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Abstract

In this work a new formulation for inflow/outflow boundary conditions in an

incompressible Smoothed Particles Hydrodynamics (ISPH) model is proposed.

It relies on the technique of unified semi-analytical boundary conditions that

was first proposed for wall boundary conditions in 2013, then extended to open

boundaries in the framework of weakly-compressible SPH (WCSPH). An ISPH

model relying on that formulation for solid boundaries was then proposed, which

is the one considered here. It includes a buoyancy model for temperature ef-

fects and a k − ε turbulence closure. There are two main requirements for the

imposition of open boundaries in ISPH: an algorithm to let particles enter and

leave the domain, and the correct imposition of open boundary conditions on

the fields. Regarding the algorithm for particles creation/destruction, it relies

on the variation of mass of the particles located at the open boundaries. When

the mass of such a particle reaches a threshold, a new particle is released. On

the other hand, the imposition of open boundary conditions on the fields is done

by prescribing the value of the boundary terms appearing in the semi-analytical

formulation. The formulation was first validated in 2-D on a cut dam-break, a

case of propagation of a solitary wave and a Creager weir. It was then extended

to 3-D and tested on a 3-D circular pipe. A preliminary application case consist-

ing of two connected pipes at different temperatures was then simulated. The

results are promising since in all cases the fluid enters and leaves the domain as

prescribed and generating none or very few reflected waves.
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1. Introduction

The high computational cost of the Smoothed Particle Hydrodynamics (SPH)

method restrains the range of application in fluid dynamics to rather short scale

problems, so that an efficient formulation for open boundaries is required for

its use on an industrial level. Such a formulation would make it possible to

accurately represent flows in truncated domains and is a first step towards the

coupling of SPH with other numerical methods. However, the prescription of

boundary conditions in SPH is problematic, especially when it comes to open

boundary conditions.

Regarding wall boundary conditions, several methods have been proposed

until now, the most classical ones in the SPH community being i) the imposition

of repulsive forces at the boundary [1, 2], ii) the use of ghost particles across the

boundary [3, 4, 5] and iii) the use of mirror particles across the boundary [6].

Another class of methods is also starting to gain importance, where the SPH

interpolation is renormalised so as to restore its consistency close to bound-

aries [7]. The accuracy of the renormalisation process and the treatment of the

boundary terms are the two key-issues of this technique. They led to several

works [7, 8, 9, 10, 11, 12, 13] which made it possible to accurately represent

flows close to solid boundaries and to prescribe arbitrary Neumann or Dirichlet

boundary conditions. Ferrand et al. [10] obtained good results with a k− ε tur-

bulence model where Neumann boundary conditions could be prescribed exactly

on k and ε for the first time in SPH, the condition on the turbulent dissipation

rate ε being non-homogeneous.

On the other hand, three types of methods have been proposed regarding

open boundary conditions. First, methods where particles are let to enter or

leave the domain through the use of buffer layers (see [14] for example). The

open boundary conditions are then prescribed by setting the physical quantities

of the particles in the buffer zones. The second type of method relies on the semi-

analytical boundary conditions [15]. The open boundaries are discretised like

walls: through a mesh with particles at the vertices. The mass of these particles

is let to evolve so as to inject or remove mass from the computational domain

and the boundary conditions are accurately prescribed through the boundary
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terms of the differential operators, which run over the boundary mesh elements

(segments in 2-D, triangles in 3-D). This kind of method is more complex than

the ones based on buffer layers but makes it possible to accurately prescribe

open boundary conditions on the fields, as was shown in [15]. A third kind of

method was recently proposed in [16], based on the mirror particles technique.

In this work the mirror axis of each particle moves at the open boundary, and

new particles are created behind that axis when it reaches a limit position.

Regardless of the method chosen to discretise open boundaries, with weakly

compressible SPH (WCSPH) the prescription of the fields at inflow or outflow

boundaries should be done based on the theory of Riemann invariants, since a

hyperbolic system of equations is then solved [17, 15]. Otherwise, prescribing

both the pressure and the velocity at an open boundary may result in spurious

waves. This is not the case when it comes to the incompressible SPH method

(ISPH), where a pressure Poisson equation is solved. ISPH was developed as an

alternative to WCSPH in order to improve the pressure estimation [5, 18]. In

this approach the correct prescription of boundary conditions is a key-point for

the accuracy of the scheme. The first ISPH models were based on ghost or mirror

particles for solid walls, which do not make it possible to accurately prescribe

arbitrary boundary conditions on the pressure. With the projection method

employed in these models, a non-homogeneous boundary condition should be

applied on the pressure, which was made possible with the work by Leroy et

al. [12]. Indeed, they proposed an ISPH model based on the semi-analytical

boundaries, with correct pressure wall boundary conditions. The accuracy of the

model was shown to reach that of mesh-based methods, especially on confined

flows. The formulation employed for the free-surface treatment in that work

remains problematic, since it involves the detection of the free-surface particles

and the prescription of their pressure to zero. A new free-surface formulation

was proposed in [19], that does not involve any tracking of the interface anymore,

but it would have to be adapted to the USAW framework. In the present work,

we thus use the same formulation for the free-surface as in [12].

ISPH is nevertheless a promising method for industrial applications, even

regarding confined flows where mesh-based methods find it hard to simulate

flows around moving bodies that come to touch each other for instance. In
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order to apply the method to real cases, a formulation for open boundaries is

necessary.

