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Abstract—This paper provides several asymptotic capacity
results for the multiple-input multiple-output free-space optical
intensity channel in the regime of high signal-to-noise ratio
(SNR). For the case where the channel matrix has full column
rank, the asymptotic capacity is derived assuming a peak-power
constraint on each transmit antenna, or an average-power con-
straint on the total power across all transmit antennas, or both.
For multiple-input and single-output channels, the asymptotic
high-SNR capacity is derived when either only the total average
power is constrained, or only the per-antenna peak power is
constrained, or both but with the average-power constraint being
sufficiently loose.

I. INTRODUCTION

Optical wireless communication is a form of communication
in which visible, infrared, or ultraviolet light is transmitted
in free space (air or vacuum) to carry a message to its
destination. Recent works suggest that it is a promising
solution to replacing some of the existing radio-frequency
(RF) wireless communication systems in order to prevent
future rate bottlenecks [1]–[3]. Particularly attractive are sim-
ple intensity-modulation–direct-detection (IM-DD) systems. In
such a system, the transmitter modulates the intensity of
optical signals coming from light emitting diodes (LEDs) or
laser diodes (LDs), and the receiver measures incoming optical
intensities by means of photodetectors. The electrical output
signals of the photodetectors are essentially proportional to
the incoming optical intensities, but are corrupted by thermal
noise of the photodetectors, relative-intensity noise of random
intensity fluctuations inherent to low-cost LEDs and LDs, and
shot noise caused by ambient light. In a first approximation,
noise coming from these sources is usually modeled as being
additive Gaussian and independent of the transmitted light
signal; see [1], [2].

The free-space optical intensity channel has been exten-
sively studied in the literature in the single-input single-
output (SISO) scenario, where the transmitter employs a single
transmit LED or LD, and the receiver a single photodetector.
For example, the work [4] established upper and lower bounds
on the capacity of this channel that are asymptotically tight
in both high-signal-to-noise ratio (SNR) and low-SNR lim-
its. Improved bounds at finite SNR have subsequently been
presented in [5]–[8].

Of increasing practical interest are multiple-input and multi-
ple-output (MIMO) free-space channels, where the transmitter

is equipped with multiple LEDs or LDs, and the receiver with
multiple photodetectors. Various code constructions for this
setup have been proposed in [9]–[12]. First bounds on the
capacity were presented in [8], [13], focusing on scenarios
without crosstalk so the MIMO channel can be modeled
through a diagonal channel matrix. While [8] constrained
the peak optical intensity at each transmitting LED, [13]
constrained the average total optical intensity over all LEDs.

In this paper we consider more general MIMO systems
accounting for crosstalk between the different LEDs and the
different photodetectors (implying that the channel matrix is
not diagonal), and we impose both a peak-power constraint
on each LED and an average-power constraint on all LEDs.
We note that, for safety reasons and implementation consid-
erations, practical systems are usually indeed subject to both
constraints. We present the asymptotic high-SNR capacity of
the MIMO optical intensity channel for the following cases:
• The channel matrix is of full column rank, i.e., its rank

equals the number of transmit LEDs, and the inputs are
subject to any peak- and average-power constraints;

• The channel is multiple-input and single-output (MISO),
and the inputs are subject to only a peak-power constraint,
or only an average-power constraint, or both constraints
but with the average-power constraint being sufficiently
loose.

We prove these asymptotic capacity results by providing upper
and lower bounds on capacity. The upper bounds are obtained
by means of the duality capacity upper-bounding technique;
see, e.g., [4], [14]. The lower bounds are based on the Entropy
Power Inequality. Some details in the derivations are omitted
due to space limitations.

The rest of this paper is arranged as follows: Section II
describes the channel model; Section III presents the results
in the case where the channel matrix has full column rank;
Section IV presents the results for MISO channels; and Sec-
tion V concludes the paper with a few remarks.

