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Random cascades on wavelet dyadic trees
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J. F. Muzy
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Montreal, Canada

We introducea new classof randomfractal functionsusingthe orthogonalwavelet
transform.Thesefunctionsarebuilt recursivelyin the space-scalbalf-planeof the
orthogonalwavelet transform, “cascading” from an arbitrary given large scale
towardssmall scales.To eachrandomfractal function corresponds randomcas-
cadingprocess(referredto asa % -cascade)on the dyadic tree of its orthogonal
waveletcoefficients.We discussthe convergencef thesecascadesandthe regu-
larity of the so-obtainedandomfunctionsby studyingthe supportof their singu-
larity spectra.Then,we showthat very different statisticalquantitiessuchas cor-
relation functions on the wavelet coefficientsor the wavelet-basednultifractal
formalismpartition functionscanbe usedto characterizevery preciselythe under-
lying cascadingprocess.We illustrate all our resultson various numerical ex-
amples.

[. INTRODUCTION

Fractal and multifractal concepts are now widely used to characterize multiscale phenom-
ena that occur in various situations in physics, chemistry, geology and bibtéyhe multifrac-
tal formalism has been originally established to account for the statistical scaling properties of
singular measurés>14-21This formalism lies upon the determination of the so-cafiéd) sin-
gularity spectrurhwhich quantifies the relative contribution of each singularity of the measure:
Let S, be the subset of points where the measure of antbox B,(¢€), centered ax, scales like
w(By(€))~€“ in the limit e—~0", then by definition, f(a)=dimy(S,) is the Hausdorff-
dimension ofS, . Actually, there exists a deep analogy that links the multifractal formalism with
that of statistical thermodynamiéé:2* This analogy provides a natural connection between the
f(a) spectrum and a directly observable spectre(m) defined from the power-law behavior, in
the limit e—07, of the partition functiot® Z,(€) = =;u(B;(€))?~ €™, where the sum is taken
over a partition of the support of the singular measure into boxes ofesiZée variablegy and
7(q) play the same role as the inverse of temperature and the free energy in thermodynamics,
while the Legendre transforii{ @) = miny(qa—7(q)) indicates that, instead of energy and entropy,
we have ¢« and f(a) as the thermodynamical variables conjugate do and 7(q),
respectively?171828 | et us recall that this thermodynamic multifractal formalism has been
worked out in mathematics in the context of dynamical system théof§ However, rigorous
proof of the above connection has been made only on some restricted classes of singular measures,
e.g., invariant measures of some expanding Markov niapsokie-cutter” Cantor setson an
interval or a circlet”?! the invariant measure associated to the dynamical systems for period-
doubling and for critical circle mappings with golden rotation numidt.has been developed
into a powerful technique accessible also to experimentalists. Successful applications have been
reported for multifractal measures which appear beyond the scope of dynamical sy&texhs.
though valid for deterministic multifractals only, this description has been mainly applied for
characterizing stochastic systems. But there is no reaspniori, that all the realizations of the
same stochastic multifractal measure correspond to a urfiguecurve. Each realization has its
own unique distribution of singularities and one crucial issue is to relate these distributions to



some averaged versions computed experimentally. As emphasized in Ref. 27, one can take further
advantage of the analogy with the thermodynamic formalism by using methods created specifi-
cally to study disorder in spin-glass theGRWhen carrying out replica averages of the random
partition function associated with a stochastic measure, one gets multifractal spegtra that
generally depend on the number of memberis the replica average chosélet us note thah

=0 andn=1 correspond, respectively, to commonly used quenched and annealed avyeraging
Then by Legendre transforming(qg,n), some type of averaget{a) spectra are being fourfd.

Some care is thus required when interpreting these average spectra in order to avoid some mis-
understanding of the underlying physics.

Multiplicative cascade models have enjoyed increasing interest in recent years as the para-
digm of multifractal objectd=32"-?The notion of cascade actually refers to a self-similar process
whose properties are defined multiplicatively from coarse to fine scales. In that respect, it occupies
a central place in the statistical theory of turbulefit€. Since Richardson’s famous poéfnthe
turbulent cascade picture has been often invoked to account for the intermittency phenomenon
observed in fully developed turbulent flo¥%* Energy is transferred from large eddies down to
small scalegwhere it is dissipatedhrough a cascade process in which the transfer rate at a given
scale is not spatially homogeneous, as supposed in the theory developed by Kolmogorov in
19413 put undergoes local intermittent fluctuatiorisOver the past 30 years, refined models
including the log-normal model of Kolmogorétand Obukhov** multiplicative hierarchical cas-
cade models like the randopgrmodel, thea-model, thep-model (for a review see Ref. 29the
log-stable modef§~3"and more recently the log-infinitely divisible cascade matfef$ with the
rather popular log-Poisson model advocated by She and LeVétyage grown in the literature as
reasonable models to mimic the energy cascading process in turbulent flows. On a very general
ground, a self-similar cascade is defined by the way the scales are refined and the statistics of the
multiplicative factors at each step of the proc&s¥:3’One can thus distinguish discrete cascades
that involve discrete scale ratios leading to log-periodic corrections to scélisgrete scale
invariancé®), from continuous cascades without preferable scale fagtorgtinuous scale invari-
ance). As far as the fragmentation process is concerned, one can specify whether some conserva-
tion laws are operating or néf;in particular one can discriminate between conservatiie
measure is conserved at each cascade siep nonconservativeonly some fraction of the mea-
sure is transferred at each stemscades. More fundamentally, there are two main classes of
self-similar cascade processes: deterministic cascades that generally correspond to solvable mod-
els and random cascades that are likely to provide more realistic models but for which some
theoretical care is required as far as their multifractal limit and some basic multifractal properties
(including multifractal phase transitionaje concerned As a notable member of the later class,
the independent random cascades, introduced by Mandéttmmimonly called 7#-cascades}**
as a general model of random curdling in fully developed turbulence, have a special status since
they are the main cascade model for which deep mathematical results have been 8bfbined.

However, in physics as well as in other applied sciences, fractals appear not only as singular
measures, but also as singular functibfist® In order to stay in the context of fully developed
turbulence, directly observable quantities are the velocity field or the temperature field rather than
the dissipation field®*” A classical way of analyzing the intermittent character of turbulent
velocity signals consists in calculating the mome8jél) = ( v P)~1¢p of the probability density
function of longitudinal velocity incrementsv,(xX)=v(x+1)—v(x) over inertial separation
| 134748 A5 originally prompted by Frisch and ParfSiby Legendre transforming the scaling
exponents, of the structure functions,, one expects to get the Hausdorff dimensth)
=ming(ph—{,+1) of the subset oR for which the velocity increments behave as~1". In a
more general contexf) (h) will be defined as the spectrum of lder exponents of the signal
under study and thus will have a similar status than fthe)-singularity spectrum for singular
measures. Unfortunately, as pointed out by Mezyl.° there are some fundamental limitations
to the structure function approach which intrinsically fails to fully characterizeDtfig) singu-
larity spectrum. In previous work>*we have shown that there exists a natural way of perform-
ing a multifractal analysis of fractal functions which consists of using the continuous wavelet
transform>>=°’ By using wavelets instead of boxes, like in the classical multifractal formalism,
one can take advantage of the freedom in the choice of these “generalized oscillating boxes” to
get rid of possible smooth behavior that could mask singularities or perturb the estimation of their