Few works regarding open boundary conditions for ISPH have been proposed

until now, some based on the buffer layers technique (see [20] for example) and

the one cited earlier ([16]) based on mirror particles.

The present work is thus an extension of the work proposed in [12] to the

treatment of open boundaries in ISPH, based on the semi-analytical boundary

conditions. The ISPH model considered here includes a k− ε turbulence closure

(see also [21, 22]) and a buoyancy model. First, the model will be described

with emphasis on the prescription of the pressure boundary condition at open

boundaries. Then, the results obtained on several 2-D validation cases will be

presented, before showing first results in 3-D.

2. Governing equations and modelling choices

The system of equations to be solved is composed of the incompressible

Reynolds-Averaged Navier-Stokes (RANS) equations coupled to a heat equation

and to the k − ε turbulence closure. The Boussinesq approximation is used to

account for density variations so that the system reads [23]:

∇ · v = 0

dk

dt
= P + G− ε+

1

ρ
∇ · (µk∇k)

dε

dt
=
ε

k
(Cε1P + Cε3G− Cε2ε) +

1

ρ
∇ · (µε∇ε)

dv

dt
= −1

ρ
∇p̃+

1

ρ
∇ · (µE∇u) + g (1− β(T − T0))

dr

dt
= v

dT

dt
= KE∇2T

(1)

In this system, r is the particle position, v is the Lagrangian velocity and

u is the Eulerian velocity. Both velocities are equal in our SPH model except

for boundary particles. When the k− ε turbulence closure is used, the Eulerian

velocity of wall boundary particles is prescribed with a wall function (see [12]).

On the other hand, at open boundaries the particles’ Eulerian velocity is set

as the ingoing/outgoing velocity, as we will see in Section 5.2. For all open

boundaries, the Lagrangian velocity is equal to zero, whereas it is possible to
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represent moving solid walls [12]. t is the time, ρ is the density (which is assumed

constant in the framework of the Boussinesq approximation for weakly buoyant

flows), k is the turbulent kinetic energy field, ε is its dissipation rate, µ is the

dynamic molecular viscosity (which may be a function of the temperature), µT

is the dynamic eddy viscosity, µE = µ+ µT is the effective (i.e. total) dynamic

viscosity. We also define the two variables µk = µ +
µT
σk

and µε = µ +
µT
σε

.

σk, Cε1 , Cε2 and σε are model constants described in Table 1. The kinematic

molecular viscosity is denoted by ν = µ
ρ and the eddy viscosity by νT = µT

ρ . νT

is modelled as a function of k and of ε as usual [24]:

νT = Cµ
k2

ε
(2)

where Cµ is a constant defined in Table 1. Note that the eddy viscosity is

imposed equal to zero at the walls. In case of a laminar flow, νT is set to zero

and the k and ε equations are not solved.

g is the gravity field (of magnitude g = 9.81ms−2), p̃ = p+ 2
3ρk with p the

pressure, β is the coefficient of thermal expansion, T is the temperature field, T0

is the mean temperature. KE = K+KT is the effective thermal diffusivity, with

K the molecular thermal diffusivity and KT = νT
PrT

, PrT being the turbulent

Prandtl number, taken as 0.85 (see e.g. [25]). P is the production of turbulent

kinetic energy and G is a buoyancy production/destruction term. Cε3 is set to 1

if G ≤ 0 and 0 otherwise. P is calculated according to a mixed linear-quadratic

model [26]:

P = min
(√

CµkS, νTS
2
)

(3)

where S =
√

2S : S is the scalar mean rate-of-strain. G is a buoyancy produc-

tion/destruction term modelled through [25]:

G = βKT∇T · g (4)

3. SPH interpolation in the frame of unified semi-analytical wall
boundary conditions

In this section we summarise the unified semi-analytical wall (USAW) bound-

ary conditions used herein. In this work, fluid particles which do not belong to

a boundary are called free particles a ∈ F . Solid and liquid boundaries are
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Figure 1: Sketch of the different sets of entities involved in the representation
of the USAW boundary conditions.

modelled by vertex particles v ∈ V and segments s ∈ S (see Figure 1). The

vertex particles are truncated fluid particles placed at the boundary that are

introduced to compute more accurately the fields and their derivatives close to

the walls. They are specially important when dealing with turbulence, where

the fields values at the wall are required for the imposition of the boundary

conditions. The segments link the vertex particles together, thus composing a

mesh of the solid boundary. They are only used to compute boundary integrals,

similarly to what was done by Feldman and Bonet [8]. In 2-D they are segments

of length δr, whereas in 3-D they are triangles of typical size δr, with δr the

initial interparticle spacing. The set of all fluid particles, including free and

vertex particles, is denoted by P and particles belonging to P = F ∪ V are

denoted by a or b. This discretisation is illustrated on Figure 1.

