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Abstract Admission policies for elective inpatient services mainly result in the management of a 
single resource: the operating theatre as it is commonly considered as the most critical and 
expensive resource in a hospital. However, other bottleneck resources may lead to surgery 
cancellations, such as bed capacity and nursing staff in Intensive Care (IC) units and bed 
occupancy in wards or medium care (MC) services. Our incentive is therefore to determine a 
master schedule of a given number of patients that are divided in several homogeneous categories 
in terms of the utilization of each resource: operating theatre, IC beds, IC nursing hours and MC 
beds. The objective is to minimize the weighted deviations of the resource use from their targets 
and probabilistic lengths of stay in each unit (IC and MC) are considered. We use a Mixed Integer 
Program model to determine the best admission policy. The resulting admission policy is a tactical 
plan, as it is based upon the expected number of patients with their expected characteristics. On the 
operational level, this tactical plan must be adapted to account for the actual arriving number of 
patients in each category. We develop several strategies to build an operational schedule that leans 
upon the tactical plan more or less closely. The strategies result from the combination of several 
options to create a feasible operational schedule from the tactical plan: overplanning, flexibility in 
selecting the patient groups to be operated and updating the tactical plan. The strategies were 
tested on real data from a Thoracic Surgery Centre over a 10-year simulation horizon. The 
performance was assessed by the average waiting time for patients, the weighted target deviations 
and some indicators of the plan changes between the tactical plan and the operational schedule. 
Simulation results show that the best strategies include overplanning, a limited flexibility and 
infrequent updates of the tactical plan.  
 

Keywords: operation theatre planning, intensive and medium care resources 
allocation, patient mix, tactical plan, operational schedule, integer linear 
programming. 
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1.  Introduction 
Booked hospital admission strategies for elective inpatient services most often 
rely on the optimization of the operating theatre, as it is commonly considered as 
the most critical and expensive resource. For instance, Hans et al. [1] address the 
robust surgery loading problem which consists in assigning daily surgeries to 
operating rooms while minimizing the risk of overtime as durations of operation 
are uncertain. In addition to the operating room department, other references also 
consider the number of beds as a critical resource. Beliën and Demeulemeester [2] 
design a stochastic model to minimize the beds shortages under capacity 
constraints related to the number or operating rooms and to the allocation of 
specific numbers of blocks to each surgeon. References addressing the bed 
capacity problem in itself generally consider emergency admissions together with 
elective patient admissions. Ridge et al. [3] build a simulation model for bed 
capacity planning in Intensive Care, based on the queuing model logic. Utley et al. 
[4] develop methods to estimate the bed capacity required to minimize the number 
of cancellations of booked elective patients.  
 Other references consider more resources like Guinet and Chaabane [5] who 
design a model for minimizing the hospitalizations costs including the resource 
overloads. The objective is to assign patients to operating rooms so as to minimize 
costs while satisfying the equipment and staffing constraints. Adan and Vissers 
[6] develop a model to generate a planning and mix of patients that minimize the 
deviations between resources consumption and their targets. The number of beds 
in the medium-care unit, the operating theatre capacity as well as the nursing 
hours and the number of beds available in the intensive care unit are all critical 
resources in this model. In the same vein, Vissers, Adan and Dellaert [7] consider 
a similar problem with additional restrictions in planning some combinations of 
patients and availability of resources. In this contribution, lengths of stay both in 
the medium and intensive care units are now assumed to be stochastic. The three 
above-mentioned references focus on planning issue at a tactical level, i.e. the mix 
of patients to be admitted within a medium term horizon (2 to 4 weeks, for 
instance).  
 The present paper pursues the work of Vissers et al. [7] by developing several 
strategies to determine the best scheduling of individual patients on an operational 
level. These strategies lean upon the admission policy on a tactical level that 
results from the application of the model of Vissers et al. [7]. The focus here is on 
the operational level, with the aim of assessing the usefulness of the planning at 
the tactical level to build the scheduling strategies.  
 The tactical plan is based on average arrivals of patients whereas operational 
strategies have to treat actual arrivals that obviously deviate from average. To deal 
with these random deviations some flexibility is necessary that can be created in 
different ways, for instance by regularly recalculating the patient mix, or by 
replacing patients from one group by patients from another group, or by creating 
some safety slack by initially overestimating the number of patients. We will 
again use the setting of the Thorax Centre Rotterdam to compare and to test the 
different operational strategies developed here. 
  