II. CHANNEL MODEL

We consider a communication scenario where the transmit-
ter is equipped with nT LEDs (or LDs) and the receiver with
nR photodetectors. Each photodetector receives a superposi-
tion of the signals sent by the LEDs, and we assume that the



crosstalk between LEDs is constant. Hence, the channel output
is an nR-vector given by

Y = Hx + Z, (1)

where the nT-vector x denotes the channel input, whose entries
are proportional to the optical intensities of the corresponding
LEDs, and are therefore nonnegative:

x(i) ∈ R+
0 , i = 1, . . . , nT; (2)

where the nR × nT matrix H is the constant channel mixing
matrix with nonnegative entries:

h(i,j) ∈ R+
0 , ∀(i, j) ∈ {1, . . . , nR} × {1, . . . , nT}; (3)

and where Z is a centered Gaussian noise vector with a given
positive definite nR × nR covariance matrix K:

Z ∼ N (0,K). (4)

Note that, in contrast to the input x, the output Y can have
negative components.

Inputs are subject to a peak-power (peak-intensity) and an
average-power (average-intensity) constraint:

Pr
[
X(i) > A

]
= 0, ∀ i ∈ {1, . . . , nT}, (5)

nT∑
i=1

E
[
X(i)

]
≤ E, (6)

for some fixed parameters A,E > 0. Note that the average-
power constraint is on the expectation of the channel input and
not on its square. Also note that A describes the maximum
power of each single LED, while E describes the allowed
average total power of all LEDs together.

We denote the ratio between the allowed average power and
the allowed peak power by α:

α ,
E

A
, (7)

where 0 < α ≤ nT. For α = nT the average-power
constraint is inactive in the sense that it is automatically
satisfied whenever the peak-power constraint is satisfied. Thus,
α = nT corresponds to the case with only a peak-power
constraint. On the other hand, α � 1 corresponds to having
a dominant average-power constraint and only a very weak
peak-power constraint.

We denote the capacity of the channel (1) with allowed peak
power A and allowed average power E by CH,K(A,E). The
capacity is given by [15]

CH,K(A,E) = sup
Q

I(Q,W ) (8)

where the supremum is over all laws Q on X satisfying
(2), (5), and (6). When only an average-power constraint is
imposed, capacity is denoted by CH,K(E). It is given as in
(8) except that the supremum is taken over all laws Q on X
satisfying (2) and (6).

Due to the symmetry of the channel law, we have the
following basic property.

Proposition 1: If α ≥ nT
2 , then there exists an optimal input

distribution Q∗ such that

EQ∗
[
X(i)

]
=

A

2
, ∀ i ∈ {1, . . . , nT}, (9)

and

CH,K(A, αA) = CH,K

(
A,

nT

2
A
)
. (10)

Thus, for α ≥ nT
2 , the average-power constraint is inactive.

Proof: The proof of this proposition follows the proof
of [4, Prop. 9] with all variables replaced by corresponding
vectors. The details are omitted.

III. THE MIMO CHANNEL WITH FULL-COLUMN-RANK H

In this section we derive the asymptotic high-SNR capacity
of the channel (1) when the channel matrix H has full column
rank.

A. Asymptotic High-SNR Capacity
We start with the case where H is square.
Theorem 2: Let H be square (so nT = nR = n) and

invertible. If 0 < α < n
2 , then

lim
A→∞

{
CH,K(A, αA)− n logA

}
=

1

2
log det(HTK−1H)− n

2
log 2πe

− nµ∗
(

1− α

n

)
− n log

(
1− αµ∗

n

)
(11)

where µ∗ is the unique solution to

α

n
=

1

µ∗
− e−µ

∗

1− e−µ∗
. (12)

If α ≥ n
2 , then

lim
A→∞

{
CH,K(A, αA)− n logA

}
=

1

2
log det(HTK−1H)− n

2
log 2πe. (13)

If there is only an average-power constraint (6), then

lim
E→∞

{
CH,K(E)− n logE

}
=

1

2
log det(HTK−1H)− n

2
log

2πn2

e
. (14)

Proof: See Section III-B.
We next generalize Theorem 2 to the case where H is not

necessarily square but has full column rank.
Corollary 3: If H has full column rank, i.e., if nR ≥ nT

and rank(H) = nT, all results of Theorem 2 still apply with
n replaced by nT.