In this framework, the discrete SPH differential operators are different from

the classical ones [10]. The antisymmetric form of the discrete SPH gradient of

a field A at particle a reads:

(∇A)a ≈ Gγ,+
a {Ab} =

1

γa

∑
b∈P

Vb (Aa +Ab)∇wab−
1

γa

∑
s∈S

(Aa +As)∇γas (5)

where Vb is the volume of particle b defined as Vb = mb

ρ , with mb the mass of the

particles. The density being kept constant in ISPH, we will omit the particle

subscript in its notation. The particles’ mass is also constant, except for vertex

particles located at open boundaries. On the other hand, wab = wh(ra − rb),

with r the position and wh the SPH kernel: in this work the 5th order Wendland

kernel [27]. γa is the wall renormalisation factor mentioned in the introduction,
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defined as in [7] and [10]:

γa =

∫
Ω∩Ωa

w(ra − r′)dnr′ (6)

where Ω is the fluid domain, Ωa is the compact support of the kernel at particle

a and n is the space dimension. Note that γa is equal to 1 far from boundaries,

due to the normalisation property of the kernel. On the other hand, γa is inferior

to 1 when the kernel support intersects the wall, as in Figure 1. γa is computed

through the analytical formula proposed in [12] in 2-D and through a dynamic

governing equation in 3-D, as in [10]. ∇γas is the contribution of segment s to

the gradient of γa, defined as:

∇γas =

∫
∂Ωs∩Ωa

w(ra − r′)nsdn−1r′ (7)

∂Ωs is the boundary area spanned by segment s and ns is the inward unit

normal to the wall on s (see Figure 1). The following property holds [10]:

∇γa =
∑
s∈S

∇γas (8)

The terms ∇γas are computed through an analytical formula in 2D [10] and in

3D [13, 28].

It is also possible to define a discrete symmetric gradient:

(∇A)a ≈ Gγ,−
a {Ab} = − 1

γa

∑
b∈P

VbAab∇wab +
1

γa

∑
s∈S

Aas∇γas (9)

where Aab = Aa − Ab and Aas = Aa − As. In case the discrete gradient of a

vector field is calculated, the formulae (5) and (9) remain unchanged except that

Aab∇wab and Aas∇γas are replaced byAab⊗∇wab andAab⊗∇γas respectively.

In ISPH, it is important to use skew-adjoint gradient and divergence operators

since the projection method is based on this property at the continuous level

[29]. In this work we use an antisymmetric SPH gradient and a symmetric SPH

divergence operator. Their skew-adjointness properties are reviewed in [9, 11].

The symmetric form of the SPH divergence operator reads:

(∇ ·A)a ≈ Dγ
a{Ab} = − 1

γa

∑
b∈P

VbAab ·∇wab +
1

γa

∑
s∈S

Aas ·∇γas (10)

Finally, the discrete Laplacian operator proposed by Ferrand et al. [10]
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reads:

[∇ · (B∇A)]a ≈ Lγa{Bb, Ab} =
2

γa

∑
b∈P

VbBab
Aab
r2
ab

rab ·∇wab

− 1

γa

∑
s∈S

[Bs (∇A)s +Ba (∇A)a] ·∇γas

(11)

where B is a diffusion coefficient for the field A, Bab is a mean value between a

and b (here the arithmetic mean) rab = ra − rb and rab = |rab|. In case A is a

vector, the Laplacian will be denoted by Lγa{Bb,Ab}. In case B = 1, it will be

denoted by Lγa{Ab}. The boundary term of the Laplacian operator is simplified

so that the SPH Laplacian operator used here reads:

[∇ · (B∇A)]a ≈ Lγa{Bb, Ab} =
1

γa

∑
b∈P

Vb(Ba +Bb)
Aab
r2
ab

rab ·∇wab

− 2

γa

∑
s∈S

Bs (∇A)s ·∇γas

(12)

4. Incompressible SPH with the unified semi-analytical boundary
conditions

In the ISPH model considered here the Chorin projection method [30] is used

to solve the Navier-Stokes equations, as in [5, 12]. The space-time discretisation

of system (1) thus reads, ∀a ∈ F , ∀b ∈ P ∪ S:

kn+1
a − kna
δt

= Pna + Ga − εna
kn+1
a

kna
+

1

ρ
Lγa {µk,b, knb }

εn+1
a − εna
δt

=
εna
kna

(
Cε1Pna + Cε3Ga − Cε2εn+1

a

)
+

1

ρ
Lγa {µε,b, εnb }

ṽn+1
a − vna
δt

= Lγa{νn+1
T,b ,u

n
b } − [β(Tna − T0)− 1] g

Lγa{pn+1
b } =

ρ

δt
Dγ
a{ṽn+1

b }

vn+1
a − ṽn+1

a

δt
= −1

ρ
Gγ,+
a {pn+1

b }

Tn+1
a − Tna

δt
= Lγa{Kn+1

T,b , T
n
b }

rn+1
a = rna + δtvn+1

a

(13)

where ṽn+1
a is a predicted velocity field. A particle shift is also used for stabili-

sation reasons. It consists in an additional particle motion based on a Fickian

diffusion law, adapted to the USAW boundary conditions. For a more detailed

description of this particle shift see [18, 31, 12].
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The time-step size δt must satisfy several conditions to ensure the stability

of the scheme (see [32]). Here an empirical criterion on the time step size is

used, as in [12].

The wall boundary conditions on the pressure are obtained by projecting the

third line of (13) onto the normal to the wall, and prescribing the wall boundary

condition on the velocity: vn+1 ·n = 0. For all the segments s belonging to wall

boundaries, this yields:(
∂p

∂n

)n+1

s

=
ρ

δt
ṽn+1
s · ns =

(
ρg + µ∇2uns

)
· ns (14)

As in [5, 31, 12], the free-surface particles are detected through a criterion on

the value of the position divergence and a zero pressure is prescribed at free-

surface particles. This ISPH model with USAW boundary conditions for walls

was widely verified in [12, 33].

5. Open boundaries for ISPH with the semi-analytical boundary con-
ditions

There are two main requirements for the imposition of open boundaries in

an ISPH model: an algorithm to let particles enter and leave the domain, and

the correct imposition of open boundary conditions on the fields, in particular

on the pressure.

