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Abstract

The objective of this contribution is to explain the size effect in composites due to the interfacial energy between

the constituents of the underlying microstructure. The generalized interface energy accounts for both jumps of the

deformation as well as the stress across the interface. The cohesive zone and elastic interface are only two limit cases

of the general interface model. A closed form analytical solution is derived to compute the effective interface-enhanced

material response. Our novel analytical solution is in excellent agreement with the numerical results obtained from the

finite element method for a broad variety of parameters and dimensions. A remarkable observation is that the notion of

size effect is theoretically bounded verified by numerical examples. Thus, the gain or loss via reducing the dimensions

of the microstructure is limited to certain ultimate values, immediately relevant for designing nano-composites.
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1. Introduction

Homogenization [1–3] is a commonly accepted methodology to explain the overall response of composite materials

based on its constituents at the microscale. While the classical homogenization is well-established today, the influence

of interfaces at the microscale remains elusive and poorly understood. This contribution investigates on the impact of

interfaces at the microscale on the effective material response through an interface-enhanced homogenization scheme

from both analytical and numerical perspectives.

The interphases between various constituents of a heterogeneous microstructure can play a crucial role on the

overall material response. The general interface model here represents the finite thickness interphase. Note, the

idea of the general interface model follows the seminal work of Hashin [4] where he distinguishes between perfect

and imperfect interface models. Furthermore, McBride et al. [5] show that classical interface models cannot capture

the response of heterogeneous material layers, see Fig. 1. Emerging applications of nano-materials require better
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Figure 1: Motivation for the need of a general interface model. Homogenization of heterogeneous material layers shows that even the simplest
elastic response requires a general interface model to be properly captured [5]. The zero-thickness interface model (left) is representative of a finite
thickness interphase (right).

understanding of interfaces since the influence of lower-dimensional media on the overall material response increases

with decreasing size.

Interfaces can be categorized into four models according to their kinematic or kinetic characteristics, as shown

in Fig. 2. The perfect interface model does not allow for the displacement jump nor the traction jump across the

interface. The elastic interface model is semi-imperfect in the sense that it is kinematically coherent but kinetically

non-coherent. Interface elasticity theory [6–11] endows the interface with an elastic resistance along the interface.

The traction jump across the interface is due to the interface stress [see 12, 13, among others]. Interface and surface

elasticity theory is a mature field investigated in [14–29] among others.1 The cohesive interface model allows for

the displacement jump across the interface, but remains kinetically coherent hence, semi-imperfect. The cohesive

interface model dates back to the seminal works [32–34] and has been extensively studied [35–49] in the past. The

perfect interface model is the intersection of the two semi-perfect interface models. From the perspective of deriving

interface models as asymptotic limits of thin interphases, the cohesive interface model is derived as the limit case of

soft interphases and is termed spring interface model. On the contrary, the elastic interface model is obtained as the

limit case of stiff interphases and is termed stress interface model, see also [50]. The general (imperfect) interface

model unifies all various types of interfaces and is both kinematically and kinetically non-coherent. The general

interface model [4] has been studied in [51–59], but derived from simplified asymptotic limits of thin interphases.

Particulate composites with general interfaces have been examined in [60]. As illustrated in Fig. 1, the appropriate

1An important Erratum [30] on [17] was later published by its authors. Furthermore, the same authors published a more comprehensive version
of their work on interfacial energy and micromechanics with interface effect in [31].
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Figure 2: An overview of interface models. Graphical illustration (left) and mathematical explanation (right). From the viewpoint of continuum
mechanics, interfaces can be divided into four categories depending on their kinematic or kinetic characteristics. The elastic interface model does
not allow for the displacement jump, but the traction may suffer a jump across the interface. The cohesive interface model on the contrary, allows
for the displacement jump but assumes the continuity of the traction field across the interface. The intersection of elastic and cohesive interface
model is the perfect interface model for which both the traction and displacement across the interface are continuous. This contribution formulates
the general interface model which encompasses all other interface types.

interface model to describe the heterogeneous material layer between the microstructures depends on the underlying

microstructure of the interfacial layer. For instance, if the microstructure acts similar to a set of parallel springs normal

to the interface, the cohesive interface model is suitable. On the other hand, if the interfacial layer shows extremely

high resistance against opening, then the elastic interface model can capture the resistance against deformations along

the interface. Obviously, both the elastic interface model as well as the cohesive interface model are the limits of a

generalized interface model accounting for both in-plane and out-of-plane resistance of the interface.

Homogenization pioneered by Hill and Ogden, is extended in this contribution to account for the interfaces at

the microscale. For further details on homogenization, see the reviews [61–66] and references therein. Although the

classical first-order homogenization is well-established today, it suffers from the lack of a length-scale. In particular,

the classical homogenization cannot capture the size effect in the material response. Accounting for interfaces natu-

rally leads to a scale dependent overall response since the area-to-volume ratio is proportional to the inverse of the

dimension. Scale dependent macroscopic behavior due to lower-dimensional elasticity at the microscale has been a

popular topic in the past decade from both analytical [67–79] and computational perspectives [80–85]. Furthermore,

it can be argued that the size effect due to the interface elasticity is physically meaningful supported by atomistic sim-

ulations [86–94].2 The aforementioned contributions deal only with the size effect due to either the elastic interface

model or the cohesive interface model. This contribution elaborates on the size effect due to the general interface

2Alternatively, a second-order homogenization scheme can be developed [95, 96] to introduce a length-scale into homogenization.
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model. Obviously, the current model reduces to both the cohesive and elastic interface models.

The classification of the interface models here are based on their “kinematic” descriptions. More precisely, the

intrinsic feature of the elastic interface model is that it is geometrically coherent in the sense that the displacement

jump across the interface vanishes. On the contrary, the cohesive interface model is geometrically non-coherent and

allows for the displacement jump. The constitutive response of each interface model remains to be discussed and

depends on its energy arguments. For instance, the energy of the elastic interface model may depend on the interface

strain, curvature or higher gradients of the interface strain. The interface elastic energy in this contribution is assumed

to be only a function of the interface strain and not its gradients nor the curvature. It can be argued that for certain

applications in biomembranes and lipid bilayers the curvature dependence of the interface may not be negligible,

see e.g. [97]. Accounting for the curvature formally fits in the framework developed here, but it also leads to the

dependence of the overall response on additional interface parameters. Note, the ultimate goal of this contribution is

to carry out an interface parameter identification via analyzing the size dependent overall response of the material.

Introducing more complicated interface models introduces more parameters without necessarily providing additional

insight. Eventually, one can make the interface model so complicated such that no analytical solution for the overall

response can be provided, but that completely defeats the initial purpose of this manuscript. Here, for the first time we

provide an analytical form for the effective behavior of a heterogeneous material containing generalized interfaces.

1.1. Organization of this manuscript

This manuscript is organized as follows. Notation and definitions are shortly introduced and key contributions of this

manuscript are highlighted immediately afterwards. Section 2 defines the problem of interest and briefly formulates

the associated governing equations. Balance equations of general interfaces are given in Section 2.1. Section 2.2

elaborates on the micro-to-macro transition of continua accounting for general interfaces. Analytical solutions for

effective material properties of unidirectional fiber composites are obtained via the composite cylinder approach in

Section 3. Section 4 investigates the influence of general interfaces on the overall behavior of materials via a series

of parametric studies. In particular, the proposed semi-analytical solution is compared against numerical results using

the finite element method. Furthermore, the size effect due to interfaces is demonstrated and the notion of ultimate

size effect is discussed. Section 5 concludes this work and discusses possible extensions and outlooks.