strengthh.52°3The other fundamental advantage of using wavelets is that the skeleton defined by
the wavelet transform modulus maxirff&TMM) provides an adaptative space-scale partitioning
from which one can extract tHe(h) singularity spectrum via the scaling exponenfq) of some
partition functions defined on the skeleton. The so-called WTMM méthdtitherefore gives
access to the enti@ (h) spectrum via the usual Legendre transfddith) = miny(qgh—7(q)). We

refer the reader to Refs. 52,58 for rigorous mathematical results. Let us mention that for the same
reasons previously raised for stochastic multifractal measures, the theoretical treatment of random
multifractal functions requires special attention. Let us also note that in a more recem>work,

we have further generalized the WTMM multifractal formalism in order to incorporate in this
statistical descriptioriwhich applies for cusp-like singularities onlyhe possible existence of
oscillating singularities. This new “grand canonical” description allows us to get the singularity
spectrumD (h, 8) which accounts for the statistical contribution of singularities ofddo expo-

nenth and oscillation exponen® (where 8 characterizes the local power-law divergence of the
instantaneous frequency).

Beyond the multifractal description, there is, however, the practical issue of defining in any
concrete way how to build a multifractal function. Schertzer and Lovéjeyggested a simple
power-law filtering(fractional integrationpf singular cascade measure as a mean to stochastically
simulate fields reminiscent of passive scalars in turbulence. In the same spirit, the bounded cas-
cade model of Marshadt al®? consists in acting on the multiplicative weights during the cascade
in physical space. In Ref. 63, the midpoint displacement technique for building fractional Brown-
ian motions was generalized to generate deterministic or random multiaffine functions. The same
goal was achieved in Refs. 52,53 by combining fractional or ordinary integration with signed
measures obtained by recursive cascade like procedures. Several other attempts to simulate “syn-
thetic turbulence” that shares the intermittency properties of turbulent velocity data have partially
succeede*% More recently, the concept of self-similar cascades leading to multifractal mea-
sures has been generalized to the construction of scale-invariant signals using orthonormal wavelet
basis®’~CInstead of redistributing the measure over sub-intervals with multiplicative weights, one
allocates the wavelet coefficients in a multiplicative way on the dyadic grid. This method allows
us to generate multifractal functions from a given deterministic or probabilistic multiplicative
process. The main goal of this paper is to provide some mathematical framework to random
7/ -cascades on wavelet dyadic tr&&s°

The paper is organized as follows. In Secs. Il and Ill, we explain howZtieascades are
built using a wavelet orthogonal basis and we characterize the regularity properties of their cor-
responding random fractal functions by studying the support of their singularity spectrum. This
support is linked to the statistical spectrum obtained with the wavelet based multifractal
formalism® 54 The self-similarity kernéf-%8-"2which, from a statistical point of view, charac-
terizes the self-similarity properties of a cascade pro@esa different way from the multifractal
formalisms)is introduced in Sec. IV. In Sec. V, we compute explicitly the correlation function of
two wavelet coefficients of & -cascadé? It is proved to follow a power-law behavior when
varying the spatial distance of the two coefficients. The statistical spectrum, the self-similarity
kernel as well as the correlation function are shown to be numerically well estimated directly on
the fractal function, using its wavelet decompositi@ontinuous, orthogonal or its associated
extrema representationyith an arbitrary analyzing wavelet. All these results are illustrated on
various computer generated numerical signals.

II. INTRODUCING WAVELET RANDOM CASCADES

A. The periodic wavelet orthogonal decomposition

As mentionned in the introduction,Z -cascad® ~"Cis built recursively on the dyadic grid of
the orthogonal wavelet transfortr,®’ involving only scales that range between a given large
scaleL and the scale (excluded). Thus the corresponding fractal functf¢r) does not involve
scales greater than. We can thus consider, for the sake of simplicity, thé&t) is a periodic
function of periodL. In the following we will choosd.=1. The % -cascade will then be defined
using a periodic orthonormal wavelet ba8isf Lﬁe,([o,l]), i.e., the space of 1-periodic functions
with finite energy.



Such a basis can be constructed using two functigts) and ¢(x) of Lge,([o,l]) (¢ is
referred to as thanalyzing waveletbpy means of translations and dilations #afx)

U =2Pp(2x—k), j=0, O<k<2% (1)

One can prov&~>""*that the so-obtained family of functiodgb(x),{#; «}; «} is an orthonormal
basis ofLﬁe,([O,l]) if ¢ andy satisfy some conditions. Among these conditioféx) should be
localized around 0 and haw, (=1) vanishing moments

lenl/I(X)dXZO, for alln<N,. (2)
0

Thewavelet coefficients,, ,{c; «}; «} Of a functionf(x) are then definemodulo a normalization
factor) as the coefficients of in the orthonormal wavelet basis

1
C¢,=(f,¢>=J0f(x)¢>(x)dx,

. o (©)
Cj k= 21/2<f,(/,j’k>:21/210 f(X) ¢ ((X)dX.

Remark:Let us note that the usual definition of the wavelet coefficients does not involve any
normalization factor>—>’ However, as we will see in Sec. Ill, the normalization factéf has
been introduced so that the Lipschitz exponent can be directly deduced from the power-law
behavior of the coefficientsc; }; k-

Since{#(x),{#; .« is an orthonormal basis, one gets the reconstruction formula

f(x)=Ccyep(X)+ > 2712 X ¢ i k(X). (4)

i=0 o<k<2

On the one hand, let us note that, since all thg have at least one vanishing momeay,
essentially “captures” the mean value 6f This explains why it is often referred to as the
approximation coefficier®®=>’ On the other hand, assuming that the scale 1 “corresponds” to
¥(x), one can easily prove thak (x) is localized arouna=x; , and corresponds to the scalp
with

xjk=2"'k anda;=2"1. (5)

Therefore,c; , essentially captures the details ffx) around the poink;  and at the scale; .
They will be referred to as theetail coefficients®~>’ As displayed in Fig. 1, these coefficients lie
on adyadic gridin the space-scale half-plane.

B. Building a #/-cascade

In this section, we build a random functié(x) by specifying its wavelet coefficien{s; \}; «
andc,. The coefficientc,, is chosen to be an arbitrary random variable and{it)g}; « are
defined recursively in the following waif"°

Coo=1,
Cj,ZkZWJ(I—)l,ij—l,ka (6)
Cj,2k+1:W](rf)l,ijfl,kv
for all j (j=1) andk (0<k<2 ") and where thaV{{ (e=I orr) are independent identically
distributed(i.i.d.) real valued random variables.

Notation 1: Since all the random variables}Ware i.i.d., we will often omit the indexeskj
and (e) and we will use W as the generic name for these variables.
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FIG. 1. Sketch of the construction rule of7Za-cascade. The wavelet coefficiedts \}; « lie on a dyadic grid. At each
scalea;=2"", the grid displays 2coefficients with abscissg =2"'k. The value of the wavelet coefficienf » (resp.

Cj 2k+1) is obtained from the value of the wavelet coefficiept ; , by multiplying it by W,  (resp.W(”, ) as defined
in Eq. (6).