Proof: See Section III-C.
Remark 4: For comparison, consider the SISO channel

Y = x + Z where Z ∼ N (0, 1). Denote its capacity under
constraints (5) and (6) by C1,1(A,E). Comparing Corollary 3
and the results in [4] we observe the following. For any α ≥ 0

lim
A→∞

{
CH,K(A, αA)− nTC1,1

(
A,

α

nT
A

)}
=

1

2
log det(HTK−1H). (15)



Similarly, in the absence of a peak-power constraint,

lim
E→∞

{
CH,K(E)− nTC1,1

(
E

nT

)}
=

1

2
log det(HTK−1H).

(16)

B. Proof of Theorem 2

Since H is square and invertible,

I(X; HX + Z) = I(X;X + H−1Z) = I(X;X + Z′) (17)

where Z′ ∼ N
(
0,H−1KH−T

)
.

We start with the case where 0 < α < n
2 . We first derive an

upper bound on capacity based on the following duality upper
bound (see [4, Eq. (1)]). For any output distribution R(·) on
the real line R,

CH,K(A, αA) ≤ sup
Q

E
[
D
(
W (·|X)

∥∥R(·)
)]
, (18)

where the supremum is over all input distributions Q satisfying
both constraints (5) and (6). We pick the output distribution

R(y) =

n∏
i=1

Ri
(
y(i)
)

(19)

with each Ri(·) chosen as in [4, Eq. (47)]:

Ri(y) =



1√
2πσi

e
− y2

2σ2
i y < −δi,

1
A
·

µ∗
(

1−2Q
(
δi
σi

))
e
µ∗δi
A −e−µ

∗(1+
δi
A )

e−
µ∗y
A −δi ≤ y ≤ A + δi,

1√
2πσi

e
− (y−A)2

2σ2
i y > A + δi,

(20)

where

σi ,
√

Var
[
Z ′(i)

]
, (21)

which is given by the square root of the ith diagonal entry in
H−1KH−T; and

δi , σi · δ, i ∈ {1, . . . , n}, (22)

with

δ , log(1 + A). (23)

Here, Q(·) denotes the complementary cumulative distribution
function of the standard Gaussian.

Note that for each i, Ri(·) consists of a truncated expo-
nential distribution with Gaussian tails on both sides. The
truncated exponential distribution is well-known to maximize
differential entropy under a peak and a first-moment constraint
[16, Ch. 12].

Since the chosen R(·) has independent components, the
relative entropy decouples:

D
(
W (·|x)

∥∥R(·)
)

=

n∑
i=1

D
(
W (i)(·|x(i))

∥∥Ri(·)), (24)

and

CH,K(A, αA) ≤
n∑
i=1

sup
Q

E
[
D
(
W (i)(·|X(i))

∥∥Ri(·))]. (25)

By applying the same derivations as in [4, App. B.B] to each
summand on the right-hand side (RHS) of (25), the following
upper bound can be established:

CH,K(A, αA)

≤ nQ(δ) +
nδ√
2π
e−

δ2

2 − 1

2

n∑
i=1

log σ2
i −

n

2

+
1

2
log det(HTK−1H) +

n∑
i=1

(
1− 2Q

(
δ +

A

2σi

))

· log
A
(
eµ
∗δ
σi
A − e−µ∗(1+δ

σi
A

)
)

σi
√

2πµ∗(1− 2Q(δ))

+ µ∗α

(
1− 2Q

(
δ +

A

2σmin

))
+

n∑
i=1

µ∗√
2π

σi
A

(
e−

δ2

2 − e−
( A
σi

+δ)
2

2

)
, (26)

where σmin , min{σ1, . . . , σn}. Taking A→∞ in the above
proves that the left-hand side (LHS) of (11) is upper-bounded
by its RHS.