1.2. Notations and definitions

Quantities defined on the interface are distinguished from those in the bulk by a bar placed above the quantity. That

is, {•} refers to an interface variable with its bulk counterpart being {•}. Analogously, surface and curve quantities are

denoted as {̂•} and {̃•}, respectively to be distinguished from the bulk quantity {•}. Moreover, macroscale quantities are
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differentiated from microscale quantities by the left super-script “M” placed next to the quantity. That is, M{•} refers to

a macroscopic variable with its microscopic counterpart being {•}. Direct notation is adopted throughout. The dyadic

product of two vectors a and b is a second-order tensor D = a ⊗ b with [D]i j = [a]i[b] j. The scalar product of two

vectors a and b is denoted a · b = [a]i[b]i = [a ⊗ b] : i where i is the second-order identity tensor. The scalar product

of two second-order tensors A and B is denoted A : B = [A]i j[B]i j. The composition of two second-order tensors A

and B, denoted A · B, is a second-order tensor with components [A · B]i j = [A]im[B]m j. The action of a second-order

tensor A on a vector a is given by [A · a]i = [A]i j[a] j. The average and jump of a quantity {•} over the interface are

defined by {{{•}}} = 1
2 [{•}+ + {•}−] and [[{•}]] = {•}+ − {•}−, respectively. The average and jump operators show the

property [[{•} · {◦}]] = [[{•}]] · {{{◦}}} + {{{•}}} · [[{◦}]].

Here, unlike the classical first-order homogenization, the term “size” refers to the actual dimension of the rep-

resentative volume element (RVE). See for instance [98] for further details on the definition of the “size” of the RVE

within the classical first-order homogenization context. For the sake of simplicity, this contribution deals with per-

fectly periodic microstructures such that the unit cell is by definition representative and hence a RVE.

1.3. Key aspects and contributions

The main objective of this contribution is to explain the size effect in composites due to the interfacial energy of the

underlying microstructure. The key features and contributions of this manuscript are

• to categorize interface models and propose a generalized model,

• to formulate generalized interfaces within a small-strain continuum mechanics setting,

• to incorporate the general interface model into a micro-to-macro transition framework,

• to derive an analytical solution for the effective properties of composites containing general interfaces,

• to compare the novel analytical solution with numerical results in a series of parametric studies,

• to analyze the size effect due to interfaces embedded within the microstructure,

• to introduce the notion of ultimate size effect and optimal RVE size.

2. Governing equations

Consider a continuum body that occupies the configuration MB at the macroscale as shown in Fig. 3. The configuration

MB is heterogeneous and composed of its RVE at the microscale B. At the microscale, the interphase zone between

the inclusion and the matrix is captured by the zero-thickness general interface model. The constitutive behavior of
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Figure 3: A graphical summary of micro-to-macro transition accounting for general interfaces. The microscale corresponds to the representative
volume element. Constitutive laws at the microscale are assumed to be known and the goal is to compute the effective response via homogenizing
the response of the underlying microstructure. The zero-thickness interface model at the microscale replaces the finite-thickness interphase between
different constituents.

the components at the microscale are assumed to be known and collectively resulting in the macroscale response.

That is, prescribing the macro strain Mε on the RVE results in the macro stress Mσ. Homogenization provides a

framework to appropriately relate the micro quantities to macro quantities. In homogenization of heterogeneous

media, an underlying assumption is the separation of the problem into two scales. The macroscale, identified by

placements Mx, describes the body as if it was hypothetically a homogeneous medium. The microscale, identified

by placements x, describes the microstructure of the composite. Homogenization requires (i) the microscale to be

significantly smaller than the macroscale and (ii) an existing RVE with sufficient details of the microstructure such that

it can describe the overall behavior of the composite in an average sense. The forthcoming discussions in this section

follow closely the recent contributions of the authors [78, 99].

2.1. Generalized interfaces

The purpose of this section is to establish the balance equations governing continua embedding general interfaces.

These governing equations obviously correspond to the microscale in Fig. 3. The interface I splits the body B into

two disjoint subdomainsB− andB+. The interface unit normal n points from the minus to the plus side of the interface.
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The outward unit normal to the external boundary S is denoted n̂. If the interface is entirely enclosed within the body,

its intersection with the external surface S is an empty set. However, if the interface is open and reaches the boundary

of the microscale, its intersection with the external surface S is the curve C as

I ∩ S = ∅ ⇔ closed interface and I ∩ S = C ⇔ open interface .

The outward unit normal to the curve C but tangent to the interface I is denoted ñ and plays an important role to

derive the balance equations for open interfaces.

The displacement in the body is denoted u. To proceed, it proves convenient to define the minus and plus sides

of the interface as I− = I ∩ ∂B− and I+ = I ∩ ∂B+, respectively. The displacement on the minus and plus sides of

the interface are denoted u− and u+, respectively. The displacement jump across the interface [[u]] needs not vanish

for the general interface model. Thus, the displacement of the interface itself u remains unknown. A crucial, yet

intuitively meaningful assumption, for the general interface model is that u = {{u}}. That is, the interface coincides

with the definition of the mid-surface across its minus and plus sides. The symmetric strains in the bulk and on the

interface are defined by

ε = 1
2

[
i · gradu + [gradu]t · i

]
in B and ε = 1

2

[
i · gradu + [gradu]t · i

]
on I , (1)

in which grad{•} denotes the usual gradient operator. The interface gradient operator grad{•} is defined by the pro-

jection of the gradient operator onto the interface as grad{•} = grad{•} · i. Note, the definition of the bulk strain (1)1

renders exactly the symmetric gradient of the displacement and its contraction with the identity tensor i does not alter

its properties. That is not the case for the interface strain (1)2 though. The contraction i · gradu, where i = i − n⊗ n,

serves as a projection onto the interface. That is, the interface strain is not only the symmetric gradient of the interface

displacement, but also its tangential component.

Governing equations of continua embedding the general interface model in small-strain elasticity theory can be

obtained in a variationally consistent manner. To do so, the total energy is minimized via imposing the stationarity

condition hence, setting its variations to zero. The total energy consists of the free energy in the bulk Ψ and the free

energy of the interface Ψ together with external contributions. The free energies in the bulk and on the interface are

the integrals of their densities ψ and ψ, respectively, over their corresponding domains. The free energy density for the

bulk is a function of the strain ε as ψ = ψ(ε). Neglecting the scalar-valued liquid-like interface tension, the interface

free energy density ψ depends on the interface strain ε and the displacement jump [[u]] as ψ = ψ(ε, [[u]]). Constitutive

relations in the bulk and on the interface connecting their corresponding energy conjugates are provided from the free
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energy densities as

σ =
∂ψ

∂ε
in B and σ =

∂ψ

∂ε
, t =

∂ψ

∂[[u]]
on I , (2)

in which t denotes the average traction across the interface or more precisely t = {{σ}} · n. Finally, the increments of

the energy densities are

δψ = σ : δε in B and δψ = σ : δε + t · δ[[u]] . (3)

Setting the variations of the total energy functional to zero for all admissible variations of displacements renders the

governing equations. In the absence of external force densities within the bulk and on the interface, the governing

equations for quasi-static problems read

divσ = 0 in B ,

σ · n̂ = t̂ on S ,

divσ + [[σ]] · n = 0 on I (along) ,

{{σ}} · n = t on I (across) ,

σ · ñ = t̃ on C ,

(4)

where t̂ denotes the surface traction on S and similarly, t̃ is the line traction on C. The interface divergence operator

is defined as div{•} = grad{•} : i. It is of particular interest that the curvature of the interface is embedded within

the interface divergence operator itself. Furthermore, the balance equation along the interface (4)3 recovers the clas-

sical Young–Laplace equation, see Appendix A. For the sake of brevity, the details of derivations of the governing

equations (4) are omitted here.

Next, the material behavior in the bulk and on the interface shall be discussed. The material response in the bulk is

assumed to be standard and isotropic elastic according to the linear relation σ = E : ε in which E is the constitutive

fourth-order tensor resulting in σ = 2 µ ε + λ [ε : i] i in which µ and λ are the Lamé parameters. The behavior of the

general interface model can be expressed using the constitutive laws

σ = E : ε = 2 µ ε + λ [ ε : i ] i , t = k · [[u]] = k [[u]] . (5)

The fourth-order constitutive tensor E and the symmetric second-order positive definite tensor k correspond to the
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interface response along and across the interface, respectively. Here, µ and λ denote the interface Lamé parameters

and k is the cohesive resistance of the interface. Finally, it is straightforward to formulate the bulk and interface

energies, respectively as

δψ = σ : δε ⇒ ψ = 1
2 ε : E : ε ,

δψ = σ : δε + t · δ[[u]] ⇒ ψ = 1
2 ε : E : ε + 1

2 k : [[u]] ⊗ [[u]] .
(6)

Obviously, the constitutive model (5) corresponds to an isotropic interface behavior on the interface tangent plane.

