := au(B(x, r)), F(x, r) := (a f q (B(x, r))1/q, H(x, r) := rβ(ahs (B(x, r)))1/s,

and for λ > 0, we denote Uλ := {u > λ}. Note that without loss of generality we

may assume α0 ≥ 1 right from the start as this only increases the right-hand side

of our hypothesis (3.3). Thus,

lim inf
r→0

(
U(x, r) + F(x, r) + H(x, r)

)
≥ u(x)

for almost every x because already the first term in au(B(x, r)) tends to α0u(x) ≥

u(x). We define Ũλ as the subset of Uλ where this holds. Note that

lim
r→∞

(
U(x, r) + F(x, r) + H(x, r)

)
= 0

for all x using the global assumptions on u, f , h. For the term with h, this follows

from H(x, r)s
. rβs−Q

∫
X

hs dµ, provided βs < Q, which holds under our assump-

tion. For x ∈ Ũλ, we can define the stopping time radius

rx := sup{r > 0 : U(x, r) + F(x, r) + H(x, r) > λ}.

Remark that supx∈Ũλ
rx < ∞. Indeed, at r = rx, U(x, r) + F(x, r) + H(x, r) = λ

and therefore either U(x, r) ≥ λ/3 or F(x, r) ≥ λ/3 or H(x, r) ≥ λ/3. In the last

case, we obtain rQ−βs(λ/3)s
.
∫

X
hs dµ < ∞. The other cases also give us a bound

on r. By the Vitali covering lemma, there exists a countable collection of balls

{B(xi, rxi
)} = {Bi} such that 1

V
Bi are pairwise disjoint and Ũλ ⊂ ∪iBi. (Usually,

V = 5 but our metric is only a quasi-metric in which case the Vitali covering

lemma still holds but with a larger constant V depending on K, and we apply it to

the covering Ũλ ⊂ ∪x∈Ũλ
B(x,V−1rx). A direct way to see this is by the technique

in Section 3.) Now, using the hypothesis for each Bi and pairwise disjointness of

the balls 1
V

Bi,

uq(Ũλ) ≤
∑

i

uq(Bi) ≤
∑

i

µ(Bi)
(
Aau(Bi) + (a f q (Bi))

1/q + r
β
i (ahs (Bi))

1/s
)q

=
∑

i

µ(Bi)λ
q
. VD

∑

i

µ( 1
V

Bi)λ
q
. VDµ (∪iBi) λ

q,

where D is the homogeneous dimension. The stopping time implies

(5.6) ∪i Bi ⊂ {Mu ≥ λ/3} ∪ {M( f q) ≥ (λ/3)q} ∪ {Mβs(hs) ≥ (λ/3)s}.

From there the estimates are as in Step 6 and we use Lemma 4.2 for boundedness

of Mβs. We obtain

(5.7)

∫

X

up−q
m uq dµ ≤ C(p−q)

∫

X

up−1
m u dµ+Cp

∫

X

f p dµ+Cp

(∫

X

hp∗ dµ

)p/p∗

,

with p∗ as in the statement. As
∫

X
u

p−1
m u dµ ≤

∫
X

u
p−q
m uq dµ we can hide this term

if p − q > 0 is small enough and then let m→ ∞. �
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6. Self-improvement of the right-hand side

We discuss here the change in the exponents in the tails on the right-hand side

and subsequently the change of the dilation parameter N. Both induce change in

the sequence α. These remarks can be used to reduce some seemingly different

properties to cases covered by Theorem 3.2.

6.1. Exponent. It is a direct consequence of the log-convexity of the Lp norms

that if (?
B

up dµ

)1/p

.

(?
B

uq dµ

)1/q

with p > q, then for every s ∈ (0, q) we can write 1/q = θ/p + (1 − θ)/s for some

θ ∈ (0, 1) and consequently

‖u‖Lp(B,ν) . ‖u‖Lq(B,ν) ≤ ‖u‖
(1−θ)
Ls(B,ν) ‖u‖

θ
Lp(B,ν)

so that ‖u‖Lp(B,ν) . ‖u‖Ls(B,ν). Here ν = dµ/µ(B). The same self-improving property

holds true for the weak reverse Hölder inequality [16] and even for the reverse

Hölder inequality with tails as we now show. To prove the claim for the inequality

with tails, we use a modification of the argument from [5], Appendix B.

Proposition 6.1. Let (X, ρ, µ) be a space of homogeneous type. Let q ∈ (0, p),

s0, s1, s2 ∈ (0, q] with f s1 , hs2 ∈ L1
loc(X) and set τ := min

(
s0

q
, s1

q
, s2

q

)
. Let (αk)k≥0

be a summable sequence of strictly positive numbers. Let N > 1 and β ≥ 0. Let

(α̃k)k≥0, (α
♯
k)k≥0 be summable sequences of non negative numbers with α̃0, α

♯
0 > 0

and assume

(6.2)

m∑

k=0

α̃kα
τ
m−k . α̃m,

m∑

k=0

α
♯
kαm−k . α

♯
m

and

(6.3)

m∑

k=0

α̃kα
s2/q
m−kN(m−k)βs2 . α̃m.

Define au(B), ãu(B), a
♯
u(B) as in (2.3) in terms of the three respective sequences, for

u ≥ 0 locally integrable, N > 1 and B a quasi-metric ball.

Assume that

(6.4)

(?
B

up dµ

)1/p

. (auq (B))1/q + b(B),

where the implicit constant does not depend on B, with

b(B) = (a f s1 (B))1/s1 + r(B)β(ahs2 (B))1/s2 .

Then, for any ball B for which a
♯
uq (B) < ∞, one has

(6.5)

(?
B

up dµ

)1/p

. (ãus0 (B))1/s0 + b̃(B),

where b̃ is obtained by replacing α by α̃ in the definition of b.
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Remark 6.6. Note that, in contrast with the improvement of integrability, we do not

need the non-increasing assumption on the sequence α for this proposition. The

condition (6.2) together with α
♯
0 > 0 implies αm . α

♯
m and similarly, since τ ≤ 1,

we have αm . α̃m. Hence we have to assume more than auq (B) < ∞. For example,

with τ as above, if αk = N−γk for γ > 0, then α̃k = N−γ
′τk and α

♯
k = N−γ

′k work in

the theorem for any 0 < γ′ < γ such that βs2 < γs2/q − γ
′τ. In particular, decay

γ > βq is needed to obtain any improvement, which typically is hard to obtain in

applications. On the other hand, if β = 0, we can improve the right-hand exponent

by only paying an arbitrarily small amount of decay to replace γ by γ′ < γ. The

condition (6.3) takes into account the presence of r(B)β in (6.4). Finally, the strict

positivity of αk rules out in particular the case where the αk form a finite sequence,

but in that case, the argument in [5] already covers the situation.

Proof. Define

K(δ, s0) := sup
(auq (B))1/q

(ãus0 (B))1/s0 + b̃(B) + δ(a
♯
uq (B))1/q

,

where the supremum is taken on the set of balls B such that the denominator is

finite. Indeed, there is nothing to prove if the right-hand side of (6.5) is infinite,

which is equivalent to the denominator being infinite since we assume a
♯
uq (B) < ∞.

As αm . α
♯
m, we have auq (B) . a

♯
uq (B) and the presence of δ > 0 guarantees that

K(δ, s0) . δ−1. We show a uniform bound in terms of δ. To this end we can of

course assume K(δ, s0) ≥ 1 since otherwise there is nothing to prove.

Fix a ball B with the above restriction. Let θ ∈ (0, 1) be such that

1

q
=
θ

s0

+
1 − θ

p
.