 The remainder of the paper is organized as follows. Section 2 describes the 
case study setting and ends with the research questions to be answered. Section 3 
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provides the mathematical model used to obtain the planning of patients on a 
tactical level. Section 4 explains the strategies implemented to obtain operational 
schedules of patients. The performance criteria used to assess each strategy also 
are described here. Numerical experiments are presented and discussed. Section 5 
draws some conclusions and formulates recommendations for further work.  
 

2.  Case study setting 
The patient flow of the Thorax Centre Rotterdam consists of scheduled patients 
(elective patients from the waiting list) and emergency patients requiring 
immediate surgery. We only take into account elective patients for a classical 
reservation policy is adopted for emergency patients.  
 Patients are usually admitted to the Medium Care unit (MC) one day before 
operation unless they come from another department of the University Hospital. 
After the operation they stay for some days in an Intensive Care unit (IC) and 
after recovery they may stay in the Medium Care unit (MC) for a few days.  
 The current tactical planning in the Thorax Centre has a strong focus on the 
operating theatre (OT) capacity. However, this planning may be improved by also 
taking into account all other critical resources involved. To this purpose, a cyclical 
schedule has been developed on a tactical level based upon average numbers of 
patients for the various groups. The corresponding mathematical model to obtain 
such a tactical schedule will be presented in the next section.  
  

2.1 Patient groups, volumes and demand requirements  

Patients have been grouped in several categories, each of these being relatively 
homogeneous in terms of consumption of OT and IC resources. Table 1 provides 
information on the patient groups considered, the expected duration of the 
operation for each group, the average length of stay at the IC (outliers excluded), 
and the average number of patients per group to be operated within a 4-week 
horizon.  
 

Patient group Example procedures 
OT duration 

(hours) 
IC-stay 
(days) 

Planned # 
patients 

Average # 
patients 

(1) Child simple Closure ventricular septal defect 4 1.1 8 7.36 
(2) Child complex Arterial switch  8 1.1 10 9.36 
(3) Adult, short OT, short IC Coronary bypass (CABG) 4 1.3 67 66.00 
(4) Adult, long OT, short IC Mitral valve plasty 8 1.5 13 12.73 
(5) Adult, short OT, middle IC CBAG with expected medium IC stay 4 1.6 3 2.64 
(6) Adult, long OT, middle IC Heart transplant 8 4.0 2 1.55 
(7) Adult, long OT, long IC Thoraco-abdominal aneurysm, ELVAD 8 7.0 1 0.36 
(8) Adult, very short OT, no IC Cervical mediastinoscopy 2 0.2 7 6.91 

Table 1. Patient groups, operation duration, length of stay and 4-week numbers 
 

2.2 Length of stay  

We use a stochastic length of stay for IC and MC, based on empirical data of 2006 
including a sample of 576 patients. Table 2 provides information on the length of 
stay distribution at the IC for each patient group. For instance, any patient of 
category 8 has 79% chance to stay zero day in IC.  
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   Probability of length of stay IC (days) 
Patient group  0 1 2 3 4 5 6 7 8 9 10 
(1) Child simple  0.07 0.87 0.02 0.02 0.02 0 0 0 0 0 0 
(2) Child complex  0 0.90 0.08 0.02 0 0 0 0 0 0 0 
(3) Adult, short OT, short IC  0.01 0.83 0.11 0.03 0.01 0.01 0 0 0 0 0 
(4) Adult, long OT, short IC  0 0.83 0.10 0.04 0 0.01 0.01 0 0 0 0.01 
(5) Adult, short OT, middle IC  0 0.79 0.07 0.07 0 0 0 0.07 0 0 0 
(6) Adult, long OT, middle IC  0 0 0.14 0.44 0.14 0.14 0 0 0.14 0 0 
(7) Adult, long OT, long IC  0 0 0 0 0 0 0 1 0 0 0 
(8) Adult, very short OT, no IC  0.79 0.21 0 0 0 0 0 0 0 0 0 

Table 2. Length of stay distribution at IC per patient group 
 
Table 3 displays the same information type for the MC.  
 