The nature of the Lamé parameters is similar to the two-dimensional plane stress elasticity and they both correlate

with the resistance of the interface against deformations tangent to its plane. On the other hand, the interface cohesive

parameter k describes the resistance of the interface against opening and can be understood as orthogonal resistance

of the interface. In particular case of fiber composites here, the interface parameter λ can be set to zero since only one

parameter suffices to define the interface behavior. In this case, the interface parameter µ describes the resistance of

the interface against the change of its length.

In passing, we mention that the current interface model neglects the contributions from the interface tension along

the interface. More precisely, we study solely the size dependent elastic response of the material. Including the

interface tension in the current framework does not add additional insight to the final results nor it requires further

effort in the framework while it introduces a more complex notation. Furthermore, accounting for the interface tension

requires dealing with effective interface elastic constants instead of the Lamé parameters. The parameter identification

in [100] reveals that the influence of the interface tension in solids is generally expected to be considerably smaller

than that of the interface elastic resistance. The interface tension essentially results in a residual stress in the material

that resembles the pore pressure in the homogenization of porous media. Obviously, the most general framework for

the interface elasticity theory must include the interface tension as well as the interface elasticity, see [17, 31, 101]

among others.

2.2. Micro to macro transition

The goal of this section is to provide an energetically consistent micro-to-macro transition framework. That is, to

elaborate on how to calculate the macro stress Mσ via averaging the microscale response to the macro strain Mε. The

governing equations at the macroscale are standard and can be summarized as

Mε = 1
2

[
i · MgradMu + [MgradMu]t · i

]
and MdivMσ + Mb = 0 in MB , (7)
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subject to its corresponding boundary conditions on ∂MB. The macroscale body force density is denoted Mb. Similar

to the microscale, the macroscale energy density Mψ can be assigned to the body. The incremental energy density at

the macroscale can be identified as

δMψ = Mσ : δMε , (8)

A commonly accepted strategy to connect the macroscale and microscale measures is the volume averaging of the

microscale quantities over the RVE. Due to the presence of the non-standard general interface model at the microscale,

such classical definitions must be carefully examined and extended appropriately. Let V denotes the total volume of

the RVE which can be computed by

V i =

∫
S

x ⊗ ndA or V =

∫
B

dV = 1
3

∫
S

x · ndA . (9)

The macro strain as the average of the surface integral over the boundary of the RVE reads

Mε =
1
V

∫
S

1
2 [u ⊗ n + n⊗ u] dA . (10)

Through appropriate divergence theorems in the bulk and on the interface, the surface integral (10) can be transformed

into a combination of integrals over the RVE B and on the interface I as

Mε =
1
V

∫
B

ε dV +
1
V

∫
I

1
2

[
[[u]] ⊗ n + n⊗ [[u]]

]
dA . (11)

Clearly, the second term corresponds to the displacement jump across the interface and vanishes in the absence of

interfaces resulting in the classical definition of the macro strain.

Next, the macro stress Mσ should be linked to the microscale behavior. Motivated by the average stress theorem,

the macro stress can be defined by integrals over the boundary of the RVE as

Mσ =
1
V

∫
S

t̂ ⊗ x̂ dA +
1
V

∫
C

t̃ ⊗ x̃ dL . (12)

Obviously, the integral over the curve C vanishes for closed interfaces entirely embedded within the RVE. Similar to

the macro strain, the macro stress Mσ can be expressed [e.g. 78] in terms of integrals over B and I as

Mσ =
1
V

∫
B

σ dV +
1
V

∫
I

σ dA . (13)
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The second integral corresponds to the interface stress and vanishes in the absence of elasticity along the interface.

Note, the interface average traction t does not explicitly enters the definition of the macro stress. Table 1 summarizes

the micro-to-macro transition of continua accounting for general interfaces.

bulk along the interface across the interface

macro
strain

Mε
1
V

∫
B

ε dV +
1

2V

∫
I

[[u]] ⊗ n + n⊗ [[u]] dA

macro
stress

Mσ
1
V

∫
B

σ dV +
1
V

∫
I

σ dA

macro
incr. energy

Mσ : δMε
1
V

∫
B

σ : δε dV +
1
V

∫
I

σ : δε dA +
1
V

∫
I

t · δ[[u]] dA

Table 1: Summary of the micro-to-macro transition accounting for general interfaces. The macroscopic quantities are expressed as integrals at the
microscale. In the absence of the jump across the interface and the elastic response along the interface, the integrals reduce to their familiar formats
in the classical homogenization.

Equipped with the definitions of the macro strain Mε and macro stress Mσ in terms of microscale quantities, the

last step of a physically meaningful homogenization is to guarantee the incremental energy equivalence between the

two scales. The incremental energy equivalence between the scales is often referred to as the macro homogeneity

condition or the Hill–Mandel condition and can be expressed as

δMψ
!
=

1
V

∫
B

δψ dV +
1
V

∫
I

δψ dA , (14)

in which the sign !
= denotes the conditional equality. Inserting the incremental micro and macro energies (3) and (8),

respectively into the Hill–Mandel condition (14) and collecting all the terms on one side yields

1
V

∫
B

σ : δε dV +
1
V

∫
I

σ : δε + t · δ[[u]] dA − Mσ : δMε
!
= 0 . (15)

Finally, replacing the macro strain (10) and macro stress (12) into the left-hand side of the expanded Hill–Mandel

condition (15) after some mathematical steps results in the identity

1
V

∫
B

σ : δε dV +
1
V

∫
I

σ : δε + t · δ[[u]] dA − Mσ : δMε =
1
V

∫
S

[ δu − δMε · x̂ ] · [ t̂ − Mσ · n̂ ] dA , (16)

for closed interfaces. The identity (16) is essentially an extended Hill’s lemma accounting for the general interface

model. Obviously, in the absence of interfaces at the microscale this identity reduces to the classical Hill’s lemma.

Utilizing the identity (16) in the expanded Hill–Mandel condition (15), renders an alternative format of the Hill–
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Mandel condition as

∫
S

[ δu − δMε · x̂ ] · [ t̂ − Mσ · n̂ ] dA !
= 0 . (17)

The significance of the condition (17) is that it furnishes suitable boundary conditions for the microscale problem.

All boundary conditions that satisfy the condition (17) sufficiently fulfill the Hill–Mandel condition (14) and thus,

are admissible choices for an energetically consistent homogenization. Three canonical boundary conditions are (1)

linear displacements (2) constant traction and (3) periodic displacement and anti-periodic traction.

3. Effective properties of unidirectional fiber composites

This section elaborates on an analytical approach to obtain the effective properties of a unidirectional fiber composite

embedding generalized interfaces. The problem of composites with interfaces has been studied extensively in the

literature of micromechanics methods, see for instance [52, 102] among others. In several approaches the interface is

captured by considering a very thin interphase [4, 103]. For zero-thickness cohesive interfaces, Hashin has performed

numerous studies [102, 104, 105]. In the case of elastic interfaces, studies based on particulate or unidirectional fiber

composites exist in the literature [70, 106, 107]. The main issue with the elastic interfaces is that the mean field theories

can only be applied for reinforcements of constant curvature (spherical particles or cylindrical fibers), due to the fact

that in the other cases the Eshelby problem does not provide uniform elastic state inside the inclusion as pointed out

by Sharma and Ganti [106]. Duan et al. [108] have shown that the elastic interfaces cause the Eshelby tensor and the

stress concentration tensors to be non-uniform and size dependent. This restriction of course is also extended in the

case of generalized interfaces and thus, numerical approaches are unavoidable for short fiber composites or composites

with reinforcement of ellipsoidal form. Gu et al. [60] have provided analytical forms for the elastic moduli of spherical

particulate composites with generalized interfaces. Chen et al. [109] have studied the effect of residual interface stress

on thermo-elastic properties of unidirectional fiber composites.