We see that
(?

B

uq dµ

)1/q

≤

(?
B

us0 dµ

)θ/s0
(?

B

up dµ

)(1−θ)/p

.

Using (6.4), b(B) . b̃(B) and K(δ, s0) ≥ 1,

(?
B

uq dµ

)1/q

.

(?
B

us0 dµ

)θ/s0 (
(auq (B))1/q + b(B)

)1−θ

.

(?
B

us0 dµ

)θ/s0

K(δ, s0)1−θ
(

(ãus0 (B))1/s0 + b̃(B) + δ(a
♯
uq (B))1/q

)1−θ

. K(δ, s0)1−θ
(

(ãus0 (B))1/s0 + b̃(B) + δ(a
♯
uq (B))1/q

)
.

We apply this last inequality to NkB. This is possible provided NkB belongs to

the same set of balls and this follows from the assumption on the sequences: For

example, using (6.2),

a♯u(NkB) =

∞∑

j=k

α
♯
j−k

?
N jB

uq dµ . α−1
k

∞∑

j=k

α
♯
j

?
N jB

uq dµ ≤ α−1
k a
♯
uq (B) < ∞.
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Similar calculations can be done for the other terms. Thus,

auq (B)1/q =

(
∞∑

k=0

αk

?
NkB

uq dµ

)1/q

. K(δ, s0)(1−θ)

(
∞∑

k=0

αkãus0 (NkB)q/s0

)1/q

+ K(δ, s0)(1−θ)

(
∞∑

k=0

αkb̃(NkB)q

)1/q

+ K(δ, s0)(1−θ)δ

(
∞∑

k=0

αka
♯
uq (NkB)

)1/q

=: I + II + III.

Each of the three sums is estimated similarly so we restrict our attention to the first

one. Using the continuous embedding ℓ1(N) ⊂ ℓq/s0 (N) and the properties of α in

(6.2), we compute

Is0 ≤

∞∑

k=0

α
s0/q
k ãus0 (NkB) =

∞∑

m=0

(
m∑

k=0

α
s0/q
k α̃m−k

)?
NmB

us0 dµ

.

∞∑

m=0

α̃m

?
NmB

us0 dµ = ãus0 (B).

The same kind of argument applies to the remaining two terms so that

(6.7) auq (B)1/q
. K(δ, s0)1−θ

(
(ãus0 (B))1/s0 + b̃(B) + δ(a

♯
uq (B))1/q

)
.

We remark that it is the part of b̃ involving r(B)β that requires us to use the strong

condition (6.3). As the right-hand side is finite, we readily obtain K(δ, s0) .

K(δ, s0)1−θ, therefore K(δ, s0) . 1. Now, all the bounds are independent of δ,
so we may send δ → 0 in (6.7). Plugging this inequality into (6.4) concludes the

proof of (6.5). �

6.2. Dilation. Another direction to which the reverse Hölder inequalities self-

improve is the dilation parameter on the right-hand side of
(?

B

up dµ

)1/p

.

(?
NB

uq dµ

)1/q

.

Indeed, if such an inequality holds in a space of homogeneous type, then the similar

inequality (?
B

up dµ

)1/p

.

(?
CB

uq dµ

)1/q

holds for all balls with any C > K where K is the quasi-metric constant. See for

instance Theorem 3.15 in [3]. The proof of this fact is based on a covering of B by

small balls whose N-dilates are still contained in CB and applying the weak reverse

Hölder inequality in each small ball individually.

It is worth a remark that a change of geometry similar to the property just de-

scribed can be carried out with the reverse Hölder inequality with tails. To for-

mulate this technical remark, we introduce some notation. Given a sequence of
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positive numbers α = (αk)k≥0 and real numbers with 1 < n ≤ m, we define the

(m, n)-stretch S m,nα by

(S m,nα) j := αk, j ≥ 0 : mk−1 < n j ≤ mk.

We also define the (m, n)-regrouping by

(Rm,nα)k :=
∑

j:mk−1<n j≤mk

α j + βk, k ≥ 0,

where βk is a correction term. It makes each (Rm,nα)k to be the sum of equally

many terms and hence the regrouping of a non-increasing sequence remains non-

increasing: The intervals (
(k − 1)

ln m

ln n
, k

ln m

ln n

]

contain ℓ or ℓ + 1 integers when ℓ is the integer such that

ℓ <
ln m

ln n
≤ ℓ + 1.

We set βk = 0 if
∑

j:mk−1<n j≤mk 1 = ℓ + 1 and βk = αmin{ j:n j>mk−1} otherwise.

For example, for γ > 0, the (m, n)-stretch of (m−γk) is (term-wise) comparable

to (n−γk), and the (m, n)-regrouping of (n−γk) is (term-wise) comparable to (m−γk).

More generally, if α is summable, so are its stretch and regrouping. For the latter,

it is obvious and for the former, is follows from bounding the number of possible

repetitions by 1 + ln m
ln n

. In addition, if α is non-increasing so are its (m, n)-stretch

(m, n)-regrouping.

Proposition 6.8. Let (X, ρ, µ) be a space of homogeneous type and let (αk)k≥0 be a

summable sequence of positive numbers. For u ∈ L1
loc(X), u ≥ 0, N > 1, define

au(B) :=

∞∑

k=0

αk

?
NkB

u dµ.

Then for any M > 1, one has

au(B) .

∞∑

k=0

βk

?
MkB

u dµ,

with, if M > N, β = RM,Nα and if M < N, β = S Mℓ,MRMℓ ,Nα where ℓ is the least

integer to satisfy ℓ ≥ ln N/ ln M.

Proof. We start with M > N. Then,

∞∑

k=0

αk

?
NkB

u dµ =

∞∑

k=0

∑

j:Mk−1<N j≤Mk

α j

?
N jB

u dµ .

∞∑

k=0

∑

j:Mk−1<N j≤Mk

α j

?
MkB

u dµ

≤

∞∑

k=0

(RM,Nα)k

?
MkB

u dµ

as claimed, using the doubling condition.
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Let now M < N. Assume first that there is an integer ℓ ≥ 2 such that Mℓ = N.

Then we can write

∞∑

k=0

αk

?
NkB

u dµ =

∞∑

k=0

αk

?
MℓkB

u dµ ≤

∞∑

j=0

(S Mℓ ,Mα) j

?
M jB

u dµ.

In general, we can find an integer ℓ ≥ 2 so that Mℓ−1 < N ≤ Mℓ so that by the

previous case (M > N)

∞∑

k=0

αk

?
NkB

u dµ .

∞∑

k=0

(RMℓ ,Nα)k

?
MℓkB

u dµ ≤

∞∑

k=0

(S Mℓ ,MRMℓ ,Nα) j

?
M jB

u dµ.

�

7. Extensions

There are several ways to further generalize the Gehring lemma with tails that

follow by the argument used in the proof of Theorem 2.2. For the sake of clear

exposition, we have not included them in the main theorem, but we briefly discuss

some of them in this separate section. For simplicity we work in metric spaces. We

leave the adaptations to the quasi-metric setting for the interested reader. They will

not be needed in the further course.

7.1. Sequences. We usually asked the sequence αk in the definition of au to be

non-increasing. Of course, this assumption can always be relaxed by asking the

sequence to be non-increasing starting from a certain index k0 and then replacing

the terms αk with 0 ≤ k ≤ k0 with α′k := max0≤k≤k0
αk. The resulting sequence with

α′k := αk for k > k0 is always non-increasing and summable.