   Probability of length of stay post-op MC (days) 
Patient group  0 1 2 3 4 5 6 7 8 9 10 >10 
(1) Child simple  0.74 0 0 0 0.02 0.1 0.07 0.05 0.02 0 0 0 
(2) Child complex  0.83 0 0 0 0 0 0.04 0.04 0.02 0.02 0 0.05 
(3) Adult, short OT, short IC  0 0.01 0.01 0.04 0.32 0.24 0.12 0.09 0.05 0.03 0.04 0.05 
(4) Adult, long OT, short IC  0.03 0 0 0.01 0.12 0.16 0.18 0.15 0.10 0.04 0.04 0.17 
(5) Adult, short OT, middle IC  0 0 0 0 0.07 0.07 0.07 0.20 0 0.20 0.20 0.19 
(6) Adult, long OT, middle IC  0 0 0 0 0 0 0 0.14 0 0 0.14 0.72 
(7) Adult, long OT, long IC  0 0 0 0 0 0 0 0 0 0 1 0 
(8) Adult, very short OT, no IC  0.21 0.3 0.08 0.15 0.13 0.05 0 0.05 0 0.03 0 0 

Table 3. Length of stay distribution at MC per patient group 
 

2.3 Available resources  

For each of the resources, there exists a maximum available capacity per day and 
a target utilization level. This data is displayed in Table 4 for each day and each 
resource. Defining a level of utilization lower than 100% allows for dealing with 
emergencies and fluctuations in number of patients. The data apply to every week 
in the 4-week planning cycle. 
 
 OT hours IC beds MC beds IC nursing hours 
 Day Capacity Target Capacity Target Capacity Target Capacity Target 
Monday 36 29 10 7 36 27 133 91 
Tuesday 36 29 10 7 36 27 133 91 
Wednesday 36 29 10 7 36 27 133 91 
Thursday 36 29 10 7 36 27 133 91 
Friday 36 25 10 7 36 27 133 91 
Saturday 0 0 4 2 36 27 52 26 
Sunday 0 0 4 2 36 27 52 26 

Table 4. Available resources 
  
 Four operating theatres are available nine hours per day. From the total of 36 
hours of capacity available per day, 29 hours are allocated to electives while the 
rest is reserved for emergencies. On fridays, the target utilization is lower. The IC 
unit has 10 beds available throughout the working week and 4 beds during the 
weekend. The target utilization level for the IC is set to 7 beds for electives 
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patients throughout the working week and to 2 beds during the weekend. The MC 
has 36 beds available every day and the target utilization by electives is 27 beds 
throughout the whole week. The available IC nursing staff and target utilization of 
the IC nursing workload (in number of hours per day) is matched with the number 
of IC beds. The targets for IC-beds, MC-beds and IC-nursing are defined at a 
lower level compared to the target for OT hours, to deal with fluctuations in the 
number of patients.   
 
 The IC nursing hours (NH) required per day for patients of categories 1 to 7 are 
estimated to 12 hours throughout their stay in the IC unit unless for the second 
day in IC and for categories 5, 6 and 7 for which the needs are 24 hours. For 
category 7 there is also a need of 24 hours on day 3.  Patients from category 8 
only require 3 hours of IC nursing per day whatever their length of stay in IC.  
 
 The importance of each resource has been assessed by the stakeholders in the 
hospital who decided to allocate to each of them a certain absolute weight denoted 
by 

€ 

ar , with 

€ 

r = ot,ic,nh,mc{ } . Relative weights will be employed to evaluate the 
cost of deviating from the target utilization level. The relative weight 

€ 

α r  for 
resource r is defined as 
 

€ 

α r =

ar

Rr, j
j=1

T

∑
ar

Rr, j
j=1

T

∑r= ot,ic,nh,mc{ }
∑

, 

(1) 

Where 

€ 

Rr, j  is the target resource utilization for resource r in period j. These 
values can be read in Table 4. For instance 

€ 

Rot,5 = 25. Table 5 provides the 
absolute and relative weights for each resource.  