5.1. Particles creation/destruction

Regarding the algorithm for particles creation/destruction, the technique

proposed by Kassiotis et al. in [15] is used. The idea is to let the masses of

the inlet/outlet vertex particles v ∈ Vi/o evolve over time as a function of the

desired ingoing/outgoing mass flux through the inlet/outlet segments s ∈ Si/o
directly connected to v. The vertex particles are then used to create/delete

fluid particles. The mass evolution should not introduce any perturbations in

the flow, so care must be taken that its evolution is smooth. The time-derivative

of the mass, denoted by ṁn
v , is determined by the Eulerian velocity us imposed

at the open boundaries:

∀v ∈ Vi/o, ṁn
v =

1

Nsv

∑
s∈Nsv

ρSs(us − vs) · ns (15)
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v

(a) (b) (c) (d)

Figure 2: Sketch of the process of particles creation with vertices v and segments
s at an inflow boundary [15]: a) the vertex masses grow due to the ingoing flux;
b) their mass has reached the maximum threshold; c) new free particles are
released and the vertex masses become negative (dashed line); d) the vertex
masses start growing again.

with Nsv the set of segments s directly connected to v, Nsv its size, Ss the

surface of segment s (or length in 2-D). At inflow boundaries, the mass flux (15)

is positive and the mass of each vertex v increases until it reaches a higher

threshold set to +0.5mref , with mref the mass of a free particle. Then, a free

particle is created at the same location while mref is subtracted to mv, so that

mv goes down to −0.5mref . Figure 2 illustrates that process. In this way the

mass variation is smooth with respect to space and time. At outflow boundaries,

the mass flux is negative and when a free particle crosses a segment to get out

of the domain it is deleted and its mass is distributed onto the vertices directly

linked to the segment, a weight βa,v being associated to each of these vertices.

The weights are computed as in [15]:

• in 2-D, for v0 and v1 connected to s:

βa,v0 =
p1 · rv0v1
|rv0v1 |2

βa,v1 =
p0 · rv1v0
|rv0v1 |2

= 1− βav0
(16)

• in 3-D, for v0, v1 and v2 connected to s:

βa,v0 =
1
2 [p2 × rv2v1 ] · ns

1
2 [rv0v1 × rv0v2 ] · ns

βa,v1 =
1
2 [p0 × rv0v2 ] · ns

1
2 [rv0v1 × rv0v2 ] · ns

βa,v2 =
1
2 [p1 × rv1v0 ] · ns

1
2 [rv0v1 × rv0v2 ] · ns

(17)

An illustration of the notations and of the fraction of segment area βa,v at-

tributed to a vertex is provided on Figure 3. pi is the projection of ravi on s:
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(a) (b)

Figure 3: Open boundary technique based on the USAW boundary conditions:
sketch of the notations for the computation of the fraction of segment area
βa,v attributed to a vertex at the outlet [15]. (a) 2-D case; (b) 3-D case. The
coefficient associated to the vertex v0 is proportional to the red area so that the
largest amount of mass goes to the closest vertex particle.

pi = ravi − (ravi · ns)ns (vi being one of the vertices linked to s). In this way,

the authors of [15] took care that the largest amount of mass is attributed to

the closest vertex particle to the point where a fluid particle is destroyed. This

aimed at making the mass displacement as small as possible.

The following mass evolution equation is thus solved at the end of each

time-step ∀v ∈ Vi/o:

mn+1
v = mn

v + δtṁn
v + δmn

v (18)

with δmn
v the mass variation due to particle creation/destruction and ṁn

v the

mass flux corresponding to the imposed velocity at the open boundary.

5.2. Imposition of the inflow/outflow boundary conditions

We consider two options for the prescription of inflow/outflow boundary

conditions: either the velocity or the pressure is set. Generally, boundaries

where the velocity is imposed are inflow boundaries whereas boundaries where

the pressure is imposed are outflow boundaries, but this is not exhaustive. In-

deed, the algorithm makes it possible for particles to leave the domain through

a boundary with prescribed velocity, or to enter the domain through a bound-

ary with prescribed pressure. In other words, inlet and outlet conditions can

be handled by any open boundary at the same time. This is necessary in case

of a prescribed recirculation close to an inlet. Then, at boundaries where the
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velocity is prescribed a Dirichlet condition is also set on the temperature, and a

homogeneous Neumann condition is set on the pressure. On the other hand, at

boundaries where the pressure is prescribed a homogeneous Neumann condition

is set on the velocity and temperature fields. Here the open boundary conditions

on k and ε are not detailed: they are the same as for the temperature.

The imposition of these open boundary conditions is done in a similar way

as for wall boundaries in [12, 33]: Dirichlet conditions are imposed at the vertex

particles whereas the Neumann conditions are imposed through the segments by

setting the boundary terms of the Laplacian operators. Compatible conditions

are then deduced and imposed on the complementary entities (i.e. segments in

case of a Dirichlet condition, vertex in case of a Neumann condition).