7.2. Maximal function. The functional au can also take the form

mΩ,loc
u (B(x, t)) = sup

r∈[t,(1/2)dist (x,Ωc))

?
B(x,r)

u dµ

where Ω ⊂ X is an open set. In other words, the supremum is over “large” balls B

so that 2B ⊂ Ω. We also define

mΩu (B(x, t)) = sup
r∈[t,(3/4)dist (x,Ωc))

?
B(x,r)

u dµ.

Corollary 7.1. Let Ω ⊂ X be an open set in a metric space (X, d, µ) with doubling

measure. Let s, β > 0 and q > 1 be such that s < q and β ≥ D(1/s − 1/q) where D

is any number satisfying (2.1). Suppose that u, f , h ≥ 0 with uq, f q, hs ∈ L1
loc(Ω, dµ)

and A ≥ 0 is a constant such that for every ball B = B(x,R) with 2B ⊂ Ω

(7.2)

(?
B

uq dµ

)1/q

≤ AmΩ,loc
u (B) + (m

Ω,loc
f q (B))1/q + Rβ(m

Ω,loc
hs (B))1/s.
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Then there exists p > q such that for all balls B with 12B ⊂ Ω,
(?

B

up dµ

)1/p

. mΩu (B) + (mΩf q(B))1/q + Rβ(mΩhs(B))1/s

+

(?
2B

f p dµ

)1/p

+ Rβ
(?

2B

hps/q dµ

)q/sp

,

(7.3)

where both p and the implicit constant depend on A,D, s, q, β.

Proof. We prove the claim for B = B(x0,R) with x0 ∈ X, R > 0 and 12B ⊂ Ω. We

point out the relevant changes to the proof of Theorem 2.2. Having fixed B, we

repeat Step 1 as before (we take N = 2) to define gq = A
q
Rhs

12B with AR a constant

so that for any ball Br contained in 2B we have

rβ
(?

Br

hs dµ

)1/s

.

(?
Br

gq dµ

)1/q

. Rβ
(?

2B

hs

)1/s

.

In Step 2, fix r0 and ρ0 real numbers satisfying R ≤ r0 < ρ0 ≤ 2R. For x ∈ Br0
:=

B(x0, r0), we have that

B(x, ρ0 − r0) ⊂ B(x0, 2R) ⊂ B(x, 4R),

and consequently for any positive function v,?
B(x,(ρ0−r0))

v dµ ≤
µ(B(x0, 2R))

µ(B(x, ρ0 − r0))

?
B(x0,2R)

v dµ

.

(
R

ρ0 − r0

)D ?
B(x0,2R)

v dµ,

(7.4)

where we used the constant D from the doubling dimension in the last line. Set

γ := (R/(ρ0 − r0))D.

We repeat Step 3 as it is. In Step 4, we define three functions

U(x, r) :=

?
B(x,r)

u dµ, F(x, r) :=

(?
B(x,r)

f q dµ

)1/q

,G(x, r) :=

(?
B(x,r)

gq dµ

)1/q

,

and for λ > λ0, we denote the relevant level sets by

Uλ := Br0
∩ {u > λ}, Fλ := Br0

∩ { f > λ}, Gλ := Br0
∩ {g > λ}.

We set

λ0 := CγmΩu (2B) +C
(
γmΩf q(2B)

)1/q
+C(2R)β

(
γmΩhs (2B)

)1/s
,

where C is a constant independent of u and the ball B, chosen such that, by an

inclusion relation as in (7.4) we obtain

(7.5) U(x, ρ0 − r0) + F(x, ρ0 − r0) +G(x, ρ0 − r0) ≤ λ0

for all x ∈ B(x0, ρ0). Finally, we define as before

Ωλ :=
{

x ∈ Uλ ∪ Fλ ∪Gλ : x is a Lebesgue point for u, f q and gq
}
.

In Step 5, we note, as before, that if x ∈ Ωλ then

lim
r→0

U(x, r) + F(x, r) +G(x, r) > λ,
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and thus for x ∈ Ωλ we can define the stopping time radius, this time continuously,

as

rx := sup
{

r < ρ0 − r0 : U(x, r) + F(x, r) +G(x, r) > λ
}
.

Remark that (7.5) implies that rx < ρ0−r0. Of course Ωλ ⊂ ∪x∈ΩλB(x, rx/5). By the

Vitali Covering Lemma (5r-Covering Lemma) there exists a countable collection

of balls {B(xi, ri)} = {Bi} with ri = rxi
such that { 1

5
Bi} are pairwise disjoint and

Gλ ⊂ ∪iBi.

We make three observations:

(i) For each i, either
>

Bi
u dµ ≥ λ

3
, (
>

Bi
f q dµ)1/q ≥ λ

3
, or (
>

Bi
gq dµ)1/q ≥ λ

3
.

(ii) The radius of each Bi is less than ρ0−r0 and xi ∈ B(x0, r0) so Bi ⊂ B(x0, ρ0).

(iii) Each r ∈ [ri, ρ0 − r0) is ‘above’ or at the stopping time and?
B(xi ,r)

u dµ +

(?
B(xi ,r)

f q dµ

)1/q

+

(?
B(xi,r)

gq dµ

)1/q

. λ.

We obtain from (7.2) that

uq(Uλ) ≤ uq(Uλ ∪ Fλ ∪Gλ) ≤
∑

i

uq(Bi)

.

∑

i

µ(Bi)
(
mΩ,loc

u (Bi) + (mΩ,loc
f q (Bi))

1/q + r
β
i (mΩ,loc

hs (Bi))
1/s
)q
.

We handle the term involving f , to begin we split m
Ω,loc
f q (Bi) as

m
Ω,loc
f q (Bi) = sup

r∈[ri,
1
2

dist (xi ,Ωc))

?
B(xi,r)

f q dµ

= max

(
sup

r∈[ri,ρ0−r0)

?
B(xi,r)

f q dµ, sup
r∈[ρ0−r0 ,

1
2

dist (xi ,Ωc))

?
B(xi,r)

f q dµ

)
.

(7.6)

By observation (iii), we see that

sup
r∈[ri,ρ0−r0)

?
B(xi,r)

f q dµ . λ.

On the other hand,

sup
r∈[ρ0−r0,

1
2

dist (xi ,Ωc))

?
B(xi,r)

f q dµ = sup
k∈[1, 1

2(ρ0−r0)
dist (xi ,Ωc))

?
B(xi,k(ρ0−r0))

f q dµ

. sup
k∈[1, 1

2(ρ0−r0)
dist (xi ,Ωc))

(
k(ρ0 − r0) + r0

k(ρ0 − r0)

)D ?
B(x0,k(ρ0−r0)+r0)

f q dµ

.

(
R

ρ0 − r0

)D

mΩf q(B) . λ
q
0 < λ

q,

where the last line is justified as follows: By the upper bound on k in the supremum,

we always have

R ≤ k(ρ0 − r0) + r0 ≤
1

2
dist (xi,Ω

c) + r0 ≤
1

2
dist (x0,Ω

c) + 3R <
3

4
dist (x0,Ω

c),
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where we used |xi − x| < r0 < ρ0 ≤ 2R and B(x0, 12R) ⊂ Ω. Hence every

B(x0, k(ρ0 − r0)+ r0) is admissible in the definition of mΩf q(B) and we get the bound

claimed before since mΩf q(B) ≤ 2DmΩf q(2B). Altogether,

(mΩ,loc
f q (Bi))

1/q
. λ.