 
Resource r Absolute weight 

€ 

ar    Relative weight 

€ 

α r   
OT hours 8 0.167 
IC beds 10 0.756 
MC beds 3 0.047 
IC nursing 5 0.029 

Table 5. Absolute and relative weights per resource 

 

2.4 Research questions 

In the tactical planning we make a reservation of the resources for a fixed number 
of patients from the various groups to be treated during a cycle. However, if the 
average number of arriving patients is equal to the maximum number that can be 
treated, the system may become instable in the end as the variance is obviously 
not zero. For the operational planning we will consider several options to create 
feasibility: overplanning, flexibility in patient groups and periodic updates of the 
tactical plan. Our incentive is to determine which combinations of these strategies 
(overplanning, patient flexibility and updating) lead to the best schedule of 
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electives in terms of waiting times for patients, in terms of deviations between the 
resources consumption and the target utilization and in terms of schedule changes 
for the operating specialists.  

3.  Problem formulation and mathematical model 
for the tactical planning 
In this section we formulate the tactical planning problem as a mixed integer 
linear program. Let N be the number of patient categories and T the length of the 
cyclic operation schedule (N=8 and T=28 in the Thorax Centre problem). On each 
day of the operation schedule we have to decide on the number and mix of 
patients to be operated. Hence, the decision variables are Xc,t denoting the number 
of patients from category c operated on day t of the operation schedule, where c = 
1, 2, …, N and t = 1, 2, …, T. The objective is to determine the variables Xc,t 
satisfying certain constraints and for which the expected utilization of all 
resources matches the target as close as possible. Over-utilizations and under-
utilizations relative to the targets are identically penalized, as decided by the 
Thorax Centre. Hereafter we first formulate the constraints on the decision 
variables Xc,t and then the objective function. 
 
 The total number of patients of group c to be operated over the T-day cycle 
should be equal to the target patient throughput Pc which values are displayed in 
the penultimate column of Table 1 (planned number of patients). Hence  
 

€ 

Xc,t
t=1

T

∑ = Pc , c= 1,...,N.  
(2) 

   
 To describe the constraints for the utilization of the resources we introduce the 
parameters Cr,t and Rr,t indicating the available capacity and target utilization, 
respectively, for resource r on day t, where 

€ 

r = ot,ic,mc,nh{ } . These values are 
given in Table 4. Let the auxiliary variables Ur,t and Or,t denote the under- and 
over-utilization (with respect to the target). Then we get for the utilization of 
operating theatre 
 

€ 

Rot,t −Uot,t ≤ sc
c=1

N

∑ Xc,t ≤ Rot,t +Oot,t , t = 1,...,T , 
(3) 

   
where sc denotes the operation time dedicated to a patient of category c (see Table 
1, third column). To formulate the constraints for the expected utilization of the 
IC unit we introduce the notation pic,c,t denoting the probability that a patient from 
category c is (still) at the IC unit t days after operation, t = 0, 1, 2, …,

€ 

Lic
max where 

€ 

Lic
max is the maximum length of stay recorded in  IC over all categories (the 

probability values are displayed in Table 2 and we have 

€ 

Lic
max = 10). Then the 

expected utilization of the IC unit should satisfy 
 

€ 

Ric,t −Uic,t ≤ pic,c, j
j=0

Lic
max

∑
c=1

N

∑ Xc,t− j ≤ Ric,t +Oic,t , t = 1,...,T . 
(4) 
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 In the above constraints we used the convention that the subscript t-j in Xc,t-j 
should be treated modulo T:  day 0 is the same as day T, day -1 is the same as day 
T-1 and so on. If wc,t denotes the IC nursing load (in hours) required for a patient 
of category c t days after operation, then we get for the expected nursing workload 
 

€ 

Rnh,t −Unh,t ≤ wc,t p ic,c, j
j=0

Lic
max

∑
c=1

N

∑ Xc,t− j ≤ Rnh,t +Onh,t , t = 1,...,T . 
(5) 