As illustrated in Fig. 1, this recursive rule can be seen as a cascade process going from large
scales(starting at scale 1o smaller scales. It lies on a binary tree whose nodes are the wavelet
coefficients and whose branches basically corresgapdrt from the sign of the coefficiento
the same action of multiplying bw.

In the following, such a recursive rule will be referred to agZacascadeand f(x) will be
referred to as the functiocorrespondingto the 77-cascade. Let us note that bothZa-cascade
and its corresponding function are fully defined by the analyzing wavgléte laws ofc , andW.

Let us note that the so-obtained functib(x) [assuming that the infinite sum in E@)
convergesis self-similarin the sense that the law of a wavelet coefficikajq},k| at the scale 2/t
can be linked to the law of another wavelet coeﬁici¢qt2'k,| at scale 2/2>2711 using a

multiplicative random variable depending only on the ratio of the two scales
lcj, W =ileg, k!X, -,

where=, stands for the equality in law and whexg=|W, ... .W,| (theW,’s are i.i.d real valued
random variables with the same law\&8. Thus, from a statistical point of view, the details of the
function f at a scalea; are the same as the details at a s@leup to a rescaling factor that
depends only o, /a,.

In this section, we just gave a “theoretical” description of/a-cascade. Indeed, we have not
proved that the sum in E¢4) does converge in some sense towards a random funiqggn This
will be the purpose of the next section. Actually, we will not only prove that, for almost all
realizations of the7Z-cascade, Eq4) does converge ilh.ge,([o,l]), but we will also be able to
characterize some regularity properties of the limit function.

Remark: A 77-cascade can be related to th&-cascades previously introduced in Refs.
44-46. An.z;-cascade is defined using the same recursive ruleZgs@scad¢Eq. (6)], but the
¢; «'s no longer correspond to wavelet detail coefficients: At gtepthe recursion, a measurg
on[0,1] is defined byu;[X; « . X; Kt 8;]1=C; « (Vk,0=k<27)), wherex;  anda; are defined as in
Eq.(5). In Ref. 45, the authors proved that, under certain conditionsV), u; converges towards
a nondegenerated measuréwhenj— +«). Thus the main difference betweesf-cascades and
% -cascades is thatz-cascades are fractal measure models whevgasascades are fractal
function models.7-cascades can be used, for instance, for modeling the energy dissipation in a



turbulent flow?®3°33-43yhereas’” ~cascades can be used directly for modeling the velocity signal
of the same flowW/~’° Moreover, as we will see in the next section, the underlying wavelet
structure of a7-cascade makes the proofs for convergence of the cascade and for the character-
ization of the corresponding fractal function much easier thanA6icascades.

Remark:Let us note that Eq6) can be rewritten as

|n|CO’0| = 0,
Injc; ad =In[cj_ 1 d +In[WiD

Inlc; aie 1| =Nl 1 d +IN[WID .

If |W| is log-normal, these equations correspond to what one could datleaautoregressive
process. This process is of order 1 in the sense that the regression involves only one term.
Actually, we are currently working on higher order models. The notion of autoregressive models
lying on a tree(including the orthonormal wavelet dyadic tjdeas been introduced by Basseville

and collaborator§® Let us emphasize that, besides the fact that the processes they study are
autoregressive directly on tleg, and not on their logarithm and that the processes we consider do
not really correspond to autoregressive processes in the sense that they are not asymptotically
stationnary(i.e., {In ¢;}; for a fixedk is not stationary even wheji—+ =), our approach is
significantly different from theirs since we concentrate on the analysis of the fractal fufi¢xipn

itself and not on the properties of the tree-process.

Ill. CONVERGENCE AND REGULARITY OF A 7Z7-CASCADE
A. Convergence

In order to get the convergence of the sum in @qfor a given realization of theZ-cascade,
we need to have upper bounds of the wavelet detail coefficlenig; . Actually, we are going
to study the law of the maximum of the wavelet coefficiefts,}o<k<2i at a given scale 2.
This is the purpose of the following lemma which is proved in Appendix A.

Lemma 1: Let us consider the wavelet coefficig¢ots,{c; «}; «} Of a given7-cascade asso-
ciated to the random variable W [Eq. (6)]. Letjmmax]c; | (mp=1) and Q the subset of the
probability space)

QJ—C’Z{wEQ,mJ—>271“}.
Let us set §=ProgQ;} and
p{'=Prolf|W; ... W|>2"14},
where the Ware i.i.d random variables with the same law as W. Then
qf<2lp;.

Thus in order to get an upper bounddf, we just need an upper bound gf . Sincep;* can be
rewritten in the following wayp;"=Prof{=;_,’ log,|W,|=—j«}, we can easily get an upper bound
by using a large deviation propertgee Appendix B for the proof of the following Lemm?).

Lemma 2: (Same notations as in Lemma 1.) df(logW)<+x then for all
a<— #(logy|WM), for all e>0, there exists 30 such that for all j>J

pja< ej EZJ(F(Q)*]-),

where Ha) is defined as the Legendre transform of the functifag)

F(a)=inf(qa—7(q)), (7
g
and wherer(q) is defined as
7(q)=—log; Z(|W|9)—1, VgeR. (8)



Moreover, R ) is a concave function, such tha{ F #(log,/W))=1 and which is increasing on
] =0, — #(log,]W))] and decreasing oh— £(logy|WM),+o[.
We are now ready to state the convergence proposition. For this purpose, we have to make
two hypothesis on the law di. Basically these hypothesis ensure that small valued/aire
much more probable than large values. This “asymetry” of the distribution functioil efisures
that, for almost all realizations, the wavelet coefficients will “fastly” converge to 0 when the scale
goes to 0 and thus that the sum in E4) will converge.
Proposition 1:(Convergence)Let us consider a give#-cascade associated with the ran-
dom variable W [Eq. (6)]. If the law of W is such that

(H1) 0<— #(log,/W)) and

(H2) 3%>0, F|jp,,<0 [where F is defined in Eq. (7)],

then for almost all realizations of th& -cascade, the sum in Eq. (4) converges ﬁg,(l[,o,l]).
Proof: Let = 5/2. Thus 0< a< — #(log,|W)) and F(«)<0. By combining Lemma 1 and

Lemma 2, one gets théfor e arbitrarily small andj large enough)

qja$ 2] pJa< ej 52“:(0’)

and thus

Ej: qj“<00.

This last inequality can be rewritten &g Prog Q'} <. By using the Borel-Cantelli lemma, one
thus gets

Pro Q" infinitely often}=0,

which is equivalent to say that for almost all realizations of #ecascade, there exisfssuch
thatm;<271¢ for j=J. This implies that

> XY 27 =Y msY 2 %<,

123 o<k<2l i=J j=J

Thus the sum in Eq4) converges irl5.([0,1]). O

B. Regularity

The global regularity of a function is easily characterized by its orthogonal wavelet coeffi-
cients. Indeed, one can prdVehat f(x) is uniformly Lipschitza (for 0<a< N,) if and only if
there exists a constaft such thaf cj,k|<CZ*j”‘ for all j andk.

Let us recall thaf is said to be uniformly Lipschitzz with « €]0,1], if there exists a constant
C such thatff(x)—f(y)| <C|x—y|%. Moreover,f is uniformly Lipschitza e In,n+1], if f™ is
uniformly Lipschitza—n (wheref(" is thenth derivative off).