Terms with u and h are estimated similarly. The rest of Step 5 follows as before

and we obtain

∪iBi ⊂ {M(u1Bρ0
) > λ/3} ∪ {M( f q

1Bρ0
) > (λ/3)q} ∪ {M(gq

1Bρ0
) > (λ/3)q}.

Step 6 involving maximal function arguments to estimate the measure of the set

in the above display for λ > λ0 as well as the overall contribution for λ < λ0 is

repeated without changes. In the end, we reach an inequality of the form (2.21).

Indeed, set

ϕ(t) :=

∫

B(x0,t)

up−q
m uq dµ, αp :=

(
mΩu (2B) + (mΩf q(2B))1/q + (R)β(mΩhs(2B))1/s

)p

and for p ∈ (q, 2q) we may summarize our estimates as

ϕ(r0) . µ(B)

(
R

ρ0 − r0

)η
αp + ǫpϕ(ρ0) + ε−1

p

∫

2B

f p dµ + ε−1
p

∫

2B

gp dµ,

whenever R ≤ r0 < ρ0 ≤ 2R. Here ǫp = p − q and η > 0 is independent of u and

B. The claim (7.3) then follows from a well known iteration argument (see e.g.

Lemma 6.1 in [12]) or from modifying the argument in Step 7. �

Note that the proof for the maximal-function-like object mΩ,loc
u is actually sim-

pler than for the tailed au. Several choices of how to discretize the scale parameters

can be omitted. This setup is also very close but not comparable to Gehring’s orig-

inal assumption

(Muq)1/q
. Mu

where q > 1 and M the Hardy–Littlewood maximal operator. Indeed, the left-hand

side here does not have a maximal function and the right-hand side is a maximal

function restricted to large scales (a non-local maximal function).

7.3. Domains. We can define the tail functional aΩ,loc
u restricted to an open set Ω,

for example

aΩ,loc
u (B) :=

∑

k≥0
2k+4B⊂Ω

αk

?
2kB

u dµ

and

aΩu (B) :=
∑

k≥0
2k+1B⊂Ω

αk

?
2kB

u dµ,

where as before (αk)k is a non-increasing and summable sequence of positive num-

bers. Then we can localize the assumptions of Theorem 2.2 to Ω.
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Corollary 7.7. Let Ω ⊂ X be an open set in a metric space (X, d, µ) with doubling

measure. Let s, β > 0 and q > 1 be such that s < q and β ≥ D(1/s − 1/q) where D

is any number satisfying (2.1). Suppose that u, f , h ≥ 0 with uq, f q, hs ∈ L1
loc(Ω, dµ)

and A ≥ 0 is a constant such that for every ball B = B(x,R) with 16B ⊂ Ω

(7.8)

(?
B

uq dµ

)1/q

≤ AaΩ,loc
u (B) + (aΩ,loc

f q (B))1/q + Rβ(aΩ,loc
hs (B))1/s.

Then there exists p > q such that for all balls B with 32B ⊂ Ω,
(?

B

up dµ

)1/p

. aΩu (4B) + (aΩf q (4B))1/q + Rβ(aΩhs (4B))1/s

+

(?
4B

f p dµ

)1/p

+ Rβ
(?

4B

hps/q dµ

)q/sp

,

(7.9)

where both p and the implicit constant depend on A, β, s, q,D.

Proof. Theorem 2.2 shows how to deal with the tail. Corollary 7.1 shows how

to adapt the proof to the setting relative to Ω. The proof of this Corollary can

be reconstructed following the proof of Theorem 2.2 and carefully adapting the

estimation in (2.15) in the spirit of estimating (7.6) to make sure that all relevant

balls appearing in the estimates are contained in Ω. �

7.4. Convolutions. In the Euclidean setting where (X, d, µ) is Rn equipped with

the usual distance and the Lebesgue measure, we can realize the functionals au as

convolutions

au(B(x, r)) = (ϕr ∗ u)(x)

where ϕ has suitable decay and integrability and ϕr(x) = r−nϕ(x/r). More pre-

cisely, our assumptions correspond to ϕ being bounded, radial, decreasing and

globally integrable. A convolution makes sense in certain groups, so this kind

of special functional can also be considered, for instance, in nilpotent Lie groups

as in [27].

8. Very weak A∞ weights

For a weight (that is, a non-negative locally integrable function), the condition
∫

B

M(1Bw) dµ ≤ C

∫

B

w dµ

valid for some C < ∞ and all balls B of X can be taken as a definition of the A∞
class, where M is the uncentered maximal operator, see [8, 28] for the Euclidean

case with Lebesgue measure. In spaces of homogeneous type, this condition im-

plies higher integrability with an exponent that can be computed from the constant

C and the structural constants of X, see [14]. This was extended in [3] to weights

in the weak A∞ class defined by

(8.1)

?
B

M(1Bw) dµ ≤ C

?
σB

w dµ.

where σ > 1 is given. The classes are shown to be independent of σ provided

σ > K, K being the quasi-metric constant, and their elements still have a higher
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integrability. The methods passing through a dyadic analog yield an accurate es-

timate of the exponent in terms of the best C in the definition. We note that the

dilation parameter σ is uniform: it is the same for all balls. Our methods allow

us to remove the uniformity, that is we define the very weak A∞ class as the set of

weights such that for all balls,

(8.2)

?
B

M(1Bw) dµ ≤ C sup
σ≥1

?
σB

w dµ < ∞.

The quantity in the middle is the same functional as the one defined in Section 7.2

when Ω = X.

We denote by Avw
∞ this class. As the right-hand side of (8.2) requires bounded-

ness of all averages on large balls, this rules out weights growing at ∞. For this

reason, it is neither contained in, nor containing the class Aweak
∞ introduced in [3].

Typically, such very weak A∞ weights arise from fractional equations. See the next

section.

Theorem 8.3. For any very weak A∞ weight w, there exist p > 1 and C′ < ∞ such

that for all balls B,

(8.4)

(?
B

M(1Bw)p dµ

)1/p

≤ C′ sup
σ≥1

?
σB

w dµ.

Remark 8.5. The improvement of integrability on a given ball B only depends on

the finiteness of the right-hand side for that same ball and nothing else, as the

proof will show. Hence, one can also define the very weak A∞ class on B by the

condition (8.2) on that very ball. The theorem remains valid if one replaces (in

the assumption and the conclusion) the supremum by a tail as before. That variant

leads to the class Cp (see Section 8.1). The advantage is to allow some possible

growth for which the tail is finite while the supremum is not. Finally our argument

works with the supremum replaced by one average with a fixed dilation parameter.

We leave these extensions to the interested reader. They will not be needed here.

Proof. To simplify we do the proof in the metric case. Again the trick to reduce the

quasi-metric case to the metric case applies, see Section 3. The argument follows

again that of Theorem 2.2 with f , h = 0 but with some changes.

We pick N = 2. We ignore Step 1 and have the setup of Step 2. Having fixed the

ball B = B(x0,R), the parameters ρ0, r0, and ℓ such that 2ℓ(ρ0 − r0) = R, define

M̃v(x) := sup
k∈Z

?
B(x,2k(ρ0−r0))

|v| dµ.

Then if Mc designates the centered maximal operator,

M̃v ≤ Mcv ≤ Mv ≤ κ′Mcv ≤ κM̃v.