For a unidirectional fiber composite, the RVE can be well defined and consists of a cylindrical fiber surrounded by

the matrix material. As Hashin and Rosen [110] have illustrated, the RVE can be described as a system of concentric

cylinders as shown in Fig. 4. The radius of the fiber is denoted r1, while the external radius of the matrix surrounding

the fiber is denoted as r2. The form of the RVE makes preferable to write all the necessary equations of the problem

in cylindrical coordinates. In this coordinate system the main axes are the radius r, the angle θ and the axis parallel

to the fiber axis z. When both the fiber (phase 1) and the matrix (phase 2) are linear isotropic materials with Lame
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constants λ and µ, the stresses and the strains in both phases are connected through the equations

σ(i)
rr = [λ(i) + 2µ(i)]ε(i)

rr + λ(i)ε(i)
θθ + λ(i)ε(i)

zz , σ(i)
θθ = λ(i)ε(i)

rr + [λ(i) + 2µ(i)]ε(i)
θθ + λ(i)ε(i)

zz ,

σ(i)
zz = λ(i)ε(i)

rr + λ(i)ε(i)
θθ + [λ(i) + 2µ(i)]ε(i)

zz , σ(i)
rz = σzr = 2µ(i)ε(i)

rz ,

σ(i)
θz = σzθ = 2µ(i)ε(i)

zθ , σ(i)
rθ = σθr = 2µ(i)ε(i)

rθ .

(18)

while the kinematic conditions provide the relations between the strains and displacements

ε(i)
rr =

∂u(i)
r

∂r
, ε(i)

θθ =
1
r
∂u(i)

θ

∂θ
+

u(i)
r

r
, ε(i)

zz =
∂u(i)

z

∂z
,

2εrz =
∂u(i)

z

∂r
+
∂u(i)

r

∂z
, 2εθz =

1
r
∂u(i)

z

∂θ
+
∂u(i)

θ

∂z
, 2εrθ =

∂u(i)
θ

∂r
+

1
r
∂u(i)

r

∂θ
−

u(i)
θ

r
.

(19)

The index i takes the value 1 for the fiber and 2 for the matrix. For the general interface, as discussed in the previous

section, the displacement is equal to the average of the displacements at the borders of the two material phases as

u = {{u}}. On the other hand, for isotropic interface with zero surface Lame constant λ the interface stresses and strains

are connected through the relations

σθθ =2µ εθθ , σzz =2µ εzz , σθz =2µ εθz , (20)

where the interface strains are expressed in terms of the interface displacements as

εθθ =
1
r1

∂uθ
∂θ

+
ur

r1
, εzz =

∂uz

∂z
, 2εθz =

1
r1

∂uz

∂θ
+
∂uθ
∂z

. (21)

The interface equilibrium equation (4)3 holds on the interface at r = r1 and can be expressed in cylindrical coordinates

as

[
divσ

]
r

+ [[tr]] = 0 ,
[
divσ

]
θ

+ [[tθ]] = 0 ,
[
divσ

]
z
+ [[tz]] = 0 , (22)

or alternatively

−
σθθ
r1

+ [[σrr]] = 0 ,
1
r1

∂σθθ
∂θ

+
∂σθz
∂z

+ [[σrθ]] = 0 ,
1
r1

∂σθz
∂θ

+
∂σzz

∂z
+ [[σrz]] = 0 . (23)

The average traction on the interface (4)4 satisfies the general form {{σ}} · n = k [[u]]. Equipped with these relations, in
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the next subsections two special cases are examined. First, a dilatational expansion of the RVE in the direction normal

to the fibers axis second, shearing of the RVE in the direction normal to the fibers axis.

n̄

x

y

z

r1θ

r2

Figure 4: Unidirectional fiber composite and its RVE, according to the composite cylinders method.

3.1. Dilatational expansion - In plane bulk modulus

Consider that the RVE of the fiber composite is subjected to constant radial strain Mεrr = ε0 and it is fixed on upper and

lower surfaces (Fig. 5). This is a well defined problem for elastic materials and analytical solutions are provided in

the literature when the interfaces are perfect, i.e. no jumps in tractions and displacements [110]. Analytical solutions

also exist for pure elasticity in the cases where either jump in displacements is allowed [104] or jump in tractions is

allowed [107].

Figure 5: Fiber composite RVE under radial strain conditions.

14



Hashin and Rosen [110] have shown that, under these boundary conditions, the displacement is zero at the θ and

z directions, while the displacement fields in the r direction are expressed as

u(i)
r = D(i)

1 r + D(i)
2

1
r
, i = 1, 2 .

For these displacement fields, the strains and stresses for the fiber, the matrix and the general interface are expressed

with the help of the relations (18)–(21). The elasticity problem in that case is reduced on calculating D(1)
1 , D(1)

2 , D(2)
1

and D(2)
2 . These constants are obtained with the help of the overall boundary and compatibility conditions, as well as

the jump conditions at the interface:

• Finite solution at the center of the fiber

ur finite at r = 0 or D(1)
2 = 0 . (24)

• Boundary condition at the outer cylinder

u(2)
r (r2) = ε0r2 . (25)

• Traction equilibrium at the interface

−
σθθ
r1

+ σ(2)
rr (r1) − σ(1)

rr (r1) = 0 . (26)

• The average traction at the interface

σ(2)
rr (r1) + σ(1)

rr (r1)
2

= k
[
u(2)

r (r1) − u(1)
r (r1)

]
. (27)

The system of equations (24)–(27) is linear and can be solved explicitly. Then, all the stresses, strains and displace-

ments are obtained analytically. Due to the uniformity of the traction vector at the boundary, the macroscopic radial

stress is given by Mσrr = σ(2)
rr (r2) according to [110]. Thus, the in plane bulk modulus MK of the fiber composite is

obtained [111] as

MK =
Mσrr

2 Mεrr
=
σ(2)

rr (r2)
2ε0

. (28)
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For a unidirectional fiber composite presenting general interfaces between the matrix and the fibers, it is possible to

provide an explicit expression for the effective in-plane bulk modulus as

MK = λ(2) + µ(2) +
f
χ

with χ =
1[

λ(1) + µ(1)]ψ − [
λ(2) + µ(2)] + ω[1 + ψ]

+
1 − f

λ(2) + 2µ(2) , f =
r2

1

r2
2

, (29)

in which

ω =
µ

2r1
, φ = kr1 , ψ =

φ − ω

2λ(1) + 2µ(1) + φ + ω
, (30)

and the fiber to matrix volume fraction is denote f although in two dimensions.

The explicit expression for the effective bulk modulus (29), which is also summarized in Fig. 6, is particularly

interesting since it reveals the connection of the current contribution to the existing ones. In fact, it is relatively

straightforward to show how the effective bulk modulus recovers the classical cases in its simplified forms as follows.

• Perfect interface model can be recovered by setting φ → ∞ since the orthogonal resistance of the interface

against opening k → ∞ and the interface remain geometrically coherent regardless of the deformation. For the

perfect interface model, the elastic resistance along the interface vanishes and thus µ = 0 which results in ω = 0.

Eventually, since φ → ∞ and the material parameters of the fiber are finite, then ψ = 1. Inserting all these into

Eq. (29) furnishes the effective in-plane bulk modulus for the perfect interface model which is precisely the

same result obtained in the seminal work of Hashin and Rosen [110].

• Elastic interface model is geometrically coherent and does not allow for opening and hence, the cohesive re-

sistance of the interface tends k to infinity resulting in φ → ∞ and consequently ψ = 1. However, unlike the

perfect interface model, the elastic resistance along the interface µ does not vanish and assumes a finite value.

The final expression for the elastic interface model shall be compared with the findings in [20, 107, 112] among

others.

• Cohesive interface model does not possess an elastic resistance along the interface. That is, for the cohesive

interface model µ = 0 resulting in ω = 0. The parameter φ however remains finite and plays a crucial role since

it is proportional to the cohesive resistance k defining the orthogonal behavior of the interface. The parameter

ψ reads ψ = φ/[2λ(1) + 2µ(1) + φ]. Inserting all these into Eq. (29) furnishes the effective in-plane bulk modulus

for the cohesive interface model which is precisely the same result obtained in [102].