   
Similarly, for the expected utilization of the MC unit we get  
 

€ 

Rmc,t −Umc,t ≤ Xc,t+ j
j=1

lc

∑
c=1

N

∑ + pmc,c, j
j=0

Lmc
max

∑
c=1

N

∑ Xc,t− j ≤ Rmc,t +Omc,t , t = 1,...,T , 
(6) 

   
where lc is the number of pre-operative days at the MC for category c and pmc,c,t is  
the probability that a patient from category c is at the MC unit t days after 
operation, t = 0, 1, 2, …, 

€ 

Lmc
max (see Table 3). Further, for each of the resources, the 

available capacity should not be exceeded, so 
 

€ 

Rr,t +Or,t ≤Cr,t , r = ot,ic,nh,mc{ }, t = 1,...,T . (7) 

 
 In addition to the constraints for the utilization of the resources we have to take 
into account restrictions valid for specific days of the operation schedule. If the 
number of operations for certain categories of patients is prescribed and fixed on 
certain days, then the corresponding variables Xc,t are simply upper bounded 
accordingly. If the number of operations for certain combinations of patient 
categories is limited, then we have to require that 
 

  

€ 

Xc,t
c∈S
∑ ≤ Bt , t = 1,…,T , (8) 

 
where S is a subset of the patient categories and Bt  denotes the maximum number 
of patients from the categories Sc∈  that can be operated on day t of the 
operation schedule.  
The objective is to minimize the weighted sum of under- and over-utilization,  
 

€ 

α r
r∈Ω
∑ Ur,t +Or,t( )

t=1

T

∑ , 
(9) 

   
where the relative weight 

€ 

α r  for resource r is defined as in equation (1). Our 
planning problem therefore consists in minimizing the objective function in (9) 
subject to constraints (2) to (8) and the integrality constraint  
 

  

€ 

Xc,t ∈ 0,1,2,…{ } , c= 1,…,N , t = 1,…,T , (10) 

   
 The resultant mixed integer program is implemented in C language and linked 
with ILOG CPLEX 9.0 as a callable optimization library. Solving the 
deterministic version of the model to optimality did not take much computation 
time, but the stochastic model could not be solved to optimality. After 24 hours of 
computation time, there is still a 12 percent optimality gap. 
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4.  The operational schedule 
If the average number of arriving patients is close to the maximum number that 
can be treated, the system will become instable in the end. One solution is to 
create a security slack by reserving capacity for more patients than the average. 
This overplanning strategy consists in increasing the target throughput of patients 
on the basis of which the tactical plan is derived. As an additional measure, we 
can allow the replacement of patients from one group by patients from another 
group to avoid unused capacity in some days. An alternative is to make a new 
tactical plan regularly, either every 3 months or every year, and build the 
operational schedule on the basis of a number of required patients depending 
partly on the expected number of patients and partly on the waiting list of patients. 
These strategies are further described and illustrated in the next section.  
 

4.1 The strategies 

The strategies we will consider to build the operational schedule consist of 
different options for overplanning, patient flexibility and rescheduling. For the 
sake of illustration, let us consider 3 categories of patient (for instance, categories 
3, 4 and 5 of the Thorax Centre problem) over a cycle of 7 days. Table 6 provides 
the optimal tactical plan corresponding to that problem.   
 

   Planned admission over a 7-day cycle   

Patient group  1 2 3 4 5 6 7 
Planned # 
patients 

Average # 
patients 

(3) Adult, short OT, short IC  5 4 0 4 0 0 7 20 19.85 
(4) Adult, long OT, short IC  1 1 2 1 0 0 0 5 4.72 
(5) Adult, short OT, middle IC  0 1 3 0 0 0 0 4 3.64 

Table 6. Example of an optimal tactical plan 
 
Overplanning. We consider two possibilities for the amount of planned patients in 
the tactical plan: 
P1. Plan the minimum amount of patients per group (no overplanning).  
P2. Plan the amount of patients per group in such a way that less than 5 percent of 

the patients have to wait more than one cycle. For determining this amount, 
we calculate the steady state probabilities in a simple queuing model.  