Indeed, Mv ≤ κ′Mcv is classical, while Mcv . M̃v follows from the doubling

property and κ does not depend on ρ0 − r0 in particular. By the same token, in

the right-hand side of (8.2) we may restrict to the supremum over all σ = 2k for

integers k ≥ 0. This only causes a change in the constant C.
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We modify Step 3 as follows. With the truncation of the maximal function at

level m,
∫

Br0

(M(1Br0
w))p

m dµ ≤ κp

∫

Br0

(M̃(1Br0
w))

p−1
m/κ M̃(1Br0

w) dµ

≤ κp

∫

Br0

(M̃(1Bρ0
w))

p−1
m/κ M̃(1Bρ0

w) dµ

= κp(p − 1)

∫ m/κ

0

λp−2u(Br0
∩ {u > λ}) dλ

(8.6)

with u := M̃(1Bρ0
w).

In Step 4, we pick λ0 := Cℓ+2
d supσ≥1

>
σB

w dµ (which is assumed finite otherwise

there was nothing to prove), where we recall that Cd is the doubling constant. We

observe that for x ∈ Br0
= B(x0, r0) and k ≥ 0,

?
B(x,2k(ρ0−r0))

1Bρ0
w dµ ≤ Cℓ+2

d

?
B(x0 ,2k+1R)

w dµ ≤ λ0.(8.7)

The stopping time of Step 5 is slightly different. Let λ > λ0. Pick x ∈ Br0
∩ {u >

λ}. As u(x) = M̃(1Bρ0
w)(x) > λ > λ0, the observation above and B(x, 2k(ρ0−r0)) ⊂

Bρ0
when k < 0 imply

u(x) = sup
k<0

?
B(x,2k(ρ0−r0))

1Bρ0
w dµ = sup

k<0

?
B(x,2k(ρ0−r0))

w dµ.

Let kx < 0 be the supremum of those k < 0 for which
>

B(x,2k(ρ0−r0))
w dµ > λ. We

extract the covering Bi = B(xi, 2
kxi (ρ0 − r0)) of Br0

∩ {u > λ}, where all Bi are

subballs of Bρ0
with the 1

5
Bi pairwise disjoint. We claim that if B∗i = 2Bi, then for

all x ∈ Bi ∩ Br0
, we have u(x) ≤ C2

d M(1B∗i
w)(x).

Indeed, fix x ∈ Bi ∩ Br0
and pick k ∈ Z. In the case where k ≥ 0 we have by

(8.7), ?
B(x,2k(ρ0−r0))

1Bρ0
w dµ ≤ λ0 < λ <

?
Bi

w dµ ≤ M(1Bi
w)(x).

In the case where 0 > k ≥ kxi
, we have either by the stopping time or again by (8.7)

if k = −1,

?
B(x,2k(ρ0−r0))

1Bρ0
w dµ ≤

µ(B(xi, 2
k+1(ρ0 − r0)))

µ(B(x, 2k(ρ0 − r0)))

?
B(xi,2k+1(ρ0−r0))

w dµ

≤ C2
dλ < C2

d

?
Bi

w dµ ≤ C2
d M(1Bi

w)(x).

In the case where k < kxi
, B(x, 2k(ρ0 − r0)) ⊂ B∗i and B(x, 2k(ρ0 − r0)) ⊂ Bρ0

, hence

?
B(x,2k(ρ0−r0))

1Bρ0
w dµ =

?
B(x,2k(ρ0−r0))

w dµ ≤ M(1B∗i
w)(x).

Thus, the intermediate claim is proved.
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Now, using this together with (8.2) and the opening remark, we obtain

u(Br0
∩ {u > λ}) ≤

∑

i

u(Bi ∩ Br0
) ≤
∑

i

∫

Bi∩Br0

u dµ

≤
∑

i

C2
d

∫

Bi∩Br0

M(1B∗i
w) dµ

≤
∑

i

C2
d µ(B

∗
i )

?
B∗i

M(1B∗i
w) dµ

≤ CC2
d

∑

i

µ(B∗i ) sup
k≥0

?
2k B∗i

w dµ

≤ CC2
d

∑

i

µ(B∗i ) λ

. λ µ(∪Bi).

The next to last inequality is by definition of B∗i = 2Bi, hence all the averages do not

exceed λ0 < λ by (8.7), and the last inequality uses doubling and the fact that 1
5

Bi

are disjoint. As Bi ⊂ Bρ0
and λ <

>
Bi

w dµ we have ∪Bi ⊂ Bρ0
∩ {M(1Bρ0

w) > λ}

and we have obtained

u(Br0
∩ {u > λ}) . λ µ(Bρ0

∩ {M(1Bρ0
w) > λ}).

Step 6 is now done as follows by cutting the rightmost integral in (8.6) at λ0. Let

ϕ(r0) :=
∫

Br0
(M(1Br0

w))
p
m dµ. Then

ϕ(r0) ≤ κpλ
p−1
0 u(Br0

) + κp(p − 1)

∫ m/κ

λ0

λp−2u(Br0
∩ {u > λ}) dλ

. µ(B)C
pℓ
d

(
sup
σ≥1

?
σB

w dµ

)p

+ (p − 1)

∫ m/κ

λ0

λp−1µ(Bρ0
∩ {M(1Bρ0

w) > λ}) dλ

. µ(B)C
pℓ
d

(
sup
σ≥1

?
σB

w dµ

)p

+
p − 1

p

∫

Bρ0

M(1Bρ0
w)

p
m/κ dµ.

We recall that ℓ was defined by 2ℓ(ρ0 − r0) = R. As κ > 1, we have obtained

ϕ(r0) . µ(B)C
pℓ
d (sup
σ≥1

?
σB

w dµ)p + ǫpϕ(ρ0).

From there, we do as in Step 7 an iteration provided p − 1 is small and finally let

m→ ∞ to deduce (8.4). �

Having this theorem at hand, we can proceed as in [3] and show the equality of

the class Avw
∞ with other classes. We say that a weight is a very weak A∞ weight,

if there exist an exponent 1 < p < ∞ and a constant C such that for all balls B and

Borel subsets E of B,

(8.8) 0 < inf
σ≥1

w(E)

w(σB)

µ(σB)

µ(B)
≤ C

(
µ(E)

µ(B)

)1/p

.
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We call Avw
∞ this class. We say that a weight w is a very weak reverse Hölder

weight if there exist an exponent 1 < q < ∞ and a constant C < ∞ such that for all

balls B,

(8.9)

(?
B

wq dµ

)1/q

≤ C sup
σ≥1

?
σB

w dµ < ∞.

We call RHvw this class.

Theorem 8.10. Let w be a weight and B be a ball of X. The condition (8.2), (8.8)

for some p ∈ (1,∞) and (8.9) for some q ∈ (1,∞) are equivalent (with different

constants). In particular, we have coincidence of Avw
∞ ,Avw

∞ and RHvw .

Proof. Adapt the proof of Lemma 8.2 in [3] together with our Theorem 8.3 as the

proper replacement for Theorem 5.6 therein. �

8.1. Cp weights. Let X = Rn equipped with Euclidean distance and Lebesgue

measure and write |E| for the Lebesgue measure of a set E. Fix a weight w. Upon

replacing the supremum supσ>1 w(σB)/|σB| by the tail functional

aCp
(B) :=

1

|B|

∫

Rn

M(1B)pw dx h

?
B

w dx +
1

|B|

∞∑

k=1

∫

2k+1B\2kB

(
|B|

|2kB|

)p

w dx

h

∞∑

k=1

2−kn(p−1)

?
2kB

w dx

with 1 < p < ∞ in the definition of Avw
∞ in (8.4), we recover the Cp condition of

Muckenhoupt [20] and Sawyer [22]. Namely, we say that w ∈ Cp if there are δ > 0

and C > 0 so that

(8.11) w(E) ≤ C

(
|E|

|B|

)δ ∫

Rn

M(1B)pw dx < ∞

holds for all balls B and measurable E ⊂ B.