• General interface model allows for a finite resistance along the interface µ as well as a finite resistance orthog-

onal to the interface k. In this case, both parameters ω and φ assume finite values resulting in a finite ψ not
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Figure 6: An overview of interface models with respect to the effective bulk modulus. Explicit expression for the effective bulk modulus MK (left)
and its degeneration to existing models (right). The superscript index take the value 1 for the fiber and 2 for the matrix.

necessarily being one nor simplified.

3.2. Transverse shearing - In plane shear modulus

To identify the in plane shear modulus of a unidirectional composite, Hashin and Rosen [110] have proposed the

boundary value problem illustrated in Fig. 7, which correspond to simple shear stress in the normal plane to the fibers.

They compared the solution obtained when the external stress conditions are substituted by boundary displacements

of the same type. The obtained in plane shear moduli from these two problems present a small difference, thus the

original form of the problem provides only bounds on this modulus. To resolve this issue, Christensen [113] have

developed a modification of the original problem, by adding an external third layer, whose properties are those of

the unknown composite medium. This way, the composite cylinders method is transformed to the generalized self

consistent composite cylinders method.

In the modified version in [113], the boundary value problem of Fig. 7 has uz equal to zero everywhere and the

rest of displacement fields are given by

u(i)
r =

4∑
j=1

a(i)
j D(i)

j rn(i)
j sin(2θ) , u(i)

θ =

4∑
j=1

D(i)
j rn(i)

j cos(2θ) , i = 1, 2 , (31)

u(3)
r =ε0

r2

4Mµ

2r
r2

+ D(3)
3

r3
2

r3 + 2
[
1 +

Mµ
MK

]
D(3)

4
r2

r

 sin(2θ) , (32)
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Figure 7: Fiber composite RVE under shear conditions normal to the fiber axis.

u(3)
θ =ε0

r2

4Mµ

2r
r2
− D(3)

3

r3
2

r3 + 2
Mµ
MK

D(3)
4

r2

r

 cos(2θ) , (33)

where

a(i)
j =

2λ(i) + 6µ(i) − 2n(i)
j

[
λ(i) + µ(i)

]
λ(i) + 6µ(i) −

[
n(i)

j

]2
[λ(i) + 2µ(i)]

, (34)

and n(i)
j are the solutions of the polynomial n4 − 10n2 + 9 = 0. This equation leads to four roots, namely n(1)

j = 3,

n(2)
j = 1, n(3)

j = −3, n(4)
j = −1. Moreover, Mµ is the unknown in plane shear modulus of the fiber composite. For

these displacement fields, the strains and stresses for all the phases (fiber, matrix, effective medium) and the general

interface are expressed in terms of the unknown D(i)
j constants with the help of the relations (18)–(21). The boundary

and interface conditions that hold in the RVE in this problem are the following:

• Finite solution at the center of the fiber

ur, uθ finite at r = 0 or D(1)
3 = D(1)

4 = 0 . (35)

• Traction continuity at the interface between effective medium and matrix

σ(2)
rr (r2) = σ(3)

rr (r2) , σ(2)
rθ (r2) = σ(3)

rθ (r2) . (36)

• Displacement continuity at the interface between effective medium and matrix

u(2)
r (r2) = u(3)

r (r2) , u(2)
θ (r2) = u(3)

θ (r2) . (37)
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• Traction equilibrium equations at the interface between fiber and matrix

−
σθθ
r1

+ σ(2)
rr (r1) − σ(1)

rr (r1) = 0 ,
1
r1

∂σθθ
∂θ

+ σ(2)
rθ (r1) − σ(1)

rθ (r1) = 0 . (38)

• Traction averages at the interface between fiber and matrix

σ(2)
rr (r1) + σ(1)

rr (r1)
2

= k
[
u(2)

r (r1) − u(1)
r (r1)

]
,

σ(2)
rθ (r1) + σ(1)

rθ (r1)
2

= k
[
u(2)
θ (r1) − u(1)

θ (r1)
]
. (39)

The above ten equations are not sufficient to identify the ten unknown constants and the unknown in plane shear

modulus. The last necessary condition arise from the energetic criterion identified in [113], which provides the simple

result D(3)
4 = 0. After proper calculations, the unknown Mµ is identified with the help of a quadratic equation, which

has one positive and one negative solution. The latter of course is ignored. Unlike the effective bulk modulus MK, it

is impossible to provide a simple explicits expression for the effective shear modulus Mµ and identify its simplified

forms for various interface types. Nonetheless, for the sake of completeness, Appendix B provides a semi-explicit

form for the effective shear modulus and its degeneration to recover different interface models. Further effective elastic

constants of fiber composites are elaborated in Appendix C.

4. Examples

The goal of this section is to elucidate the theory via a series of numerical examples. In particular, the influence of

generalized interfaces on the overall response of a material is investigated. The forthcoming examples include a large

variety of parametric studies to cover various scenarios. The numerical simulations are realized over a square RVE with

the fiber exactly at its center. All studies are carried out for three volume fractions of f = 12.57%, f = 28.27% and

f = 50.26%. For a tetragonal packing with a square unit cell of the length `, the three volume fractions correspond

to r/` = 0.2, r/` = 0.3 and r/` = 0.4, respectively, where r is the radius of the fiber. The length of the unit cell ` is

referred to as the “size” of the RVE henceforth.

Furthermore, to better understand the role of the stiffness ratio, all numerical studies consider three stiffness ratios

of 0.1, 1 and 10. The stiffness ratio incl./matr. = 0.1 corresponds to the case where the inclusion is 10 times more

compliant compared to the matrix. The significance of this case is that in the limit case of incl./matr. → 0 the RVE

recovers a porous medium rather than a composite. If both the inclusion and the matrix are identical, the stiffness

ratio incl./matr. equals one. This specific case is important since it results in the most pronounced interface influence.

Obviously, if the inclusion and the matrix are identical, the material response within the microstructure is uniform in
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Figure 8: Effective bulk modulus versus size of the RVE for the volume fraction of 12.57%. Increasing the resistance against the change of length
along the interface correlates to increasing the interface parameter µ. Different lines on each graph correspond to different orthogonal resistance
of the interface against opening, see the legend at the bottom. In the absence of the interface, the size effect is completely ruled out resulting in a
constant effective response.

the absence of interfaces. The stiffness ratio incl./matr. = 10 corresponds to the case where the inclusion is 10 times

stiffer than the matrix. The significance of this case is that in the limit case of incl./matr.→ ∞ the RVE recovers a matrix

with rigid inclusions.

For all the examples, the material parameters of the matrix are constant and assumed to be µ = 10 and κ = 50

with µ and κ being the shear and bulk modulus, respectively. The stiffness ratio incl./matr. essentially identifies the

material parameters of the fiber. Interface material parameters are varied to produce a wide spectrum of different

cases. The in-plane interface parameter varies from µ = 0 indicating no in-plane resistance to µ = 100 corresponding

to a significant in-plane resistance of the interface. The orthogonal interface parameter varies from k = 1 to k = 1000.