5.3. Boundaries with prescribed velocity

The Dirichlet condition on the Eulerian velocity u is imposed at the vertex

particles in the correction step of the projection method (fifth line of (13)). The

velocity gradient at the segments is then deduced through a linear interpolation

involving the particles close to the boundary. The Dirichlet condition on T is

imposed at the vertex particles and the normal temperature gradient is com-

puted through a linear interpolation between the segments and the surrounding

free particles. The homogeneous Neumann condition on the pressure is imposed

through the pressure Laplacian in the pressure Poisson equation (fourth line

of (13)). Moreover, the pressure of vertex particles belonging to an inlet is ex-

trapolated from the surrounding fluid particles so that a homogeneous Neumann

condition is imposed. This ensures that the pressure at the open boundary is

compatible with the imposed velocity. Thus, the boundary conditions imposed

during the time-scheme when the velocity is prescribed read:
un+1
v = upvv

Tn+1
v = T pvv(
∂p

∂n

)n+1

s

= 0

(19)
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The compatible conditions on the complementary entities read:

(
∂u

∂n

)n+1

s

=
uas
δras

· ns(
∂T

∂n

)n+1

s

= 0

pn+1
v = ppvv =

1

αv

∑
b∈F

Vbp
n
bwvb

(20)

where the superscript pv denotes the value of a field at an open boundary with

prescribed velocity. In addition, δras is defined by

δras = max(ras · ns, δr) (21)

and αv is the Shepard filter:

αv =
∑
b∈P

Vbwvb (22)

The values of the fields at the segments of the boundary are then deduced

from a mean of the directly linked vertex particles. The Neumann conditions in

equations (19) and (20) are imposed in the boundary terms of the SPH Laplacian

of T , p and u (second term in the right-hand side of (12)).

5.4. Boundaries with prescribed pressure

The Dirichlet condition on the pressure is imposed at the vertex particles. It

can be either a fixed pressure value (like the hydrostatic pressure) or a radiative

condition such as the one proposed by Orlanski [34], so as to let waves leave the

domain: (
∂p

∂t
+ C

∂p

∂n

)
∂Ωo

= 0 (23)

with C a celerity usually taken as
√
gd, d being the initial elevation of the

free-surface above the bed at the outlet which is given by the user. Then, the

pressure condition reads:
ppps = pns −

Cδt

αs

∑
b∈F

Vb
pnb − pns
δrsb

wsb

pppv =
1

Nsv

∑
s∈Nsv

ppps

(24)

where the superscript pp denotes the value of a field at an open boundary with

prescribed pressure. The compatible Neumann condition imposed on the pres-

sure is obtained through a linear interpolation of the surrounding free particles
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pressure. On the other hand, the homogeneous Neumann condition on T and

u is imposed at the segments in the boundary term of the Laplacian operator

(12). A compatible Dirichlet condition is deduced through an interpolation on

the surrounding free particles. Thus, the boundary conditions imposed during

the time-scheme when the pressure is prescribed read:

(
∂u

∂n

)n+1

s

= 0(
∂T

∂n

)n+1

s

= 0

pn+1
v = pppv

(25)

and for the complementary entities the compatible conditions read:

un+1
v =

1

αv

∑
b∈F

Vbu
n+1
b wvb

Tn+1
v =

1

αv

∑
b∈F

VbT
n+1
b wvb(

∂p

∂n

)n+1

s

=
pn+1
a − ppps
δras

(26)

6. Solving the pressure Poisson equation

In the framework of the USAW boundary conditions, the pressure Poisson

equation (second line of (13)) reads:
2

γa

∑
b∈P

Vb
pn+1
ab

r2
ab

rab ·∇wab

− 2

γa

∑
s∈S

∇pn+1
s ·∇γas

 =
ρ

δt
Dγ,−
a {ṽn+1

b } (27)

where the unknowns are the set of pressures pn+1 (recall that pab = pa − pb).

Taking the boundary conditions described in sections 4 and 5 into account (equa-

tion (14) and 3rd lines of (19) and (26)) and keeping in the left-hand side only

14



the terms involving the unknown pressures, this equation becomes:

2

γa


∑
b∈P

Vb
pn+1
ab

r2
ab

rab ·∇wab

−
∑
s∈Spp

pn+1
a

δras
|∇γas|

 =
ρ

δt
Dγ,−
a {ṽn+1

b }

+
2ρ

γa

∑
s∈S\Si/o

(
ṽn+1
s − vwalls

δt

)
·∇γas

− 2

γa

∑
s∈Spp

ppps
δras
|∇γas|

(28)

where Spp is the set of open boundary segments with prescribed pressure. The

lines of the matrix corresponding to inlet/outlet vertex particles are removed.

Besides, the product of the columns corresponding to these particles with the

unknown pressure vector is known (either through a Dirichlet condition or an

approximation of a Neumann condition) and passed to the right-hand side.

In the end the system to be solved does not involve the inlet/outlet particles

anymore and they appear in the right-hand side:

2

γa



∑
b∈P\Vi/o

Vb
pn+1
ab

r2
ab

rab ·∇wab

+
∑
b∈Vi/o

Vb
pn+1
a

r2
ab

rab ·∇wab

−
∑
s∈Spp

pn+1
a

δras
|∇γas|


=

ρ

δt
Dγ,−
a {ṽn+1

b }

+
2ρ

γa

∑
s∈S\Si/o

(
ṽn+1
s − vwalls

δt

)
·∇γas

− 2

γa

∑
s∈Spp

ppps
δras
|∇γas|

+
2

γa

∑
b∈Vi/o

Vb
p
i/o
b

r2
ab

rab ·∇wab

(29)

where pi/ob denotes either ppvb or pppb . This equation corresponds to a linear

system:

Ap = B (30)

where p is the unknown vector of all particles pressures pa, B is the vector of

right-hand side values at all particles and A is a sparse matrix corresponding

to the discrete Laplacian operator. The Laplacian matrix is non-symmetric
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because of the γa factor, of the term involving outlet segments and because Vb

is not constant with the USAW boundary conditions: the volumes of the vertex

particles are lower than that of the free particles. To solve system (30), the

Bi-CGSTAB linear solver [35] is used.