Following the proof of Lemma 8.2 in [3], we see that w ∈ Cp if and only if there

are δ′ > 0 and C > 0 such that for all balls B,

(?
B

w1+δ′ dx

)1/(1+δ′)

≤ CaCp
(B) < ∞.

Modifying the proof of Theorem 8.3 (see Remark 8.5), one can append?
B

M(1Bw) dx ≤ CaCp
(B) < ∞

holding for some C > 0 and all balls B to the list of equivalent definitions of the Cp

class. In conclusion, the class Cp gives examples of functions satisfying a reverse

Hölder inequality with tail as in Theorem 2.2. Conversely, as we prove next a

reverse Hölder inequality with a tail of the form aCp
(B) for fractional derivatives

of solutions to fractional divergence form equations, we see that solutions produce

examples of Cp weights.
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9. Application to a fractional divergence form equation

Throughout this section let α ∈ (0, 1). We illustrate our main results by applying

them to solutions u on Rn, n ≥ 2, to the fractional divergence form equation of

order 2α introduced by Shieh–Spector [25]. This equation is formally given by

(Dα)∗(ADαu) = (Dα)∗F + f ,(9.1)

where Dα is the Riesz fractional gradient defined for u ∈ L2(Rn) as the Cn-valued

tempered distribution with Rn-valued Fourier symbol ξ/|ξ|1−α, that is to say, for

ξ ∈ Rn we have

F (Dαu)(ξ) =
ξ

|ξ|1−α
F u(ξ).

Throughout, we use the normalization

F u(ξ) :=
1

(2π)n/2

∫

Rn

u(x)e−iξ·x dx

for the Fourier transform. Note that for α = 1 we would recover the classical

divergence form structure with D1 = ∇ and adjoint (D1)∗ = −div. Also note that

F in (9.1) is Cn-valued whereas f is scalar valued, but since there is no danger of

confusion we shall not use different notation for vector valued functions. As for

the coefficients, we assume that A : Rn → Cn×n is bounded, measurable, and that

there exists λ > 0 such that for all x ∈ Rn and all ξ ∈ Cn,

λ|ξ|2 ≤ ℜ(A(x)ξ · ξ) ≤ λ−1|ξ|2.(9.2)

As in [25, 24], we study (9.1) in a global variational framework using the Hilbert

space Hα,2 = Hα,2(Rn) that consists of all u ∈ L2(Rn) such that |Dαu| ∈ L2(Rn) and

that is endowed with the natural norm u 7→ (‖u‖2
L2 + ‖D

αu‖2
L2 )1/2. Since ξ/|ξ|1−α is

comparable to |ξ|α is Euclidean norm, Hα,2 coincides up to equivalent norms with

the Bessel potential space that is usually denoted by the same symbol. Fractional

Sobolev embedding theorems give us two important indices for every p ∈ (1,∞):

p∗ :=
pn

n − αp
and p∗ :=

pn

n + αp
,

that satisfy 1/p∗ + 1/p∗ = 2/p and (p∗)
∗ = (p∗)∗ = p. The value of α in the

definition of p∗ and p∗ will usually be clear from the context. Otherwise it will

be given explicitly as p∗,α or p∗α. In particular, Hα,2 embeds continuously into

L2∗ = (L2∗ )′, see Theorem 1.2.4 in [1].

Definition 9.3. Let F ∈ L2 and f ∈ L2∗ . A function u ∈ Hα,2 is called weak

solution to (9.1) if for all ϕ ∈ Hα,2,
∫

Rn

A(x)Dαu(x) · Dαϕ(x) dx =

∫

Rn

F(x) · Dαϕ(x) + f (x)ϕ(x) dx.

Our goal is to prove that weak solutions to (9.1) exhibit locally higher integra-

bility of their derivatives of order α. There are at least two legitimate choices for

defining such fractional derivatives: One is the Riesz fractional gradient Dαu, the

other one the fractional Laplacian (−∆)α/2u that we introduce for u ∈ Hα,2 through
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the Fourier symbol |ξ|α or, equivalently, through the singular integral representation

for almost every x ∈ Rn,

(−∆)α/2u(x) = cn,α

∫

Rn

u(x) − u(y)

|x − y|n+α
dy,(9.4)

where integral is understood in the principal value sense [18, 26]. Our main result

then reads as follows.

Theorem 9.5. Let u ∈ Hα,2 and p > 2. Suppose u is a weak solution to (9.1),

where f ∈ L2∗ ∩ L
p∗
loc and F ∈ L2 ∩ L

p
loc. Then there exists ǫ0 = ǫ0(λ, n, α, p) > 0

such that

(1) local higher integrability |(−∆)α/2u| + |Dαu| ∈ L
2+ǫ0
loc holds,

(2) global integrability f ∈ L2∗ ∩ Lp∗ and F ∈ L2 ∩ Lp, implies global higher

integrability |(−∆)α/2u| + |Dαu| ∈ L2+ǫ0 .

Below, we shall prove this result by first establishing new reverse Hölder in-

equalities with tails for solutions to (9.1) and then applying the non-local Gehring

lemmas from Theorem 2.2 and Theorem 5.1. As a consequence, there are in fact

quantitative bounds that substantiate assertion (1) and (2) above. We shall write

them out in (9.14) at the end of this section.

We remark that for equations with real V MO-coefficients A it was shown in [24]

by different techniques that global p-integrability of F leads to local p-integrability

of Dαu for any p > 2. The local higher integrability of Dαu in (1) should therefore

be seen as the counterpart of that result for equations with merely measurable co-

efficients. Although (−∆)α/2u is comparable to Dαu only on the global level using

Fourier multipliers (the Riesz transform), we obtain local self-improvement for the

former quantity, too. This, as well as the global results (2), seem to be novel for

fractional divergence form equations even in the setting of [23].

9.1. Reverse Hölder estimates for the Riesz fractional gradient. We begin with

a reverse Hölder estimate for the Riesz fractional gradient of solutions. Surpris-

ingly, this estimate is still local in u and F.

Proposition 9.6. Let u ∈ Hα,2 be a weak solution to (9.1), where f ∈ L2∗ and

F ∈ L2. Let ρ ∈ (2∗,1, 2). Then for all balls B = B(x, r) ⊂ Rn,

(?
B

|Dαu|2
)1/2

.

(?
2B

|Dαu|ρ
)1/ρ

+

(?
2B

|F|2
)1/2

+ rα
( ∞∑

k=0

2−k(1−α)

?
2k B

| f |2∗,α
)1/2∗,α

,

with an implicit constant depending on n, α, λ, ρ.

Remark 9.7. The proof below will yield in fact a stronger version of the above

estimate, see in particular (9.10): All but the averages for k = 0, 1 of f can be

taken in L1 instead of L2∗,α and ρ = 2∗,1 is admissible in all dimensions but n = 2.

For the applications we shall not need such precision.
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For the proof we need to recall the notions of Riesz potential and Riesz trans-

form. The potential Is of order s ∈ (0, 1) corresponds to the Fourier symbol |ξ|−s.

For g ∈ Lp, p ∈ (1, n/s), we have Isg ∈ Lp∗s , a bounded operator Is : Lp → Lp∗s and

an absolutely convergent representation

Isg(x) = cs

∫

Rn

g(y)

|x − y|n−s
dy

for almost every x ∈ Rn. For v ∈ Hs,2 we have (−∆)s/2Isv = v = Is(−∆)s/2v.