Remark:Let us note that the ' factor in Eq.(3) has been chosen so that the power-law
behavior of|c; | whenj— +o directly gives the Lipschitz regularity (instead ofa+1/2 if
there were no factor).

Thus, as for proving the convergence, in order to get the Lipschitz regularityasf long as
N, is large enough, one just needs to get upper bounds to the wavelet transform coefficients. All
the work has already been done in the previous section. The following proposition is a direct
application of Lemma 1 and Lemma 2.



Proposition 2:(Maximum global regularity)Let us consider a give#Z-cascade associated
with the random variable W [Eqg. (6)]. Let us suppose that the law of W is such that

(H1) 0<— #(logy/W)) and
(H2) 3 >0, F|[O‘,}[<O [where F is defined in Eq. (7)].
Let us define

amin=sugh< —#(log,|W|),F(h)<0}. (9)

If a<api, (0<a<N,) then, for almost all realizations of th¢’-cascade,f(x) is uniformly
Lipschitza.

Proof: The proof is very similar to the proof of the convergence proposititnoposition 1).
First, let us note thafaccording to that propositiorfH1) and(H2) ensure the convergence of the
cascade. Let us choose< oy, and 0<a<N,. We thus have & a<— #(log,]W) and F(«)
<0. Again, by combining Lemma 1 and Lemma 2 one gets that

S, protQf}<.

By using the Borel-Cantelli lemma, one deduces that f@gbinfinitely often}=0. This means

that for almost all realizations of thé’-cascade, there exislssuch thaim; <2~ leforj=J, ie.,

f is uniformly Lipschitza. O
Remark:Let us note that, in most common cas®éjs such that the left brandf, of F (i.e.,

the branch corresponding #(a) for @ e]—,— #(log,|W)]) is invertible. Thusa,y, just cor-

responds to the value

atmin=F (0). (10)

The localHolder exponerit® h(x,) measures the local regularity of a functibrat a given
point xq. It is defined as the greatest exponéntsuch that there exists a constabtand a
polynomial P(x) such that

|f(x)— P(x)|<C|x—xo|", for x in a neighborhood of,.

One can easily prove théi(x,) is greater than the “maximum global regularity” éf(i.e., the
maximume such thatf is uniformly Lipschitza). Thus, Proposition 2 can alternatively be seen
as a “minimum local regularity” proposition:

Corollary 1: (Minimum local regularity. Under the hypothesis (H1) and (H2) of Proposition
2, for almost all realizations of théZ-cascade, the local Hder exponent of f at any point x is
greater than or equal tay,,, i.e.,

VX, amp<h(x).

All the arguments we used in the Lemmas 1 and 2 for deriving upper bounds to the absolute
value of the wavelet coefficients can easily be inverted to get lower bounds. These new lemmas
will lead to a “maximum local regularity” proposition. We are not going to give the full proof of
this proposition since it is very close to the proof of the minimum local regularity proposition. We
will just give the main steps of the proof.

Proposition 3:(Maximum local regularity. Let us consider a give# -cascade associated to
the random variable WEQg. (6)]. Let us suppose that the law of W is such that

(H1) 0< —#(logy|W) and
(H2) 3%>0,F|[o,,;<0 [where F is defined in Eq. (7)].
Let us define

Qma=INF{h> — Z(log,|W|),F(h)<0}. (11)

Then, for almost all realizations of the”-cascade, the local Hder exponent [x) of f(x) at any
point x [as long as x) <N,] is smaller than or equal tayy, i.€.,



VX, h(X)<N,=h(X)<anax-

Proof: We use the same notations as in Sec. Ill A except that we invert all the inequality
signs. We definen;=minyc; J, the subseQ;* of

QJ—QZ{wEQ,ﬁ’Ij<27l—“},

andq'=ProQ{'} its measure. We also spf=Pro|W; ... Wj|<271?}. Then, using exactly
the same proof as for Lemma 1, one can show that

qr<2/py.

If “(logyW)<+% and a>— #(log,]WM) then a large deviation propeffyleads (as for
Lemma 2)to

Ve, 3J>0, Vj>J, pi<eldF@-D

Then we choose > a,With 0<a<N,. We thus haver> — #(log,|W|) andF(a)<0. By
using the Borel-Cantelli lemma in the same way as we did in Proposition 2, one gets that for
almost all realizations of thé7-cascade, one hefnj>2‘j“.

Moreover, one can prov& ®that if h(x,) (<N,) is the Hdder exponent of a functio at
the pointxg, and if h is such that the wavelet coefficients bierify

|Xj,k_><o|h

h
ci=al+ ————,
19 =37 il =l

(12)
wherea;—0 andx; ,—X, are defined in Eq(5), thenh=h(x,).
Sincec; = Fnj>2*1'“, one gets that>h(xy). Moreover,a can be chosen arbitrarily close to
Amax, thus ama,=h(x). O
Remark:In most common casedy is such that the right brandh, of F is invertible. In that
case, in the same way we had Ef0), one gets

Amax=F; 1(0). (13)

Generally, a good way to characterize the singular behavior of a function is to compute its
singularity spectrum Dh).**=>4It is defined as

D(h)=Dimy({xe R,h(x)=h}), (14)

whereh(x) is the Hdder exponent of the function at the poirntand Dimy(#) stands for the
Hausdorff dimension of a set of point8. Thus one can restate Corollary 1 and Proposition 3 in
terms of the support dD(h):

Corollary 2: (Support of the singularity spectrymJnder the hypothesis (H1) and (H2) of
Proposition 2, for almost all realizations of th&-cascade, the support of the singularity spec-
trum D(h) of f is included in the largest interval on which(&) =0, i.e., the interval ¢min,&maxl
[Egs. (9) and (11)].

Remark:Let us note that the Hder exponents of a given function are fully characterized by
its wavelet coefficientéc; }; « [through Eq(12)]as long as these exponents are smaller Nhan
Thus theD (h) singularity spectrum of the functiof{x) corresponding to & -cascade does not
depend on the analyzing wavelét that is chosen to build the cascade provideg is large
enough. Particularly, as long as satisfiesN ;> aa [Where am,, defined in Eq.(11) depends
only on the law ofW], the cascade will correspond to the same singularity spectrum.

Remark:lt was proved in Ref. 81 that for any function, the left brafxiih) of the singularity
spectrum off is smaller than the left brandh («) of the spectrum obtained with the multifractal
formalism. Since the singularity spectrum obtained with the multifractal formalism leads, for
almost all realizations of a give# -cascade, to the functioR(«) defined by Eq(7), one can
easily prove that for any”-cascade we have



D|(h=a)<F|(a).

Definition 1: From now on, the function(kz) [Eq. (7)] will be referred to as thestatistical
spectrumof the 77-cascade.

Both spectraD (h) andF(«) bring valuable information on th&”-cascade. Th® (h) spec-
trum has been initially introduced for characterizing the singular behavior of deterministic fractal
signals. It was proved®that, for a large class of self-similar functions, théh) spectrum can
be obtained using the wavelet based multifractal formalism. In the case of rantarascades,
we actually get two spectra: the spectrixth) for each realizatioitwhich a priori depends on the
realization)and the statistical spectruf(«) that characterizes the probability that a given sin-
gular behavior appears in a realization of the cascade. Thus, for instance, the maximum value of
F(«) corresponds to the most probable singular behavior in a realizatiowofaascade. On the
other hand, the negative valuesff«) correspond to “rare” events that one should not expect
to observe in almost all realizations. In the next section, we will show that, in the case of
7/ -cascades, the wavelet based multifractal formafisi actually leads to a very reliable nu-
merical estimation of thé=(a) spectrum. Along with thekernel functiorf*%8-"2that we will
introduce in Sec. IV and the correlation functiéhs Sec. V, these statistical quantities allow a
very accurate characterization of the random process.