7. 2-D validation

7.1. Schematic dam-break with an outflow condition

This case consists of a schematic dam-break on a flat bottom, which was

cut so as to test the outlet formulation, and check that the fluid leaves the

domain without reflections. The outlet boundary is the left-wall (at all times)

in Figure 4, where the pressure is prescribed according to the Bernoulli equation:

ppp = − 1
2ρv

pp2. All the lengths are made dimensionless by the height of the fluid

column at the initial time, d. The dimensionless width of the domain is equal to

1. The initial dimensionless interparticular space was taken equal to 6× 10−3.

The viscosity of the fluid was set to a relatively large value, 10−2m2s−1, because

the ISPH model used here still suffers from particle leaks for free-surface flows

with low viscosity (see [12]).

The dimensionless time is defined by:

t+ =
t√
gd

(31)

Figure 4 shows the velocity field shape at several dimensionless times. On the

left boundary, some particles adhere to the wall due to the relatively high value

of viscosity used for this case. The fluid correctly leaves the domain without

visible reflections at the outlet. The free-surface shape of the same non-cut

dam-break simulated with ISPH-USAW is provided and appears in black in the

Figure. The agreement is good between the two simulations, which shows that

the proposed formulation is reliable.

7.2. 2-D solitary wave

A case of propagation of a solitary wave on a slope is presented here, where

the wave breaks before leaving the domain. It was chosen in order to quali-

tatively check that the proposed open boundary formulation makes it possible

to generate waves and let them leave the computational domain without intro-

ducing too much perturbations in the flow. Figure 5 shows the geometry of
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(m/s)|v|

Figure 4: Dam-break with an outflow condition: velocity field shape obtained
with the present ISPH-USAW model. Comparison with the free-surface shape
of a non-cut dam-break (black dots).
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Figure 5: Sketch of the geometry of the case of propagation of a solitary wave
on a slope.

the case. The incoming free-surface elevation is prescribed as a solitary wave

(solution to the Korteveg-De Vries equation) [36]:

η(x, t) = Asech2[k(x− Ct− x0)] (32)

where η is the free-surface elevation compared to a reference water level d, A

is the wave amplitude, taken as A = d
2 , k =

√
3A
4d3 is the wave number and

C =
√
g(A+ d) is the wave celerity. x0 is the initial position of the wave,

equal to x0 = xinlet − 4
k here. At the inlet (left boundary in Figure 5), the

time-dependent water height dt is used to impose the following velocity profile:

dt(t) = d+ η(xinlet, t)

ux(z, t) = C
η(xinlet, t)

d(t)

uz(z, t) =
z

dt(t)

∂η

∂t
(xinlet, t)

(33)

with xinlet the horizontal coordinate of the inlet. At the outlet (right boundary

in Figure 5), the pressure is imposed through the Orlanski radiative boundary

condition (24) with a celerity of
√
gd.

Figure 6 shows the propagation of the solitary wave on the slope with a

dynamic molecular viscosity of 10−6m2s−1 (no turbulence model was used in

the simulation). The dimensionless time t+ is defined as in the previous section,

through (31). The colours correspond to the pressure field obtained with ISPH-

USAW. This simulation was run with 30315 particles (δr = 0.01m). The wave

correctly enters the domain and leaves it after breaking, apparently without re-

flections, although there was no attempt at quantifying the amount of reflection

in the domain.

This shows that the proposed open boundary formulation makes it possible
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Figure 6: Propagation of a solitary wave on a slope with ν = 10−6m2s−1:
pressure field obtained with ISPH-USAW ranging from 0Pa to 5837Pa (blue to
red).

to generate waves and let them leave the computational domain quite smoothly,

even when the free-surface shape is complex due to wave breaking.

7.3. Creager Weir

A Creager weir is a spillway with a geometry such that for a given upstream

head (called the dimensioning head Hd), the pressure on the weir is equal to

the atmospheric pressure. The weir has a width L, which will not be considered

here, as we are in a 2D simulation. The geometry is described on Figure 7.

The upstream face, between points M1 and M2, is defined by three arcs of

circles having centres with coordinates xi and zi and radii Ri. Their values and

the arc boundaries are given in [37]. The downstream face is given by:

z

Hd
= −1

2

(
x

Hd

)1.85

(34)

The hydraulic head is defined with:

H =
1

2g
U2 + d+

Patm
ρg

(35)

where U is the velocity, d the water depth and Patm the atmospheric pressure.
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Figure 7: Creager weir geometry, from [37] after US Army Corps of Engineers
(1990). Overall view (a), vertical profile in the indented area (b) and zooming
in on the area surrounded by a dashed line (c).