We refer to Section V.1 in [26] for all these properties. We shall also use the well

known Riesz transform R and its adjoint R∗ corresponding to the symbols −iξ/|ξ|
and iξ⊤/|ξ|, respectively. For g ∈ Lp and G ∈ (Lp)n, p ∈ (1,∞), they are given for

almost every x ∈ Rn by the principal value integrals

Rg(x) = cn

∫

Rn

x − y

|x − y|n+1
g(y) dy and R∗G(x) = cn

∫

Rn

x − y

|x − y|n+1
·G(y) dy,

(9.8)

see Section III.1 in [26]. For u ∈ Hα,2 we can read off from the respective Fourier

symbols the important relations

Dαu = ∇I1−αu = R(−∆)α/2u.(9.9)

We are now ready to give the

Proof of Proposition 9.6. We let B be a ball of radius 1 and pick an adapted cut-off

function ϕ ∈ C∞0 (2B) satisfying 0 ≤ ϕ ≤ 1, ϕ = 1 on B and |∇ϕ| . 1. We claim that

it suffices to establish the bound
∫

Rn

|Dαu|2ϕ2
. ε

∫

Rn

|Dαu|2ϕ2 + ε−1

(∫

2B

|Dαu|ρ
)2/ρ

+ ε−1

∫

2B

|F|2

+ ε−1

(∫

4B

| f |2∗
)2/2∗

+

( ∞∑

k=2

2−k(n+1−α)

∫

2kB

| f |

)2(9.10)

for ε > 0 and an implicit constant depending on n, α, λ. Indeed, upon choosing ε
sufficiently small to absorb the first term on the right into the left-hand side and

using the defining properties of ϕ, this implies the claim for balls of radius 1 even

in its stronger form alluded to in Remark 9.7. In order to pass to balls of arbitrary

radius r > 0, we apply the above to x 7→ u(xr), which is a solution to an equation

of the same form as (9.1) with identical ellipticity constants.

In the following, implicit constants will only depend on n, α, λ and we shall

not mention this in every single step. In order to prove (9.10) we start out with

ellipticity of A, see (9.2), and write
∫

Rn

|Dαu|2ϕ2 ≤ ℜ

∫

Rn

ADαu · (Dαu)ϕ2.

We introduce the potential v := I1−αu −
>

2B
I1−αu with zero average on 2B. Since

u ∈ L2 we have I1−αu ∈ L2∗1−α ⊂ L2
loc and hence v ∈ L2

loc. Moreover, ∇v = Dαu ∈ L2

due to (9.9), which leads to∫

Rn

|Dαu|2ϕ2 ≤ ℜ

∫

Rn

ADαu · ∇(vϕ2) − 2ℜ

∫

Rn

ADαu · vϕ∇ϕ =:ℜ(I) +ℜ(II).
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As for II, we recall boundedness of A, ϕ, ∇ϕ, apply Young’s inequality with ε and

then use the standard Sobolev-Poincaré inequality for functions with zero average

on a ball (Corollary 8.1.4 in [1]) to give

|II| . ε

∫

Rn

|Dαu|2ϕ2 + ε−1

∫

2B

|v|2

. ε

∫

Rn

|Dαu|2ϕ2 + ε−1

(∫

2B

|∇v|ρ
)2/ρ

.

Since we have ∇v = Dαu, this is a desirable bound in view of (9.10).

We turn to I. Since vϕ2 ∈ H1,2, we can use the Fourier transform to write

∇(vϕ2) = Dα(−∆)(1−α)/2(vϕ2), which in turn allows us to bring into play the equa-

tion for u with (−∆)(1−α)/2(vϕ2) ∈ Hα,2 as a test function:

I =

∫

Rn

F · ∇(vϕ2) +

∫

Rn

f (−∆)(1−α)/2(vϕ2) =: I1 + I2.

By the support properties of ϕ and the relation Dαu = ∇v we have

I1 =

∫

2B

F · (Dαu)ϕ2 +

∫

2B

2F · vϕ∇ϕ.

A desirable bound for the first integral on the right is obtained simply from Young’s

inequality with ε, whereas for the second one we also invoke the Sobolev-Poincaré

inequality for v as in the treatment of II above. This completes the handling I1 and

the only term remaining is I2.

Let us further split I2 into a local and a global piece

I2 =

∫

Rn

14B f (−∆)(1−α)/2(vϕ2) +

∫

Rn

1(4B)c f (−∆)(1−α)/2(vϕ2) =: I21 + I22

and treat the local piece first. Since vϕ2 ∈ H1,2, we can use the Fourier transform

to justify

(−∆)(1−α)/2(vϕ2) = −IαR
∗∇(vϕ2)

and as the Fourier symbol of Iα is R-valued, we can rewrite

I2 = −

∫

Rn

RIα(14B f ) · ∇(vϕ2).

From f ∈ L2∗ and the above-mentioned boundedness properties of R and Iα we can

infer RIα(14B f ) ∈ L2 with norm controlled by ‖ f ‖L2∗ (4B). Hence, I2 is of the exact

same nature as I1 and we obtain a desirable bound by the same reasoning as before

upon replacing F with RIα(14B f ).

Finally, we use the integral representation (9.4) for (−∆)(1−α)/2(vϕ2)(x) to treat

the global piece I22. Since vϕ2 is supported in 2B, there is no issue of convergence

for x ∈ (4B)c and we get

|(−∆)(1−α)/2(vϕ2)(x)| ≤ cn,α

∫

2B

|v(y)|

|x − y|n+1−α
dy.

Splitting the integral in x ∈ (4B)c into dyadic annuli, we therefore obtain

|I22| .

∞∑

k=2

2−k(n+1−α)

(∫

2B

|v(y)| dy

)(∫

2k B

| f (x)| dx

)
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≤

∫

2B

|v|2 +

( ∞∑

k=2

2−k(n+1−α)

∫

2kB

| f |

)2

,

where the second step follows from the elementary inequality XY ≤ X2 + Y2 and

Hölder’s inequality on X =
∫

2B
|v|. A final application of Sobolev-Poincaré in-

equality to v completes the proof of (9.10). �

9.2. Reverse Hölder estimates incorporating the fractional Laplacian. As our

next step, we look for similar reverse Hölder estimates that incorporate (−∆)α/2u.

Instead of looking separately at the fractional Laplacian, we shall incorporate this

term into the estimate for the Riesz fractional gradient and obtain a reverse Hölder

estimate for the sum |Dαu| + |(−∆)α/2u|.

Proposition 9.11. . Let u ∈ Hα,2 be a weak solution to (9.1), where f ∈ L2∗ and

F ∈ L2. Let ρ ∈ (2∗,1, 2). Then for all balls B = B(x, r) ⊂ Rn,

(?
B

(|Dαu| + |(−∆)α/2u|)2

)1/2

.

(?
4B

|Dαu|ρ
)1/ρ

+

(∫

2B

|(−∆)α/2u|

)

+

(?
4B

|F|2
)1/2

+

( ∞∑

k=0

2−k

?
2k B

|Dαu|

)

+ rα
( ∞∑

k=0

2−k(1−α)

?
2k B

| f |2∗,α
)1/2∗,α

,

with an implicit constant depending on n, α, λ, ρ.

This will follow at once from the preceding proposition and the following real

variable lemma that has nothing to do with solutions to (9.1). It does, however,

illustrate how tails naturally enter the scene when changing the quantity to be con-

trolled via a Riesz transform and we suggest that this phenomenon is natural also

for more general Calderón–Zygmund operators.