 
In the Thorax Centre problem, option (P1) simply consists in calculating the 
tactical plan on the basis of the initial P-value, with P={8,10,67,13,3,2,1,7} (see 
Table 1, penultimate column). Option (P2) results in the computation of the 
tactical plan using P={9,11,70,15,4,3,2,9}.  

 
Flexibility. For a better operational use of the reserved capacities emanating from 
the tactical plan, we consider three options: 
F1. No flexibility. We follow the tactical plan unless the number of actual arriving 

patients is inferior to the planned number. In the latter case, the operation is 
cancelled. 

F2. Full flexibility. If some patients are planned on a certain day (i.e. the number 
of planned patients in the tactical plan is not zero), we use the reserved 
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capacities to schedule the actual arriving patients with the longest waiting 
times. This means that some planned categories can be cancelled and replaced 
by others with a longest queue.  

F3. Partial flexibility. Amongst the categories that are planned, we replace each 
category with no actual arriving patient with another planned category for 
which there are actual arriving patients. The selected category for replacement 
is the one for which the product of the number of planned patients by the 
number of arrivals is maximum. This avoids the cancellation of some 
operations that would result from a lack of patients. Contrary to the previous 
flexibility option, a category that is not planned in the tactical plan can not be 
scheduled.   

 
 To illustrate the no-flexibility option (F1), let us consider the planned numbers 
of patients on day 3 in the tactical plan of Table 6. These planned numbers are 
{0,2,3} for the 3 categories. An actual arriving number of patients equal to 
{1,0,4} would lead to a stream of scheduled patients: {0,0,3}. The arriving patient 
of the first category is not considered as no patient of that category was planned 
on that day. No patient of the second category is scheduled although we planned 
to operate 2 of these patients, since there is no actual arriving patient of this 
category. Only 3 of the 4 arriving patients are scheduled as 3 patients are planned 
so we follow the tactical plan to avoid exceeding capacities. 
 To illustrate the full flexibility option (F2), let us consider the planned number 
in the tactical plan on day 1: {5,1,0}. While treating each category, the waiting 
time of each group is measured and the category with the highest waiting time is 
selected, leading to a stream of scheduled patients: {2,2,2}. Such a schedule is 
definitely different from the tactical plan that was notably suggesting not to 
operate patients of the third category.  
 Consider again the planned number of patients on the first day: {5,1,0} and 
assume the actual arriving patients are equal to {10,0,1}. Under the partial 
flexibility option (F3), the second category for which there is no actual patient is 
replaced with the first category but could not have been replaced with the third 
group as it is not in the tactical plan. Thus, (F3) leads to a scheduled stream of 
patients: {6,0,0} whereas the no flexibility option would have resulted in the 
schedule: {5,0,0}. The full flexibility option could produce the stream: {4,1,1}.  
 
Updating. To update the tactical plan, we replace part of the expected number of 
patients with the actual number of patients in queue. Updated values of target 
throughputs for each category, 

€ 

Pc
' , are computed according to 

 
 (11) 

   
where 

€ 

λc is the average number of patients (see last column in Table 1) and 

€ 

{Pc
0}c=1..N  is the initial stream of target throughput values (overplanned values 

under option P2 or regular values under option P1). We thus compute a tactical 
plan on the basis of these new target throughput values for patients. We consider 3 
frequencies of updating: 
U1.  Compute a new tactical plan with updated values 

€ 

Pc
'  every 3 cycles 

U2.  Update the numbers and the tactical plan every year  
U3.  Do not update 

€ 

Pc
' = round 11

12
λc +

1
6
round(λc )+

1
3
(Pc

0 − λc )
 

 
 

 

 
 , c= 1,...,N,
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 Combining the two options for the overplanning, the three options for 
flexibility and the 3 updating possibilities leads to 18 different strategies for which 
we will compute several performance criteria.  
 