Dimensional analysis gives the flow rate per meter q as a function of g, H,

a function Cq
(
H
Hd
, HHp

)
and Hp the weir height, see Figure 7:

q =
√

2gH3Cq

(
H

Hd
,
H

Hp

)
(36)

The function Cq is also called the discharged coefficient, it is determined by

experiments [38]:

Cq = Cp

(
H

Hd

)0.12

(37)

From experiments Cp can be set as Cp ≈ 0.485. Here, the value of the di-

mensional head is chosen as Hd = 0.3m, and a weir height Hp = 0.4m. We

choose to simulate two steady cases of imposed upstream head: H/Hd = 0.5

and H/Hd = 1.33. With the relations (36) and (37) and knowing that q = hU ,

the water depth d and the bulk velocity U at inlet can be deduced. The in-

let condition is imposed at a distance 4Hp before the weir. At the beginning

of the simulation, the fluid is at rest and the pressure is set as hydrostatic:

p(z) = ρg(d − z) (z is the vertical elevation above the bed). For this case the

k−ε turbulence closure was used. At the inlet, a logarithmic horizontal velocity

profile is imposed, with the corresponding k and ε profiles [24]:

u(z) = u∗

(
1

κ
ln
zu∗
ν

+ Cr

)
k(z) =

u∗
2√
Cµ

(
1− z

d

)
ε(z) =

u∗
3

κz

(
1− z

d

)
(38)
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Figure 8: Creager weir case. Velocity field for a flow on a Creager weir for
H/Hd = 0.5 (top) and H/Hd = 1.33 (bottom) with ISPH-USAW (flow from
left to right).

Here, u∗ is the shear velocity upstream of the weir, ν = 10−6m2/s the kinematic

viscosity of water, ρ = 1000kg/m3 the reference density and Cr = 5.2 is a

constant. The mean (depth-averaged) velocity U is given by:

U = u∗

[
1

κ

(
ln
u∗d

ν
− 1

)
+ Cr

]
(39)

Knowing U and d, the shear velocity is iteratively computed. The imposed

water depth, mean velocity and shear velocity are summarised in Table 2. At

the outlet, we want to let the flow go out. To be correct, a hydrostatic pressure

should be imposed. However, as the water depth is not known in advance, the

pressure is imposed at zero.

Figure 8 shows the velocity field obtained at steady-state for the two config-

urations with ISPH-USAW, using δr = 0.0125Hp. The free-surface position and

pressure along the weir obtained with ISPH-USAW are compared to experimen-

tal results [39] for each configuration. The results are shown in Figure 9. The

free-surface position obtained with ISPH-USAW shows quite good agreement

with the experiment data, and the pressure along the weir shows reasonable

agreement. The results obtained for the configuration with the lower head up-

stream match the experiments better than with the higher head. With the

higher head, a pressure peak is observed in front of the weir in the numerical

results. This is probably due to an issue with the convergence of the pressure
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Figure 9: Creager weir case. Free surface (left) and pressure (right) on weir for
H/Hd = 0.5 (red) and H/Hd = 1.33 (blue). Both are mean values over 3s once
the flow has reached a steady state. The dimensionless pressure is p+ = p/ρgd.
The dots stand for experimental data [39] and the lines stand for ISPH-USAW.

solver (in our case Bi-CGSTAB), but the cause of it has not been identified.

A similar behaviour was observed on a case of a schematic dam-break over an

obstacle, both with an SPH formulation and with a two-phase Finite Volume

formulation using the Volume of Fluid technique for the free-surface (see [12]).

8. 3-D cases

8.1. Laminar Poiseuille flow in a circular pipe with inflow/outflow boundaries

This case consists of a steady laminar flow through a 3-D pipe with a circular

cross-section. Inflow and outflow boundaries are imposed at the extremities of

the pipe. All lengths are made dimensionless by L, the radius of the cross-

section. The dimensionless length of the pipe is equal to 4. The reference

velocity of the flow U is the maximum velocity in the pipe, set to 1ms−1 by

imposing the theoretical dimensionless velocity at the inlet:

v+ =
[
1− (y+ − y+

0 )2 + (z+ − z+
0 )2
]
ex (40)

where (y+
0 , z

+
0 ) = (0, 0) are the dimensionless transverse and vertical coordinates

of the cross-section centre. At the outlet, a zero-pressure is imposed. The

Reynolds number is set to 10. The dimensionless time is defined by t+ = tU
L .

The simulation is run until t+ = 25, which corresponds to about 1.4 × 105

iterations with an initial dimensionless interparticular space δr+ = 0.04. A

steady-state is then achieved. Figure 10 shows the shape of the velocity field in

the pipe at t+ = 25.
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Figure 10: Steady laminar flow in a 3-D circular pipe with inflow/outflow condi-
tions. Shape of the velocity profile obtained with ISPH-USAW using δr+ = 0.04
at t+ = 25 (flow from right to left).

Figure 11 shows velocity and pressure profiles in the pipe at t+ = 25. On

the left, the horizontal dimensionless velocity v+
x obtained with ISPH-USAW is

plotted as a function of z+ along the vertical profile at the centre of the channel

(x+ = 2 , y+ = 0). Note that the same results were obtained on a vertical

profile in y+ = 0 but at x+ = 3.9 instead of x+ = 2. Good agreement with

the theoretical parabolic profile (40) is obtained. The dimensionless pressure is

defined by:

p+ =
p

ρU2/2
(41)

On the right of Figure 11, the dimensionless pressure p+ obtained with ISPH-

USAW is plotted as a function of x+ along the horizontal profile at the centre

of the channel. The agreement with the theoretical linear pressure distribution

along the channel is good, the latter being given by:

p+ =
8

Re

(
4− x+

)
(42)

where Re = UL
ν . A small discrepancy close to the inflow boundary appears,

where a homogeneous Neumann condition is imposed on the pressure. Nev-

ertheless, the quality of the results shows that the 3-D ISPH-USAW model

performs well with inflow/outflow conditions for this Reynolds number.