Note, the orthogonal interface parameter k indicates the resistance of the interface against opening. That is, in the

20



in
cr

ea
si

ng
 s

ti
ff

ne
ss

 r
at

io

increasing resistance along interface 

no interface

in
cl

./m
at

. =
 1

0
in

cl
./m

at
. =

 1
in

cl
./m

at
. =

 0
.1

effective bulk modulus versus size                                                                            volume fraction  f =28.27%

20

30

40

50

60

70

0.001 0.01 0.1 1 10 100 1000

20

30

40

50

60

70

0.001 0.01 0.1 1 10 100 1000

20

30

40

50

60

70

0.001 0.01 0.1 1 10 100 1000

20

30

40

50

60

70

0.001 0.01 0.1 1 10 100 1000

10

20

30

40

50

60

70

0.001 0.01 0.1 1 10 100 1000
10

20

30

40

50

60

70

0.001 0.01 0.1 1 10 100 1000
10

20

30

40

50

60

70

0.001 0.01 0.1 1 10 100 1000
10

20

30

40

50

60

70

0.001 0.01 0.1 1 10 100 1000

10

20

30

40

50

60

70

0.001 0.01 0.1 1 10 100 1000
10

20

30

40

50

60

70

0.001 0.01 0.1 1 10 100 1000
10

20

30

40

50

60

70

0.001 0.01 0.1 1 10 100 1000
10

20

30

40

50

60

70

0.001 0.01 0.1 1 10 100 1000

Figure 9: Effective bulk modulus versus size of the RVE for the volume fraction of 28.27%. Increasing the resistance against the change of length
along the interface correlates to increasing the interface parameter µ. Different lines on each graph correspond to different orthogonal resistance
of the interface against opening, see the legend at the bottom. In the absence of the interface, the size effect is completely ruled out resulting in a
constant effective response.

limit of k → ∞ the interface remains coherent and cannot open due to the applied deformation. On the other hand, in

the limit of k → 0 the interface shows almost no resistance against opening and hence, the fiber behaves completely

detached from the matrix and does not influence the effective response, at all.

It shall be emphasized that here the numerical solution is understood as the “exact” effective response of the

RVE and the analytical solution is an “approximate” one. The numerical solution is not altered by any assumption or

approximation except those intrinsic to the finite element method itself. The finite element solution is accurate enough

in the sense that it shows essentially no sensitivity with respect to further mesh refinement. The results are obtained

for a relatively fine mesh with quadratic Lagrange finite elements. The details of the convergence tests are omitted for

the sake of brevity.
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Figure 10: Effective bulk modulus versus size of the RVE for the volume fraction of 50.26%. Increasing the resistance against the change of length
along the interface correlates to increasing the interface parameter µ. Different lines on each graph correspond to different orthogonal resistance
of the interface against opening, see the legend at the bottom. In the absence of the interface, the size effect is completely ruled out resulting in a
constant effective response.

The numerical examples are organized as follows. Figures 8–13 provide a detailed numerical parametric study.

The role of the interface on the overall behavior of the material is shown via several examples. Both the effective bulk

and shear moduli are studied throughout the examples and for different volume fractions resulting in quantitatively as

well as qualitatively different behavior. Figures 14 and 15 provide a thorough comparison between the numerical and

analytical solutions for both the effective bulk modulus and the effective shear modulus, respectively. It is concluded

that the analytical solution is in good agreement with the numerical results.

Figure 8 illustrates the effective bulk modulus versus size of the RVE for the volume fraction of f = 12.57%. Each

column corresponds to a different elastic resistance along the interface where the first column shows no resistance

at all against the change of the length of the interface. In the presence of the interface, the size-dependent effective
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Figure 11: Effective shear modulus versus size of the RVE for the volume fraction of 12.57%. Increasing the resistance against the change of length
along the interface correlates to increasing the interface parameter µ. Different lines on each graph correspond to different orthogonal resistance
of the interface against opening, see the legend at the bottom. In the absence of the interface, the size effect is completely ruled out resulting in a
constant effective response.

response is observed for all the cases. The flat line corresponds to the classical case with no interface at all and hence,

no size effect. On the first column for a given stiffness ratio, reducing the size of the RVE results in a weaker response.

This is expected since decreasing size results in more pronounced interface influence on the overall behavior. On the

first column, the elastic resistance along the interface vanishes entirely and therefore, the interface behaves exactly

according to the cohesive interface model resulting in the smaller-weaker behavior. On the second column, the overall

behavior is rather complex and a combination of the elastic resistance along the interface as well as the cohesive one

across the interface. For very large RVE, the influence of the interface almost vanishes and therefore, all the lines

coincide asymptotically with the straight line of no interface effect. The effective bulk modulus shows a non-uniform

depending on the stiffness ratio and the orthogonal resistance of the interface. More interestingly, in the presence

23



in
cr

ea
si

ng
 s

ti
ff

ne
ss

 r
at

io

increasing resistance along interface

no interface

in
cl

./m
at

. =
 1

0
in

cl
./m

at
. =

 1
in

cl
./m

at
. =

 0
.1

effective shear modulus versus size                                                                            volume fraction  f =28.27%

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

0.001 0.01 0.1 1 10 100 1000
3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

0.001 0.01 0.1 1 10 100 1000
3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

0.001 0.01 0.1 1 10 100 1000
3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

0.001 0.01 0.1 1 10 100 1000

3

4

5

6

7

8

9

10

11

12

0.001 0.01 0.1 1 10 100 1000
3

4

5

6

7

8

9

10

11

12

0.001 0.01 0.1 1 10 100 1000
3

4

5

6

7

8

9

10

11

12

0.001 0.01 0.1 1 10 100 1000
3

4

5

6

7

8

9

10

11

12

0.001 0.01 0.1 1 10 100 1000

2

4

6

8

10

12

14

0.001 0.01 0.1 1 10 100 1000
2

4

6

8

10

12

14

0.001 0.01 0.1 1 10 100 1000
2

4

6

8

10

12

14

0.001 0.01 0.1 1 10 100 1000
2

4

6

8

10

12

14

0.001 0.01 0.1 1 10 100 1000

Figure 12: Effective shear modulus versus size of the RVE for the volume fraction of 28.27%. Increasing the resistance against the change of length
along the interface correlates to increasing the interface parameter µ. Different lines on each graph correspond to different orthogonal resistance
of the interface against opening, see the legend at the bottom. In the absence of the interface, the size effect is completely ruled out resulting in a
constant effective response.

of the elastic resistance along the interface, always a critical size exists at which the overall response reaches its

extreme value. Furthermore, for a given set of interface parameters the critical size seems to be independent of the

stiffness ratio. Figures 9 and 10 overall result in the same conclusions and observations of Fig. 8 and only with minor

differences. Finally, the difference between the minimum and maximum effective response for each case increases

through increasing the volume fraction.

Figures 11–13 illustrate the effective shear modulus versus size of the RVE for various volume fractions. Overall

and qualitatively, all the three figures lead to identical conclusions with minor differences. Similar to the effective bulk

modulus, in the presence of the interface a size effect is observed. Consequently, in the absence of the interface, the

numerical studies furnish a flat line indicating no size effect, as expected. Analogous to the effective bulk modulus,
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Figure 13: Effective shear modulus versus size of the RVE for the volume fraction of 50.26%. Increasing the resistance against the change of length
along the interface correlates to increasing the interface parameter µ. Different lines on each graph correspond to different orthogonal resistance
of the interface against opening, see the legend at the bottom. In the absence of the interface, the size effect is completely ruled out resulting in a
constant effective response.

on the first column for a given stiffness ratio, reducing the size of the RVE results in a weaker response. This can be

justified by the fact that decreasing size results in more pronounced interface influence on the overall behavior. On the

first column, the interface behaves merely according to the cohesive interface model resulting in the smaller-weaker

trend. On all other columns, the overall behavior is rather complex as it combines both interface responses along and

across the interface. Increasing the size of the RVE, diminishes the influence of the interface on the effective response

and eventually vanishes altogether. That is, for very large RVE all the lines coincide asymptotically with the straight

line of no interface effect. In contrast to the effective bulk modulus, a critical size for the RVE does not necessarily

exist in all scenarios. As expected, the difference between the minimum and maximum effective response for each

case increases through increasing the volume fraction.
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Figure 14: Comparison between numerical and analytical solution of the effective bulk modulus versus size for various volume fractions and
stiffness ratios. The lines and dots correspond to the analytical and numerical solution, respectively.
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Figure 15: Comparison between numerical and analytical solution of the effective shear modulus versus size for various volume fractions and
stiffness ratios. The lines and dots correspond to the analytical and numerical solution, respectively.
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Next, we compare the numerical results against the ones obtained via the analytical solution. The graphs in

Fig. 14 and Fig. 15 correspond to the effective bulk modulus and shear modulus versus size, respectively. Overall,

the analytical solutions are in very good agreement with the numerical ones. As expected, the analytical solution

deviates more from the numerical one at higher volume fractions. Also, the analytical solution almost coincides with

the numerical one for the effective bulk modulus. That is, the graphs of Fig. 14 show are nearly identical for both

numerical and analytical approaches. Only at the highest volume fraction and for stiffness ratio of 0.1, the error is

noticeable. This is not the case for the effective shear modulus. In the case of shear, an error is observable for all

volume fractions and material parameters. Nonetheless, the analytical solution captures the trend almost perfectly

and only with a shift from the numerical solution. In other words, the analytical solution qualitatively resembles the

numerical one but not quantitatively. This is particularly appealing since the graphs are neither uniform nor self-

similar. Furthermore, in the presence of elastic resistance along the interface, the analytical solution is closer to the

numerical one. This observation implies that including the elastic interface model results in a more accurate analytical

estimate. This is a very interesting observation and can be further investigated in subsequent contributions.