4.2 Performance criteria 

The performance of an operational schedule will be assessed by the weighted sum 
of deviations as defined in Eq. (9). To compute the consumption of resources 
associated to such a schedule, we will use the actual length of stay of each patient, 
rather than using the expected length of stay we considered in the tactical plan.  
 The average waiting time for the patients will also be used as a performance 
indicator of the operational schedule. Under a FIFO assumption the average 
waiting time over a cycle is defined as the difference between the total number of 
arriving patients and the total number of scheduled patients divided by the number 
of periods in a cycle (cycle length). Note that in a hospital usually an additional 
component of waiting time has to be introduced to account for the period that 
patients have to be notified. This period is usually one week. In our performance 
measure we will not include this period.   
 We consider 4 indicators of the scheduling differences between the operational 
plan and the tactical plan. Recall that 

€ 

Xc,t  designates the number of patients of 
category c in the tactical plan on day t. We let 

€ 

Yc,t  be the equivalent in the 
operational schedule. Indicator C measures the number of cancelled operations of 
any category over a cycle. If 

€ 

Xc,t > 0 and if 

€ 

Yc,t < Xc,t , the number of cancellations 
of patients of category c on day t equals 

€ 

Xc,t −Yc,t .  Indicator C sums up the daily 
cancellations if any, over a cycle. Indicator CS gives the number of cancelled 
categories over a cycle. If 

€ 

Xc,t > 0 and if 

€ 

Yc,t = 0 then CS is increased by 1. 
Conversely, indicator I measures the increase number of patients for a category 
over the planned amount. If 

€ 

Xc,t > 0 and 

€ 

Yc,t > Xc,t  then I is increased by 

€ 

Yc,t − Xc,t . At last, indicator IS provides the number of unplanned categories. If 

€ 

Xc,t = 0 and 

€ 

Yc,t > 0 then IS is increased by 

€ 

Yc,t .  
 A straightforward indicator to measure the differences between two tactical 
plans if we use the updating options is the number of new days in which 
operations are programmed. If, in a previous plan, we had 

€ 

Xc,t = 0 and if we have 

€ 

Xc,t > 0 in the new plan, then the number of plan changes is increased by 1.  
 

4.3 Numerical experiment 

We ran the 18 combinations of strategies over a simulation horizon of 10 years. 
Arrival of patients was simulated through a Poisson process. For each scheduled 
patient, we drew an actual IC stay and MC stay according to the empirical 
distributions that were obtained from the hospital and described in Tables 2 and 3. 
Each tactical plan was obtained by running Cplex and we stopped the 
optimization process after the 7th best integer solution found so as to limit the 
computation time. Simulation results are displayed in Table 7. For each 
combination of strategies, Table 7 provides the associated values of the 
performance indicators as described in the previous subsection. In addition, we 
compute a global indicator of the plan changes which is the weighted sum of the 5 
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indicators of plan changes and the target deviations with the following weights 
{2,10,1,5,4,10} for IS, I, CS, the average number of plan changes and the target 
deviations respectively. The resultant index is called “global volatility” and 
appears in the penultimate column of Table 7.  
 