Before moving on, let us first illustrate our purpose with some numerical simulations of
% -cascades corresponding to different laws\fér

C. Numerical simulations of 7/ *-cascades

As stated in the Introduction, random cascade models have been introduced in the context of
the phenomenological study of fully developed turbulefic@:3°33-#>They were proposed to
mimic, in some sense, the kinetic energy transfer from coarser scales to smaller ones. Log-normal
statistics have been first guessed, 40 years ago, by Kolmotjomed Obukho?* in order to
account for the so-called “intermittency phenomenon” while the “log-Poisson” mtidehs
been recently proposed by She andégue' as a more accurate description of this phenomenon.
Let us illustrate the results discussed above on these two models when extrapolated to multifractal
functions.

1. Log-normal 7/"-cascades

Let us first start withVV being a log-normal random variable dfando? are, respectively, the
mean and the variance of|W| then a straightforward computation leads to
2
A T P
M@=~ 229 29

and

+u/in2)21n 2
(a+ulin2) ‘1

Fla)=- 20?

Thus a log-normal7-cascade is converging Inger([o,l]) if

(H1) u<0 and(H2) @> Vv2In 2.

Moreover, by solving=(0) =0, one getsyi, and amyay

e w20 1s)
“min= " finz In2 “ma Nz In2’

In Fig. 2, we illustrate one realization of a “very irregular’af,,=0.13) log-normal
% -cascade as well as one realization of a “more regular” omg;{=0.3). Ther(q) andF(«)
spectra corresponding to the irregulér-cascade are displayed on the same figure.

10
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FIG. 2. Log-normal’7-cascadesa) Realization of the random function corresponding to a log-norifiatascade using
the “Daubechies 5” compactly supported orthonormal wavelet b&siEhe law of IfW is Gaussian with mean
w=—0.33 In 2 and variance?=0.02 In 2. From Eq(15) one gets thaty,;,=0.13 anda,,=0.53.(b) Realization of the
random function corresponding to a log-normal-cascade using the “Daubechies 5” wavelet with the following param-
eter valuesy.= —0.8 In 2 ando?=0.125 In 2. From Eq(15) one gets thatr,;;=0.3 anda,,,—=1.3. The fact that,, is
greater for the cascade (h) (a,,i;=0.3) than for the cascade {a) (ami,=0.13) explains why the graph iia) appears to
be much more irregular than the graph(b). (c) The 7(q) function [Eqg. (8)] for the 77 -cascade illustrated ifa). The
symbols @) correspond to the data computed using the WTMM mefliad (16)]with an order 2 spline wavelet on 1000
realizations of length 65536 of thé&-cascade. These numerical data are in remarkable agreement with the theoretical
prediction(solid line); this illustrates the fact that the determination of #q)-spectrum can be performed using any
analyzing waveleti.e., not necessarily the one that was used for building the cascdd@he F(«) statistical singularity
spectrum[Eq. (7)] for the 77-cascade illustrated ifa). The numerical spectrun®) was obtained by Legendre trans-
forming the 7(q) data in(c). The theoretical spectruisolid line) provides a remarkable fit of the data.

2. Log-Poisson %/ "-cascades

Let N\ be the mean and the variance of the Poisson variBblé/e consider that the law of
In|W is the same a® In 5+1y. A straightforward computation leads to

AN1-89)—
T(q):%_l,

and

F(a)= @ y | aln2+y 141 A
(@=lnstinzme/ " =xmna) 1 inz
In Fig. 3, one realization of a log-Poissan-cascade is shown together with the correspond-

ing 7(q) andF(«) spectra.

D. Computing the F(a) statistical spectrum using the multifractal formalism approach

Let us imagine that we have a large number of numerical signals which correspond to differ-
ent realizations of the same random functi@r). In order to characterize the self-similar behav-
ior of the underlying cascade process, one could try to computE thé statistical spectrum. In

11
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FIG. 3. Log-Poissor7-cascadeqa) Realization of the random function corresponding to a log-Poigg6nascade using
the “Daubechies 5” compactly supported orthonormal wavelet B4sifie mean of the Poisson variatfeis A =2 and
the law of IfW is the same aB In §+y with §=0.88 andy=—0.11.(b) The 7(q) spectrun{Eq. (8)] for the 77-cascade
illustrated in(a). The data®) computed using the WTMM methdéq. (16)]with an order 2 spline analyzing wavelet on
1000 realizations of length 65535 of th&-cascade, are in perfect agreement with the theoretical predictidid line).
(c) The F(a) statistical singularity spectrufieq. (7)] for the 77-cascade illustrated ifa). The numerical spectrun®()
obtained by Legendre transforming théq) data in(b) is compared to the theoretical spectrgsolid line).

order to do so, one can use twavelet based multifractal formalisapproach’>*which consists

of computing apartition functioné’;j(q) corresponding, at each scaleé’2to the spatial average
of the wavelet coefficients to the powegr

QJ(Q): 2 E |C}r&|q (19
realization (r) g<k<?2I

If the number of realizations is large enough, one can approximate realization averages by prob-
ability averages and get

Zia= X Al =214

O0s<k<2!

9. (17)

Since the law ok , is the same as the law d¥,...W,, one finally gets
Zi(@)=202(Wy ... W% =219

The 7(q) function[and consequently thé(«) spectrum]s obtained by analyzing the power-law

scaling of Z;(q) along the scaleg;=2""

Zi(q) =21 W%)i=a, % I L_gr@ 50, (18)

and

F(a)=inf(ga—7(q)). (19)
q

As long as the number of realizations is large, this approach leads to very precise estimations
of F(«). However, from a practical point of view, we have made a major assumption: We have
assumed that the realizations of the wavelet coefficigrjtg}; « were known. This is clearly not
the case since the only way to recover them from the realizatiorisi®to compute the scalar
products of these realizations with tile ’s; but we do not know what the analyzing waveiet

12



is! What happens if we analyze the functibvith a different analyzing wavelet'? Indeed, one
can show®°’that the new wavelet coeﬁicien{sf,lk)} can be expressed as a linear combination of
the old ones

C}'lk):ka Kypa(i—i" k=K )ej wor, (20)
1)

whereK , ;1 is a function that depends apand ' only. This function basically corresponds to
the scalar product aof; , with z//jl,yk,. Let us note that the functiok is localized in both variables
and, from a numerical point of view, i and * are both well localized in Fourier and direct
spaces, then the sum in E@O) involves only a few terms. Before showing numerical applica-
tions, let us try to understand roughly how this affects the computatidt( aj.

Let us note that thé&(«) spectrum[and this is true also for any statistical quantity that is
based on how the details ®{x) change along scalesg not changed when changing the under-
lying 77-cascade independently on the scale. Indeed, for instance, if one multiplies each wavelet
coefficientc; , [defined recursively in Eq6)] by a random variable; , whose law does not
depend on or k, then the power-law behavior t;(q) does not change along the scales

Zi(q)=21(|cj | N =21 (WD (XD ~af'Y,  a;—0.