It should be noted that trying to increase the Reynolds number leads to

numerical instability. With a Reynolds of 100 the results are as good as with a

Reynolds of 10, but with a Reynolds of 1000 a blow-up of the simulation occurred

after some time. This issue points out the fact that further work is necessary

for high-Reynolds simulations in 3D. It is worth mentioning that increasing the

Reynolds number in SPH can be challenging, as pointed out e.g. in [40].
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Figure 11: Steady laminar flow in a 3-D circular pipe with inflow/outflow con-
ditions. Dimensionless velocity profile along the vertical line at the centre of the
channel (left) and dimensionless pressure profile along the horizontal line at the
centre of the channel (right). Comparison of the results obtained with ISPH-
USAW using δr+ = 0.04 with the theoretical velocity and pressure profiles.

Finally, Figure 12 shows the evolution of the total mass of particles in the

domain. The total mass tends to a constant which shows that a steady state is

reached, however some mass peaks are observed with a periodic pattern. The

time between two peaks is that spent by a particle to go through half of the

pipe’s length and the mass fluctuations in steady state are in the range of one

layer of particles on the cross-section of the pipe.
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Figure 12: Laminar flow in a 3-D circular pipe with inflow/outflow conditions.
Evolution of the total mass of particles in the computational domain using
δr+ = 0.04.

8.2. Preliminary application case: 3-D non-isothermal connected pipes

This case is a preliminary application case in 3-D that consists of two con-

nected circular pipes at different temperatures. The geometry is described in

the Figure 13. The reference length L is the diameter of the larger pipe. At the

initial time, fluid with temperature Th is placed in a horizontal pipe with zero

velocity and pressure and fluid with temperature Tc (Tc < Th) is placed in a
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Figure 13: Laminar flow in two connected pipes at different temperatures.
Sketch of the geometry.

smaller inclined pipe connected to the first one with zero velocity and pressure.

As time goes by, fluid with temperature Th is injected through the left extremity

of the horizontal pipe and fluid with temperature Tc is injected at the highest

extremity of the inclined pipe. The velocity is imposed at these inflow bound-

aries. In the horizontal pipe, it is imposed through a circular laminar Poiseuille

profile:

v = U

[
1− ‖x− x0‖2

(L/2)2

]
n0 (43)

where x0 is the position of the centre of the big pipe cross-section at the inlet,

and n0 = ex is the unit normal vector to that cross-section. U is the reference

velocity of the flow and was set to 0.5ms−1. The Reynolds number based on U

and L was set to 10. On the other hand, in the inclined pipe the inlet velocity

is imposed through

v =
U

2

[
1− ‖x− x1‖2

(l/2)2

]
n1 (44)

where x1 is the position of the centre of the small pipe cross-section at this inlet,

and n1 =
(
− 1√

3
, 0,− 2√

3

)
is the unit normal vector to that cross-section. An

outflow boundary condition is imposed at the right extremity of the horizontal

pipe: the pressure is imposed to zero and a homogeneous Neumann condition

is imposed on the temperature. A homogeneous Neumann condition is also

imposed on the temperature at solid walls. The Grashoff number βg∆TL3

ν2 was

set to 0.162, and the molecular Prandtl number ν
K to 69. Figure 14 shows the

shape of the temperature field at several instants during the simulation.
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Figure 14: Laminar flow in two connected pipes at different temperatures. Shape
of the temperature field at several times.

9. Conclusion

In this work a new formulation for inflow/outflow conditions in an ISPH

model was proposed. The boundary conditions rely on the unified semi-analytical

technique, which makes it possible to accurately prescribe Neumann or Dirich-

let boundary conditions on the fields. The fluid enters and leaves the domain

through the mass variation of boundary particles and their creation/destruction.

Validation was performed on several 2-D cases presenting open boundaries:

a cut dam-break, a case of propagation of a solitary wave and a Creager weir,

the latter involving the k − ε turbulence closure. The results show that the

inflow/outflow conditions are able to let the fluid enter or leave the domain as

prescribed, with few visible reflections in the domain. To go further, the outflow

boundary conditions could be improved: the outflow boundary condition used

for the wave case is quite a simple formulation for a radiative outlet and could

be made more complex and more effective. On the other hand, a zero pressure

was imposed at the outflow boundary on the cut dam-break, but a better con-

dition could probably be designed. The conditions proposed in the literature

for Eulerian methods could probably be applied in the framework of SPH, but

this has not been tested extensively yet. To our knowledge, the question of free

outlet conditions is quite problematic in the framework of Eulerian methods as

well.

Finally, one case of validation in 3-D is also presented, as well as prelimi-
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nary results on a simple application case involving temperature effects in 3-D.

Further work in 3-D is necessary since instabilities were observed when simu-

lating 3-D flows with high Reynolds numbers using the present formulation for

inflow/outflow boundaries.
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Table 1: Values of the k − ε model constants [24]

κ Cµ Cε1 Cε2 σk σε
0.41 0.09 1.44 1.92 1.0 1.3

Table 2: Parameters for the Creager weir numerical simulations

H/Hd 0.5 1.33
H(m) 0.15 0.399

q(m3/s/m) 0.115 0.560
d(m) 0.547 0.78
U(m/s) 0.21 0.72

Fr = U/
√
gd 0.09 0.26

u∗(m/s) 0.0089 0.0266
Domain length after the weir (m) 1 2.6
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