5. Conclusion and outlook

Commonly accepted strategies to capture the interface behavior fall into two categories of the elastic and cohesive

interfaces. Both the elastic and cohesive interface models can be unified as the limit cases of a broader general interface

model. The governing equations for the general interface model at small-strain elasticity is given. Next, a first-order

homogenization framework is established accounting for interfaces at the microscale whereby the interface represents

the thin interphases between the fiber and the matrix. Obviously, unlike the classical first-order homogenization, the

interface-enhanced homogenization here possesses a length-scale. Hence, the established methodology here captures

the size effect in the overall behavior of continua. The length scale due to the general interface is more complex

than the one due to either the elastic or cohesive interface models. The general interface model introduces two length

scales into the problem. One is associated with the elastic resistance along the interface and roughly speaking results

in the “smaller-stronger” effect. The other length scale is due to the cohesive nature of the interface that leads to the

“smaller-weaker” effect. Obviously, the overall response of the general interface is a complex combination of both

effects illustrated via the numerical examples. Using the composite cylinders approach, an analytical solution for the

effective behavior of the composite is proposed. Through a series of numerical examples it is shown that the proposed

analytical solution is in excellent agreement with the results obtained from the finite element method. Furthermore,

it is observed that the size-dependent material response is bounded. That is, the size-dependent macro quantity of

interest cannot exceed certain mathematical bounds. Obviously, the bounds are asymptotic in the sense that they
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indicate how much one can gain or lose at most for a given micro-structure. The next immediate extension of this

work is to account for damage at the microscale and in particular, to take the cohesive damage of the interface into

account. Another extension of the current contribution is to perform a parameter identification. More precisely, our

ultimate goal is to estimate the interface constants from the size dependent overall response of the material. Such a

parameter identification reveals whether or not the influence of the interface tension, curvature or eventually higher

gradients on the overall material response is significant.

In summary, this manuscript presents our first attempt to shed light on comparing analytical and computational

homogenization accounting for general interfaces. The proposed framework allows to predict a size effect in the ma-

terial response missing in the classical first-order computational homogenization. This generic framework is broadly

applicable to improve the understanding of the size-dependent behavior of continua with a large variety of applications

in nano-materials.
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Appendix A. Generalized Young–Laplace equation

The balance equation along the interface (4)3 can be understood as a generalized Young–Laplace equation since it

reduces to the classical Young–Laplace equation. In order to further clarify the balance equation (4)3, the classical

example of the Young–Laplace equation is investigated here. The Young–Laplace equation states that the balance

equation on the interface between two static fluids reads

∆p = γ

[
1
r1

+
1
r2

]
, (A.1)

where ∆p = pin − pout is the pressure difference across the fluid interface and r1 and r2 are the principal radii of

curvature. The balance equation along the interface (4)3 reads

divσ + [[σ]] · n = 0 , (A.2)

in which σ and σ denote the bulk and interface stresses, respectively. Considering that [[σ]] = σout − σin, and

employing the relation between the hydrostatic pressure p and stress σ for inviscid fluids σ = −p i, results in [[σ]] =

∆p i. Thus, the interface balance (A.2) reads

divσ + ∆p i · n = 0 ⇒ ∆p n = −divσ . (A.3)

Inserting the interface stress σ = γ i due to surface-tension γ into the interface balance (A.3) yields

∆p n = −div ( γ i ) = −γ div i = −γ κ n ⇒ ∆p = −γ κ , (A.4)

in which the identity div i = −[div n] n = κ n is used. To obtain the Young–Laplace equation in its classical format,

the geometrical definition of the interface curvature

κ = −

[
1
r1

+
1
r2

]
, (A.5)

is required in which the negative sign arises from the convention that the curvature is negative if the interface curves

away from its normal, and that the radii of curvatures are always positive. This examples explains how the curvature

is embedded within the interface divergence operator.

30



Appendix B. In-plane shear modulus

Similar to the effective bulk modulus, it is possible to compute the effective shear modulus for available interface

types via simplification of the current (general) interface model as

• Perfect interface model can be recovered by setting µ = 0 and k → ∞ ,

• Cohesive interface model can be recovered by setting µ = 0 and k 6→ ∞ ,

• Elastic interface model can be recovered by setting µ , 0 and k → ∞ ,

• General interface model can be recovered by setting µ , 0 and k 6→ ∞ .

For a unidirectional fiber composite presenting generalized interfaces between the matrix and the fibers, the macro-

scopic in-plane shear modulus is the positive root of the polynomial

A Mµ2 + B Mµ + C = 0 with



A = 4ea + 4ebgb + 4 far2
2 + 4 fbgbr2

2 + 4dar4
2 + 4dbgbr4

2 + 4car6
2 + 4cbgbr6

2 ,

B = 4ebga + 4 fbgar2
2 − 2r4

2 + 4dbgar4
2 + gbr4

2 + 4cbgar6
2 ,

C = gar4
2 ,

in which

ga =
r2

fb
r2

+
fb[λ(2) + 2µ(2)]

µ(2)r2
+ 2dbr2 + cbr3

2 +
cbλ

(2)r3
2

2λ(2) + 3µ(2)

, (B.1)

and

gb = −

fa
r2

+
fa[λ(2) + 2µ(2)]

µ(2)r2
+ 2dar2 + car3

2 +
caλ

(2)r3
2

2λ(2) + 3µ(2)

fb
r2

+
fb[λ(2) + 2µ(2)]

µ(2)r2
+ 2dbr2 + cbr3

2 +
cbλ

(2)r3
2

2λ(2) + 3µ(2)

. (B.2)

The parameters ca, cb, da, db, ea, eb, fa, fb, are provided from the solution of the linear system

AU = F with A =


A11 A12 A13 A14 A15 A16
A21 A22 A23 A24 A25 A26
A31 A32 A33 A34 A35 A36
A41 A42 A43 A44 A45 A46
0 0 0 A54 A55 A56
0 0 A63 A64 A65 A66

 , U =


aa ab
ba bb
ca cb
da db
ea eb
fa fb

 , F =


0 0
0 0
0 0
0 0
1 −1.5
1 1.5

 . (B.3)
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The components of A are obtained through the relations

A11 =
λ(1)r3

1

2λ(1) + 3µ(1) , A12 = A22 =
µ(1)

k
+ r1 ,

A13 = −
λ(2)r3

1

2λ(2) + 3µ(2) , A14 = A24 =
µ(2)

k
− r1 ,

A15 = −A25 =
3µ(2)

kr4
1

+
1
r3

1

, A16 = −
2λ(2) + 2µ(2)

kr2
1

−
λ(2) + 2µ(2)

µ(2)r1
,

A21 =
3[λ(1) + µ(1)]µ(1)r2

1

k[2λ(1) + 3µ(1)]
+ r3

1 , A23 =
3[λ(2) + µ(2)]µ(2)r2

1

k[2λ(2) + 3µ(2)]
− r3

1 ,

A26 =
λ(2) + µ(2)

kr2
1

−
1
r1
, A31 =

3[λ(1) + 2µ(1)]µr1

2λ(1) + 3µ(1) ,

A32 = −2µ(1) +
µ

r1
, A33 =

3[λ(2) + 2µ(2)]µr1

2λ(2) + 3µ(2) ,

A34 = 2µ(2) +
µ

r1
, A35 =

3[µ + 2µ(2)r1]
r5

1

,

A36 =
µ(2)µ − [λ(2) + µ(2)][µ + 4µ(2)r1]

µ(2)r3
1

, A41 = −
6r1

[
[λ(1) + 2µ(1)]µ + [λ(1) + µ(1)]µ(1)r1

]
2λ(1) + 3µ(1) ,

A42 = −
2[µ + µ(1)r1]

r1
, A43 = −

6r1

[
[λ(2) + 2µ(2)]µ − [λ(2) + µ(2)]µ(2)r1

]
2λ(2) + 3µ(2) ,

A44 = −
2[µ − µ(2)r1]

r1
, A45 = −

6[µ − µ(2)r1]
r5

1

,

A46 =
2[2λ(1) + 3µ(1)]

[
−µ(2)µ + [λ(2) + µ(2)][µ + µ(2)r1]

]
[2λ(1) + 3µ(1)]µ(2)r3

1

, A54 = A64 = 2µ(2) ,

A55 = −A65 =
6µ(2)

r4
2

, A56 = −2A66 = −
4[λ(2) + µ(2)]

r2
2

, A63 =
6[λ(2) + µ(2)]µ(2)r2

2

2λ(2) + 3µ(2) .