Actually, this is exactly what happens if one replaces each coefficjgriby a linear combination
of itself and its “sons” coefficients; 1 5 andc; ;1 g1

Ci k=N1Cj i+ LIPS N IR P ey (21)

Indeed, it is easy to prove that the lawff, is the same as the law &, .. . Wj(A;+ADwO
+XIWM) which can be rewritten as; ( X;  with X; =X 3 +XOWO+ X OWO (which does not
depend ony).

It is somewhat more intricate when one performs a linear combination of the coefficients
along the space axis

Cj,,k:)\lcj,k+)\2Cj,k+l- (22)

One can easily prove that, among thecdefficients at the scale 2, 2' have, with their right
neighbor, the first common ancestor at a scalé. Zhus one can express the new partition
function Z/(q) as

ji—1

Zi(a)= 2 2A(WID AW W WY W), (23)

where thew?) and thew® are i.i.d. random variables with the same lawsLet T, be thelth
term in the latter sum, i.e.,

Ty=2"2( WD 2N WED L WD WD W) ().
Let us note that the last terify _, behaves asZ;(q):

21T 1AW E AN WD 4 M WA |) ~ C(a) 2 4

wi)i=C(a)Z;(a), (24)

whereC(q) does not depend gn Thus one just needs to get an upperbound to all the other terms
i-2
IE 2'2(IWID 2N WY L WD [+ W W2 D),

-2
> Ti=
= =

-2
scl<q>go 2'4(

WD Z(IN W L WEY 3 oW W) (),
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j—2
scz<q>|§O 2'2(|w)9) Z(|w|9)i !,

j—2
<c2<q>|§O 212(|W|%T = C3(q)2) £(|W|9) = C3() Z;(q),

whereC4(q), C,(q) andC3(qg) do not depend of. From this last inequality and from ER4),
one deduces that the new partition functiarj(q) [Eq. (23)] behaves as expected

(@~ Zj@, o+

Thus as for Eq(21), when one performs the linear combination on the wavelet coefficients
corresponding to Eq(22), the partition function displays exactly the same power-law behavior
when the scale goes to 0. Actually, one can easily prove that this result still holds when we
combine the two linear combinatiorig1) and(22).

Proposition 4: Let us consider a giveit -cascade associated to the random variable W [Eq.
(6)]. Let Z;(q) be the associated partition function defined by ) and lethy, A, A and
A in R. If we redefine the wavelet cascade coefficientsin the following way:

_ |
Ci k=N1CjktA2Cj 1t AVCi et N e k1,

then the newly obtained partition functioﬁ"j’(q) behaves as the first one
Zi(@~Zi(a@), jotee
Proof: The proof is straightforward and left to the reader. O

We thus expect the multifractal formalism to lead to a good determination of{lag
statistical spectrum independently of the considered analyzing wavelet. Actually, it is likely to
provide a good estimation of the left branch®fa) (g>0) but not of the right branch which
corresponds to negative valuesgpfindeed, the linear combinatid@0) might lead to null wavelet
coefficients that would induce instabilities in the computation,/AZq(q) [Eqg. (16)] for g<0. In
order to circumvent these instabilities, one should usea@elet Transform Modulus Maxima
(WTMM) method introduced in Refs. 50-54. It basically consists in computing the partition
function only on thelocal modulus maximaf the wavelet transform. Let us recall that the
modulus maximdx;(a)}; of the continuous wavelet transform are defined at each scakthe
position of the local maxima of the absolute value of the wavelet transtofAThese maxima lie
on connected curves calledaxima lines. The set of all the maxima lines existing at saaléll

be denoted#(a). Then, the WTMM method consists in replacing the partition funo@tﬁq) by
a new partition function which is stable for als in R

Zim(q)= > ( sup [Tua(xa))% VqeR,

lie 2@ (xarel;
whereT ,1(b,a) corresponds to the continuous wavelet transfornfi(a) at scalea and position
b using the analyzing wavelet®.

As shown in Figs. 2 and 3, the WTMM method leads to a very good estimation &f(itae
statistical spectrum whatever the law\df and the analyzing wavelet* are.

IV. THE SELF-SIMILARITY KERNEL

The functionf(x) associated to & -cascade is self-similar in the sense that the details of
at large scales are “similar” to its details at smaller scales up to a normalization factor. Let us
look at how this property translates on the laws of the wavelet coefficients? Lbe the prob-
ability distribution function(p.d.f.) of the coefficientslcj'k| (P;j does not depend ok). Let
P{°9(x) be the p.d.f. of lofg;|

14



P9 (x) = e*P;(€”).
If j,>j, then
log[c,|=log|c; |+1log|W; 4|+ ... +log|W,|. (25)
This equation can be rewritten as
P{*9(x)=P{9x G ; (%), (26)

where* denotes the convolution product aBg ; (x)=G * ...* G, whereG(x) is the p.d.f. of
log/W.*1%8="2|n the Fourier space, one gets

Py (p)=Pi1?(p) G112/ (p). @27

In the case of the7 -cascadess(j1,],) =],—]j1 represents the number of steps of the cascade
from the scale 2/1 to the scale 2/2. Of course, one cannot pick up any funct®rit must satisfy
the “transitivity” relation

Sizis™ Sivis T Siz g (28)
and the “reflexivity” relation
j,j=0. (29)

Using any functiors that satisfies both Eqé&8) and(29), relation(27) can be seen asfast order
self-similarity propertythat links the details at a scale 2 to the details at a larger scale 2. The
link is made through theelf-similarity kernel Qlylz(x) whose Fourier transform is of the form

GsU112), In the physical space, the kernel relation becdth@s’283-87
sz(ex)zf Gjlyjz(u)e*“le(eX*“)du. (30)

As we have seen, in the case@f-cascades , the kernel functiﬁ’]lvjz(x) depends only on
i»—j1, i.e., only on the logarithm of the ratio of the two corresponding scalés@nd 2 /2. This
can be seen as a “scale-stationarity” property of the self-similarity kefhiei.the following, a
function that satisfies Eq27) with s(j1,j2)=],—j1 will be referred to as &cale-similarfunc-
tion.

Let us note that, in the case of scale similar functions, the self-similarity kernel is directly
linked to the statistical spectrum obtained by the multifractal formali&ep (19)]. Indeed, the
partition function[Eg. (17)] can be rewritten as

= f e9P{°9(u)du=2P{*9(iq).

Using relation(27) in the scale-similar cadg.e., s(j1,j2) =j2—j1] and relation(18), one gets
Zi(q)=21G"(iq)Py*d(iq)=21G(iq) Zo(q)~2 1"

The self-similarity kernel and the(q) spectrum are thus linked by the relation

7(q)=log, G(igq)—1. (31)

Remark:Let us note that iff (x) corresponds to the Brownian motion, the orthogonal wavelet
coefficients{c; \}; x correspond to i.i.d white noises and thus the kempllyjz(u) defined by Eq.

(30) corresponds to the dirac distributigifu).58°°
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(a)

FIG. 4. Numerical computation of the self-similarity kernel of a log-normaicascade with parameters= —0.37 In 2
and 62=0.026 In 2.G, ,/(p) =|G, »-|€'®22" as computed fom/a’' =5, when using the Haar wavele®(, an order 1

spline wavelet ©) and the complex Morlet wavelel).% (a) |Gaya,| vs p; (b) @, . vsp. The solid lines correspond to
the theoretical predictions given by E@®2).