    Update   Indicators of plan change   
Average 
# plan 

Weighted 
target   Global 

Average 
waiting 

Over-planning  Flex. Freq.  IS I CS C   changes deviation  volatility time 

1. No Overplan. No No  0 0 3.37 2.05  0 53.51  548.72 25.11 

2. No Overplan. No  Year  0 0 4.44 2.34  22.78 54.25  649.76 18.73 

3. No Overplan. No  Quarter  0 0 4.4 2.42  20.58 56.85  667.32 14.28 

4. No Overplan. Partial No  0 6.1 4.01 5.37  0 54.77  639.56 9.66 

5. No Overplan. Partial Year  0 4.19 5.06 2.98  21.22 54.43  691.04 12.43 

6. No Overplan. Partial Quarter  0 4.97 4.31 3.14  19.61 54.63  694.45 11.66 

7. No Overplan. Full No  36.17 10.35 15.63 20.32  0 71.51  1008.17 6 

8. No Overplan. Full Year  36.84 10.25 17.2 19.15  19.78 72.03  1088.55 8.66 

9. No Overplan. Full Quarter   36.42 10.68 17.89 19.24   18.48 69.65   1064.15 8.81 

10. Overplan. No  No  0 0 8.89 5.5  0 59.97  636.09 8.89 

11. Overplan. No  Year  0 0 9.2 3.56  15.89 58.54  675.96 10.65 

12. Overplan. No  Quarter  0 0 8.36 3.45  14.12 57.8  660.09 9.92 

13. Overplan. Partial No  0 16.69 14.12 15.14  0 69.3  949.72 3.71 

14. Overplan. Partial Year  0 13.04 10.96 9.01  16 60.65  856.91 4.96 

15. Overplan. Partial Quarter  0 14.08 12.58 10.66  15.48 66.93  937.9 4.21 

16. Overplan. Full No  25.15 18.56 28.66 18.77  0 74.32  1101.61 2.53 

17. Overplan. Full Year  30.42 16.82 26.1 17.76  13.78 69.94  1098.46 3.02 

18. Overplan. Full Quarter   29.58 16.53 25.45 18.49   11.06 68.49   1071.5 3.02 

Table 7. Performance of the 18 strategies 
 
 From Table 7, it appears that the average waiting time clearly improves with 
more flexibility. Under the full flexibility option, the waiting times are minimum, 
since this option precisely consists in scheduling in priority the categories with the 
highest waiting times. Introducing more flexibility however has a negative impact 
on the weighted target deviations. Without any flexibility the lowest target 
deviations values are obtained, as we stick as closely as possible to the tactical 
plan that seeks to minimize the deviations. An increasing flexibility is obviously 
associated to higher values for the plan changes indicators, as exhibited by the 
numbers in the columns 4-8 of Table 7.  
 Overplanning the number of patients leads to a clear reduction in the average 
waiting times, as the volume of planned patients is increased whereas the same 
number of patients still arrives. On a global basis, overplanning has little influence 
on the target deviations, unless under the partial flexibility option for which 
overplanning is detrimental to the deviations. The indicators of plan changes are 
roughly higher under overplanning, possibly because with more patients there also 
are more possibilities of canceling and adding unplanned patients.  
 The simulation results also shows that, at least in the stationary demand 
situation that we considered, updating the tactical plan does not contribute to a 
better performance and only makes the schedule of the operating specialists more 
uncertain as indicated by the values of the average number of plan changes (see 
the penultimate column in Table 7). 
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 From these results, some dominant strategies appear in bold numbers in Table 
7, with respect to the global volatility and the average waiting time. These 
strategies are plotted according to these 2 dimensions in Figure 1.  
 

 
Figure 1. Weighted target deviation versus average waiting time 
 
 The dominant strategies correspond to a limited flexibility and infrequent 
updating as most of them include no or partial flexibility and no update or a yearly 
one. The overplanning option is included in almost all the dominant strategies. By 
increasing the number of planned patients we can decrease the average waiting 
time in a more efficient way than by calculating a different tactical plan.  
 

5. Conclusions and recommendations 
In many organizations, the capacity planning is based upon standard durations for 
the different process phases: surgery, IC and MC stay. Vissers et al [8] have 
considered such a deterministic approach to determine the optimal patient mix for 
a cardiothoracic surgery department. In this paper we have extended their model, 
by considering the operational planning for the operations theatre and the 
subsequent stay in the IC unit and in the MC unit. Based upon a big sample of 
patients of a Dutch cardiothoracic surgery department, we created an empirical 
distribution for the durations of the IC phase and the MC phase and used this in 
our mixed integer linear programming model, leading to a cyclic master operation 
schedule minimizing weighted deviations between realized and targeted resource 
use.  This master schedule was used at the operational level to assign patients to 
operating slots. In order to make the operational plan feasible we considered 
options like overplanning, patient flexibility and rescheduling the tactical plan 
based upon the waiting list. The simulation results showed that updating the 
tactical plan was not very efficient. It also showed that deviating too much from 
the tactical plan leads to inefficient resource use. This enhances the need of a 
good tactical plan as a basis to build an effective operational schedule. It should 
also be noted that the improvement of the average waiting time for patients by 
implementing flexibility strategies also degrades the weighted target deviation. 
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The trade-off between these 2 dimensions must therefore be considered. Further 
future work is to look at the reservations policies for emergency admissions.  
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