Lemma 9.12. Let α ∈ (0, 1) and u ∈ Hα,2. There is a constant C = C(n, α) such

that for any ball B ⊂ Rn,

(?
B

|(−∆)α/2u|2
)1/2

≤ C

(∫

2B

|Dαu|2 +

∫

B

|(−∆)α/2u| +

∞∑

k=1

2−k

?
2k B

|Dαu|

)
.

Proof. By a scaling and translation argument it suffices again to argue for B =

B(0, 1). Since R∗R f = − f for every f ∈ L2, we can split the square of the left-hand

side as∫

B

|(−∆)α/2u|2 ≤ 2

∫

B

|R∗(12BR(−∆)α/2u)|2 + 2

∫

B

|R∗(1(2B)cR(−∆)α/2u)|2.

Using the relation R(−∆)α/2u = Dαu from (9.9) as well as the L2 boundedness of

R∗ on the first integral, we find
∫

B

|(−∆)α/2u|2 .

∫

2B

|Dαu|2 +

∫

B

|R∗(1(2B)c Dαu)|2(9.13)
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and it remains to control the right-most integral. In fact, we shall establish a point-

wise bound for the integrand, which will yield the conclusion since B is normal-

ized.

For brevity set w := Dαu ∈ L2. Given x ∈ B, there is no issue of convergence

with the integral representation (9.8) for R∗(1(2B)cw)(x) and we have

R∗(1(2B)cw)(x) = cn

∫

|y|>2

(x − y) · w(y)

|x − y|n+1
dy.

We let now z ∈ B and ε ∈ (0, 1) be free parameters to be specified later on, and

introduce w0 := 12Bw ∈ L1 ∩ L2. Since B(z, ε) ⊂ 2B, we have

c−1
n R∗(1(2B)cw)(x) =

∫

|y|>2

( x − y

|x − y|n+1
−

z − y

|z − y|n+1

)
· w(y) dy

+

∫

|z−y|>ε

(z − y) · w(y)

|z − y|n+1
dy −

∫

|z−y|>ε

(z − y) · w0(y)

|z − y|n+1
dy.

The mean value theorem allows us to control the size of the kernel in the first

integral on the right by |y|−n−1. So, letting ε → 0 we obtain from (9.8) for almost

every z ∈ B the bound

|R∗(1(2B)cw)(x)| .

∫

|y|>2

|w(y)|

|y|n+1
dy + |R∗w(z)| + |R∗w0(z)|,

with an implicit constant depending on α and n. It remains to pick z ∈ B correctly.

Tchebychev’s inequality entails
∣∣∣∣
{

z ∈ B : |R∗w(z)| ≥ 4

?
B

|R∗w|

}∣∣∣∣ ≤
|B|

4

and likewise the weak-(1, 1) bound for R∗ (with constant C = C(n) say, see Theo-

rem II.4 in [26]) guarantees
∣∣∣∣
{

z ∈ B : |R∗w0(z)| ≥
4C

|B|

∫

Rn

|w0|

}∣∣∣∣ ≤
|B|

4
.

Hence, the set of z ∈ B violating both conditions simultaneously has measure at

least |B|/2 and we pick any such z. In conclusion, we have obtained for almost

every x ∈ B the pointwise bound

|R∗(1(2B)cw)(x)| .

∫

|y|>2

|w(y)|

|y|n+1
dy +

∫

B

|R∗w| +

∫

Rn

|w0|.

At this stage we recall w0 = 12Bw, w = Dαu, and thus we obtain from (9.9) that

R∗w = R∗R(−∆)α/2u = −(−∆)α/2u. Splitting the integral in |y| > 2 into dyadic

annuli we eventually find

|R∗(1(2B)cw)(x)| .

∫

B

|(−∆)α/2u| +

∞∑

k=1

2−k

?
2kB

|Dαu|.

Integrating both sides in x ∈ B completes the ongoing estimate of the right-most

integral in (9.13). �

Now, we easily obtain a
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Proof of Proposition 9.11. Proposition 9.6 already controls the L2 average of Dαu

on B by the desired right-hand side. In order to control the L2 average of (−∆)α/2u,

we first apply Lemma 9.12 and then use Proposition 9.6 again on the ball 2B. �

9.3. Proof of Theorem 9.5. With Proposition 9.11 at hand, we can apply our

(non-local) Gehring lemmas to obtain improvement of the integrability of |Dαu| +

|(−∆)αu|.

We begin with statement (1), where the right-hand side of the equations exhibits

higher local integrability. Let us take any ρ ∈ (1, 2) to which Proposition 9.11

applies, the precise value of which does neither play a role for the argument, nor

the conclusion. We introduce the tail functional

ah(B) :=

∞∑

k=0

2−k(1−α)

?
2k B

h dx,

for h ≥ 0 locally integrable and B ⊂ Rn a ball.

We put v := |(−∆)αu| + |(−∆)α/2u| so that Proposition 9.11 entails for every ball

B = B(x,R),

(?
B

v2

)1/2

. (avρ (B))1/ρ + (a|F|2 (B))1/2 + Rα(a| f |2∗ (B))1/2∗ ,

with an implicit constant depending on n, α, λ, ρ. Note that here we have been

very generous by using Hölder’s inequality to unite all quantities containing either

(−∆)αu or Dαu in one single tail for v with L ρ-averages and reducing the decay of

the geometric series meeting those averages. In order to bring this estimate in the

form of Theorem 2.2, we introduce ṽ := v ρ and similarly F̃ := |F| ρ and f̃ := | f | ρ.

In terms of ṽ, F̃, f̃ the previous bound reads

(?
B

ṽ 2/ρ

)ρ/2
. a ṽ(B) + (a

F̃ 2/ρ (B)) ρ/2 + Rαρ(a
f̃ 2∗/ρ(B)) ρ/2∗ .

Now that the exponent of ṽ on the right-hand side is 1, the claim follows from

Theorem 2.2 after checking the numerology. The parameters in that theorem are

(D, β, q, s) :=
(
n, αρ, 2

ρ ,
2∗
ρ

)

and so the conditions 0 < s < q, q > 1 and β ≥ D(1/s − 1/q) are satisfied.

(Note that in fact D(1/s − 1/q) = αρ = β and that s < 1). Hence, Theorem 2.2

gives us local higher integrability for ṽ with exponent larger than q through the

quantitative bound (2.5), provided F̃ and f̃ are globally integrable with exponents q

and s and locally integrable to some higher exponents, respectively. By definition,

this precisely means F ∈ L2 ∩ L
p
loc and f ∈ L2∗ ∩ L

p∗
loc and for some p > 2, which is

our assumption.

Of course we can write the resulting estimate again in terms of the original

functions: With v := |Dαu| + |(−∆)α/2 | we get for all sufficiently small ǫ0 =
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ǫ0(λ, n, α, p) > 0 on all balls B = B(x,R),

(?
B

v2+ǫ0

) 1
2+ǫ0
.

∞∑

k=0

2−k(1−α)

?
2kB

v2 +

(
∞∑

k=1

2−k(1−α)

?
2kB

|F|2

)1/2

+ Rα

(
∞∑

k=0

2−k(1−α)

?
2kB

| f |2∗

)1/2∗

+

(?
2B

|F|p
) 1

p

+ rα
(?

2B

| f |p∗
) 1

p∗
,

(9.14)

where the right-hand side is finite due to our assumptions F ∈ L2 ∩ L
p
loc and f ∈

L2∗ ∩ L
p∗
loc.

The global integrability stated in part (2) of the theorem follows by replacing

Theorem 2.2 with Theorem 5.1 in the proof above. �
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