Appendix C. Further elastic constants

Appendix C.1. Axial shearing

To identify the axial shear modulus, the RVE of the composite is subjected to shear displacement in the direction

parallel to the fiber, while the top and bottom edges have zero normal stress, as shown in Fig. C.16. Under these

conditions, the displacement is zero at the r and θ directions, while the displacement field in the z direction is expressed

as

u(i)
z =

[
D(i)

1 r + D(i)
2

1
r

]
cos θ , i = 1, 2 .

The strains and stresses for the fiber, the matrix and the general interface are expressed with the help of the
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Figure C.16: Fiber composite RVE under axial shear strain conditions.

relations (18)–(21). Analogous to the other elastic constants, the problem is reduced on calculating D(1)
1 , D(1)

2 , D(2)
1

and D(2)
2 . These constants are obtained with the help of the overall boundary and compatibility conditions, as well as

the jump conditions at the interface:

• Finite solution at the center of the fiber

uz finite at r = 0 or D(1)
2 = 0 . (C.1)

• Boundary condition at the outer cylinder

u(2)
z (r2) = 2ε0r2 cos θ . (C.2)

• Traction equilibrium at the interface

1
r1

∂σθz
∂θ

+ σ(2)
rz (r1) − σ(1)

rz (r1) = 0 . (C.3)

• The average traction at the interface

σ(2)
rz (r1) + σ(1)

rz (r1)
2

= k
[
u(2)

z (r1) − u(1)
z (r1)

]
. (C.4)

The system of equations (C.1)–(C.4) is linear and can be solved explicitly, permitting to obtain the stresses, strains

and displacements at all phases (matrix, fiber, interface). The macroscopic axial shear modulus is then computed
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according to the formula

Mµaxial =
σ(2)

rz (r2)
2ε0 cos θ

, (C.5)

resulting in the analytical expression

Mµaxial = µ(2)

[
µ(1)[1 + c] + µ(2)[1 − c]

]
[1 + ω/φ] + 2µ(1)µ(2)[1 − c]/φ + 2[1 + c]ω[

µ(1)[1 − c] + µ(2)[1 + c]
]
[1 + ω/φ] + 2µ(1)µ(2)[1 + c]/φ + 2[1 − c]ω

, (C.6)

with ω = µ/2r1 and φ = 2kr1. For perfect interface the above expression is reduced to the one provided by [113].

Appendix C.2. Axial Young’s modulus and stiffness coefficient

The axial Young’s modulus and the axial stiffness coefficient are computed with the help of similar boundary value

problems illustrated in Fig. C.17. The RVE of the composite is subjected to uniaxial stretching along the fiber direction,

while circumferentially it is considered either traction free (for the Young’s modulus) or displacement fixed (for the

axial stiffness component). Under such configuration the displacement fields are given by the expressions

u(i)
r = D(i)

1 r + D(i)
2

1
r
, u(i)

z = ε0z, i = 1, 2 ,

where the coefficients D are constants to be evaluated.

(a) (b)

Figure C.17: Boundary value problems for a) axial Young’s modulus and b) axial stiffness coefficient.

The strains and stresses for the fiber, the matrix and the general interface are expressed with the help of the

relations (18)–(21). The equations of these two problems are the following:
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• Finite solution at the center of the fiber

uz finite at r = 0 or D(1)
2 = 0 . (C.7)

• Boundary condition at the outer cylinder

σ(2)
rr (r2) = 0 (axial Young’s modulus) , u(2)

r (r2) = 0 (axial stiffness coefficient) . (C.8)

• Traction equilibrium at the interface

−
σθθ
r1

+ σ(2)
rr (r1) − σ(1)

rr (r1) = 0 . (C.9)

• The average traction at the interface

σ(2)
rr (r1) + σ(1)

rr (r1)
2

= k
[
u(2)

r (r1) − u(1)
r (r1)

]
. (C.10)

From this system of equations the stresses, strains and displacements at all phases (matrix, fiber, interface) are com-

puted, allowing to evaluate the average mechanical work in the RVE. Then both elastic constants are given by the

formula [114]

MEz =
2

V ε2
0

∫
B

WdV for BC (C.8)1 , MCzzzz =
2

V ε2
0

∫
B

WdV for BC (C.8)2 , (C.11)

resulting in the analytical expressions

MEz =

[ [
λ(1)[1 + A1] + 2µ(1)

]
c +

[
λ(2)[1 + B1] + 2µ(2)

]
[1 − c]

]
+ 8cω , (C.12)

MCzzzz =

[ [
λ(1)[1 + A2] + 2µ(1)

]
c +

[
λ(2)[1 + B2] + 2µ(2)

]
[1 − c]

]
+ 8cω , (C.13)

in which

A1 =
a11 + a12 ω/φ

a13 + a14 ω/φ
, B1 =

cµ(2)b11 − λ
(2)b12

cµ(2)b13 + [λ(2) + µ(2)]b12
,

A2 =
a21

a22 + a23/φ
, B2 =

cb11

cb13 − b12
,

(C.14)
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a11 = cµ(2)[λ(1) − λ(2)] + λ(2)µ(2) + λ(1)[λ(2) + µ(2)] + 2λ(1)µ(2)[λ(2) + µ(2)][1 − c]/φ,

a12 = cµ(2)[λ(2) + λ(1)] + λ(1)[λ(2) + µ(2)] − λ(2)µ(2),

a13 = −2[λ(1) + µ(1)]µ(2)[λ(2) + µ(2)][1 − c]/φ − µ(2)[λ(2) + µ(2)][1 − c]

−
[
λ(2) + µ(2)[1 + c]

] [
λ(1) + µ(1) + 2ω

]
,

a14 = cµ(2)[λ(1) + µ(1) − λ(2) − µ(2)] + [λ(2) + µ(2)][λ(1) + µ(1) + µ(2)],

b11 = λ(2) − λ(1) + 2λ(2)[λ(1) + µ(1)]/φ + [λ(1) + λ(2)]ω/φ,

b12 = 2[λ(1) + µ(1)]µ(2)/φ + [λ(1) + µ(1) + µ(2)][1 + ω/φ] + 2ω,

b13 = −[1 + [λ(1) + µ(1)]/φ][λ(2) + µ(2) − ω] + [1 − [λ(2) + µ(2)]/φ][λ(1) + µ(1) + ω],

a21 = −2λ(1)[cλ(2) + [1 + c]µ(2)]/φ + [λ(2) − λ(1)][1 − c] − [λ(1) + λ(2)][1 − c]ω/φ,

a22 = c[λ(2) + µ(2) − µ(1)] + µ(1) + µ(2) + [λ(1) + 2ω][1 − c],

a23 = 2[λ(1) + µ(1)]
[
[λ(2) + µ(2)]c + µ(2)

]
+

[
λ(1) + µ(1) + µ(2) − c[λ(1) + µ(1) − λ(2) − µ(2)]

]
ω,

(C.15)

with ω = µ/2r1 and φ = kr1.
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