From a numerical point of view, one can compute the kernel @f‘aascade by computing
the wavelet coeffcientgc; i}; « and the p.d.fP{°? at two different scaleg, andj,.%%%° Then,
from Eq.(27),G;, j,(p) = P{*(p)/P{*)(p), i.e., the self-similarity kernel is obtained by perform-
ing the deconvolution oPJ('Zog) by Pj('log). As pointed out in the remark just below, this deconvo-
lution requires some special care in order to avoid numerical instabfiftfs.

Remark:In order to computeé, one has to perform a deconvolution. The deconvolution is
performed in the Fourier space and thus consists basically in divié&z?ﬁ) by I51('1°9). This

division is unstable in the neighborhood of ttlegh) frequenciesp for which I51('1°9)(p)20. The

smaller the support oP{'?, the slower the decay d?{°® and thus the more stable the decon-
volution. In order to decrease the supportRjf’®, one could compute the p.di{°?™*)of the

logarithm of the values of the modulus maxima of the continuous wavelet transform instead of
computing the p.d.fPJ("’g) of the logarithm of the orthogonal wavelet coefficients. Since, in the
case of deterministic self-similar signals, the self-similarity properties are captured by the modulus
maxima>>**8it is likely that, in the stochastic case, the self-similarity relati@) still holds if
P9 is replacedP{°9("). Actually, from a numerical point of view, one can ch&tK that it
does hold with a very good precision for any scaleand not only for the dyadic scalesg
=271, Since the support d?{°9(M™)is much smaller than the one B£°?, it gives a much more
stable numerical method for performing the deconvolution and thus for computing the kernel
Ga'a! .

Figures 4 and 5 report the results of the numerical computation of the self-similarity kernel of
log-normal 7 -cascades when using different analyzing waveyet&"°For the same reasons as

————————
o)
gL (a) Y&
@
Vo) |
= Y |
o 1//(1)‘
<, | @
g8 |
2
1//((3)) |
Yo 1
73 L L 1 ! ! L L 1 L L L . L L L L L L
-5 5 -5

0 0 5

In(a/a’) In(a/a')

FIG. 5. Numerical computation of the scale dependence of the self-similarity kégggj(p) of the log-normal
7-cascade studied in Fig. 4a) m(a,a’)=a Im(G,x)/dpl,—o Vs Ina/d); (b) o*(a,a’)=—a*(In|Gul)ap?y—o Vs
In(a/a’). The symbols correspond to the following values of the reference atal@® (@), 2° (O), 27 (W), 28 (O), 2°
(x) and 29 (A). The solid lines correspond to the theoretical predictions given by(d).
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the ones we previously mentioned when estimatingite) statistical spectrum, sind@ depends

only on 7(q) [Eq. (31)], its estimation should not depend upon the choicé.ofhis is clearly
verified in the numerical simulations reported in Figs. 4 and 5. Moreover, the data shown in Fig.
4 are in remarkable agreement with the theoretical shape of a log-normal kernel

éa,ar(p):eipm(a,a’)—pZUZ(a,af)/zy (32)
where

m(a,a’)=pu In(a/a’),
o%(a,a’)=—o?In(a/a’). (33)

For values of|p|<7, one does not see in the numerical data any significant departure from the
Gaussian behavior of the kernel modu|@s, .|, as well as from the linear behavior of its phase
q)a,al'

As far as the scale dependence of the self-similarity kernel is concerned, we have plotted in
Fig. 5 m(a,a’)=4d Im(G,a)/dplp=o and o*(a,a’)=—a*(In|G,a|)/dp?p—o as functions of
In(a/a’). One can see that, for different values of the reference scalall the points obtained
when varying the scala fall on a unique straight line which matches perfectly the theoretical
predictiong Eg. (33)]and confirms the scale-similarity of the log-norn#al-cascade under study.

V. CORRELATION FUNCTIONS IN 7Z7-CASCADES

The tree structure of & -cascade induces correlations between different details of the cor-
responding functiorf (x).”*###These correlations can be characterized by computing the corre-
lation between two wavelet coefficients at an arbitrary s@#e2 ! and at a distancedx
=27JAk. Since the wavelet coefficiens; \} at a given scale 2/ are not stationary ik, we will
compute an “averaged version” of the correlation functidn:

Proposition 5: Let us consider a give#r-cascade associated with the random variable W
[Eq. (6)]. Let ay=2""! and Ax; yy=2"'AKk. If we define QAX; sx,a;) as the correlation function

k<2l - Ak
C(AXj ax,a)) = ] kZO Cov(log|c; |, 109|C; i+ axl) (34)

whereCov stands for the covariance. Then
C(AX; p,8))=0?(j—p—2+2P71*h), Vp<j,

whered? is the variance ofog|W.
Proof: By definition one has

k<2i-2P
C(AXj,zp.aj)ZE kzo Cowm(log|c; u[,10g|c; i+ 2]).-

Let us fixk and setk; =k, k,=k+Ak. Let us suppose that the last common ancegiarthe
binary tree of the7-cascadepf ¢;  andc; , is at scale 2°0-k1-¥2 [in the followingd(j,k; k)
will be referred to as the7 -distancebetween the two wavelet coefficiehtdhen, one can write

|G| = 1WAl - I Wai ey e WG iy el - - - 1V,
and
|G, = Wil -+ Wi ey il IWEE s, iyl - - - WGP,

where all thew;, W) andW? are i.i.d. random variables with the same lawVdsThen their
covariance is
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i=d(j,kq ko)
CoMCi iy Cik,)= 2, Comlog|Wi|,log|Wi|)= od(j ks ko),

whereo? is the variance of lIggVl. Then

d=j—-1
C(AX; ,8))=2"10? dZO N; 2»(d)d, (35)

where N; »(d) is the number of wavelet coefficients (0<k<2 —2P) such thatc; , and

Ci w4 op are at a77’-distanced. It is clear thatN; ,0(d)=0 for d=j — p. Moreover, one can easily
N I

show that

Vd<j—p, Njn(d)=2PN;_,(d).

SinceN; 1(d) =29, Eg.(35) becomes

d=j—p-1
C(ij,zp.aj)zz_jﬂz dgo 2PN; o0 4(d)d,
d=j-p-1
=2r"ig2 > 2dq,
d=0
=20 1%2((j—p)2 P i-2 P,
=o?(j—p—2+2P7ITY), O

From this Proposition, one easily deduces the asymptotic behavior of the correlation
function?®

Corollary 3: WhenAx is small @<Ax<1), the correlation functiol€(Ax,a) [Eq. (34)] of
a 77'-cascade behaves as a logarithm function

C(Ax,a)=—o? logy(Ax)+0(AX). (36)

Thus, asymptotically, the correlation function does not depend on theacatem a numeri-
cal point of view, the cascade is constructed from the scal¢ =10} down to a small scale
(corresponding to the sampling rate of the numerical sighal. If, on the contrary, we consider
that the sampling rate is 1, then the signal has a totallsiz&”. Increasing] amounts in building
a signal longer. The last corollary means fAat

C(Ax,a)~ o logy(L/AX), (37)

whena<Ax<L.

Using the same kind of computations, one gets that the “two-scale” correlation function
C(Ax,a,a’) between the coefficients at scaleand the coefficients at scade actually follows
the same law a€(Ax,a) as long asAx is greater than the supremum afanda’ "3

C(Ax,a,a’)~o? logy(L/AX), (38)

when supg,a’) <Ax<L.

All these results are illustrated in Fig. 6 in the case of a log-normatascade. As seen in
Figs. 6(a)and 6(b), the numerical computation of both the “one-scal{’Ax,a) and the “two-
scale” C(Ax,a,a’) correlation functions are in very good agreement with the theoretical predic-
tions given by Eqs(37) and(38).

Remark:By the same kind of arguments as the ones used in Sec. lll, one expect8 Bgsd
(38) to hold even when computing the correlation functions using an analyzing was/elehich
is different from the wavelets used to build theZ-cascade.
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FIG. 6. Numerical computation of the wavelet coefficient correlation functions of a log-no#iahscade with variance
2=0.03.(a) “One-scale” correlation function€(Ax,a) for a=4 (), 16 (@) and 64 (\). (b) “Two-scale” correla-
tion functionsC(Ax,a,a’) fora=a’'=16 (@), a=4,a’=16 () anda=16,a’ =64 (A). The data in(a) and(b) are in
perfect agreement with the theoretical logarithm dependé&ulal lines)given by Eqs.(37) and (38) (L =2048).

VI. CONCLUSION

To summarize, we have presented a first theoretical step towards a rigorous mathematical
treatment of random cascading processes on the dyadic tree of their orthogonal wavelet coeffi-
cients. We have elaborated on the convergence of theseascades and discussed the regularity
of the limiting random functions by studying the support of their singularity spectra. We have
shown mathematically and checked numerically on various computer synthetized signals, that very
different statistical quantities such as the statistical spectrum, the self-similarity kernel and the
correlation functions can be extracted directly from the fractal function using its wavelet decom-
position (orthogonal, continuous or its associated modulus maximith an arbitrary analyzing
wavelet. This mathematical study actually provides algorithms that are readily applicable to ex-
perimental situations. Recent applications of our methodology in the context of fully-developed
turbulencé® "% have revealed the existence ofrenscale invariantlog-normal cascading pro-
cess underlying the turbulent velocity fluctuations. More surprising are the results of a similar
investigation of financial time seri€8.Underlying the fluctuations of the volatilitystandard
deviation) of the price variations, there exists a causal information cascade from large to small
time scales that can be visualized with the wavelet representation. Let us emphasize that the fact
that variations of prices over a one month scale influence in the future the daily price variations,
is likely to be extraordinarily rich in consequences and this, not only for the fundamental under-
standing of the nature of financial markets, but aland maybe more importanfor practical
applications. Indeed, the nature of the correlations across scales that are implied by this causal
cascade has profound implications on the market risk, a problem of utmost concern for all finan-
cial institutions as well as individuals. These preliminary results are very promising as far as
further experimental investigations of multiplicative cascade processes are concerned. There is no
doubt in our minds that similar wavelet-based statistical analysis will lead to significant progress
in fields other than hydrodynamic turbulence and finance.
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APPENDIX A: PROOF OF LEMMA 1

We want to prove the following lemmgBec. Il A)

Lemma 1: Let us consider the wavelet coefficigos,{c; «}; «} Of a given7-cascade asso-
ciated to the random variable W [Eq. (6)]. Let;mmax(c; | (mo=1) and Q' the subset of the
probability space()

Qf={weQ,mj>2_j“}.
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Let us set §=ProgQ;’} and
=Prof{|W; ... W|>271},
where the Ware i.i.d random variables with the same law as When

q'=2/p;".
Proof: By decomposing the binary tree into two binary subtrees, we obtain

q{'=Prob{m;>2"14},
=1-Prodm;<2714},
=1—Prom{";|W|<271%, and m(" |W"|<27Ie},

whereW(") andW(" are i.i.d. random variables with the same lawdsind wherem" ; andm("),
are i.i.d. random variablegndependent fronw() andw) with the same law aEn, 1 Since aII
the involved variables are independent, we get

gf'=1—Prol|Wy|m;_;<2~ jay2,

where W, is a random variablé¢independent fronm;_;) with the same law a¥V. By again
decomposing each subtree into two subtrees, we get

qf'=1—Prob|W;|m{" ,|W|<27 I and|wW,|m(",|W"|<2719}2,

with the same notations as before. This time, since the same vavigbdgppears on both sides of
the “and,” we cannot just split the two terms on each side of the “and” and keep the equality
with gj*. Actually one can easily prove that for any independent random varixles,;, andY,

if Xg andX; have the same law then

ProX,Y=<a and XY=a}=ProfXY=<a}?.
By using this result, one easily gets from the last expressiaqfof
qj'=<1—Prob{| Wy ||W,|m; =271},

whereW, is a random variablgindependent fromm;_, and W,) with the same law a%V. By
decomposing recursively each subtree into two subtrees and by using the fact,thdt one
finally obtains

qf=1—Pro{|W,W, . .. <2142,
Sincep{'=1—Prol|W;W, . .. W|<271}, one gets
qr<1-(1-pH)2.
Moreover, sincep’<1 andj=0, we have (+ pj“)zjél—zj p{" and therefore
q“<21p] . O
APPENDIX B: PROOF OF LEMMA 2

We want to prove the following lemméSec. Il A)
Lemma 2: (Same notations as in Lemma 1) df(logW)<-+« then for all
a<—&(logy|W), for all e>0, there exists 30 such that for all >J

pf‘< ej EZJ(F(Q)*]-)'

where Ha) is defined as the Legendre transform of the functi6aq)
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F(a)=inf(qa—7(q)),
q

and wherer(q) is defined as
7(q) = —log, £(|W|%)—1.

Moreover, R ) is a concave function, such tha{ F #(log,/W))=1 and which is increasing on
] =0, — #(log,]W))] and decreasing oh— £(logy|WM), +o[.
Proof: Sincea< — #(log,|W)# —, one has the following large deviation propeffy:

1
lim supj—ln pi<—0(-a), (B1)

j—oo
where® is the Crametransform of log|W, i.e.,

P (a)=supqa—L(q)),
q

with
L(g)=In #(e?"%Y)=In Z(|W|¥"?).

Equation(B1) is equivalent to
i 1
Ve>0, 3IJ, V>, j—In pj“<—<1)(—a)+e,

which can be rewritten as
pi<elce IP-®, (B2)
SinceL(q)=—(7(q/In2)+1)In 2, we get

—®(—a)=-sug—qa—L(q)),
q
=—-sup—qa+(7(g/In2)+1)In 2),
q

=(inf(qa—7(q))—1)In 2,
q

=(F(a)—1)In2.
By replacing this expression ifB2), we get
pja<ej52j(F(a)*l).

Moreover, the Cranretransform®(«) is a convex function such thab(#(log,]W))=0 and
which is decreasing on«,£(log,/W)] and increasing ofi#(log,/W),+oq. Thus, since~(«)
=1-®(—a)/In2, F(a) is a concave function such th&t — £(log,]W))=1 and which is in-
creasing on },— #(log,/W)] and decreasing op— #(log,|W),+o[. O
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