To show that the LHS of (11) is also lower-bounded by its
RHS, we pick the following distribution for X

Q(x) =

n∏
i=1

1

A

µ∗

1− e−µ∗
e−

µ∗
A
x(i)

· I
{

0 ≤ x(i) ≤ A
}
, (27)

with I{·} denoting the indicator function. Using the Entropy
Power Inequality (EPI) [16, Thm. 17.7.3] we have

CH,K(A, αA) ≥ I(X;X + Z′) (28)
= h(X + Z′)− h(Z′) (29)

≥ n

2
log
(
e

2
n h(X) + e

2
n h(Z′)

)
− h(Z′). (30)

Evaluating the differential entropy terms h(X) and h(Z′) and
letting A tend to infinity establish the desired asymptotic lower
bound.

The statements for the case α ≥ n
2 and for the case with

only an average-power constraint can be shown following
similar lines as above, if one adapts the choices of Ri(·) in
(20) and Q(·) in (27).

For α ≥ n
2 , we choose each Ri(·) as [4, Eq. (64)]

Ri(y) =


1√

2πσi
e
− y2

2σ2
i y < −δi,

1−2Q
(
δi
σi

)
A+2δi

−δi ≤ y ≤ A + δi,

1√
2πσi

e
− (y−A)2

2σ2
i y > A + δi

(31)

with σi and δi given by (21)–(23) (Ri(·) consists of a uniform
distribution with Gaussian tails); and choose Q(·) as

Q(x) =

n∏
i=1

1

A
· I
{

0 ≤ x(i) ≤ A
}
. (32)



For the case with only an average-power constraint, we
choose Ri(·) as [4, Eq. (70)]

Ri(y) =



1

β e
−
δ2
i

2σ2
i +
√

2πσiQ
(
δi
σi

) e
− y2

2σ2
i y < −δi,

1

β e
−
δ2
i

2σ2
i +
√

2πσiQ
(
δi
σi

) e
− δ2i

2σ2
i e−

y+δi
β y ≥ −δi

(33)

with σi given by (21), δi , σi
√

logE, and β , E
n (Ri(·)

consists of an exponential distribution with a Gaussian tail);
and choose the distribution of X as

Q(x) =

n∏
i=1

n

E
e−

n
E
x(i)

· I
{
x(i) ≥ 0

}
. (34)

C. Proof of Corollary 3

Since K is positive definite, it can be written as K = STS
and

I(X; HX + Z) = I(X; S−THX + S−TZ) (35)
= I(X; H̃X + Z̃) (36)

with Z̃ ∼ N (0, InR). Let the singular value decomposition
(SVD) of H̃ = S−TH be

H̃ = UΣV, (37)

where U is an nR×nR unitary matrix, V is an nT×nT unitary
matrix, and Σ is an nR × nT diagonal matrix of the form

Σ =

(
ΣnT

0

)
(38)

with ΣnT being an nT × nT diagonal matrix. Because H has
full column rank and S is invertible, H̃ also has full column
rank and the diagonal elements of ΣnT are all positive. Thus,

I(X; HX + Z)

= I(X; ΣVX + UTZ̃) (39)
= I(X; ΣVX + Z̃) (40)
= I
(
X; ΣnT VX + Z̃nT , Z̃

(nT+1), . . . , Z̃(nR)
)

(41)

= I(X; ΣnT VX + Z̃nT) (42)
= I(X;X + VTΣ−1

nT
Z̃nT) (43)

= I(X;X + Z′nT
). (44)

Here, (40) holds because both Z̃ and UTZ̃ have the same dis-
tribution N (0, InR); (41) follows from (38); and (42) follows
by dropping the noise terms Z̃(nT+1), . . . , Z̃(nR), which are
independent of Z̃nT and X. In (44) we have

Z′nT
∼ N

(
0,H−1KH−T

)
. (45)

Hence, (44) is identical to (17) with n = nT. The remainder
of the proof is identical to that of Theorem 2.

IV. THE MISO CHANNEL

In this section we consider the MISO channel where nR = 1
and solve its asymptotic high-SNR capacity in some special
cases. For the MISO channel, the channel matrix H becomes a
row vector hT with nonnegative entries, while the covariance
matrix K for the additive noise is reduced to a scalar σ2. Thus
(1) becomes

Y = hTx + Z, (46)

where Z ∼ N
(
0, σ2

)
. The input X is again subject to the

constraints (5) and (6). Denote X̄ , hTX, then, because
X (−− X̄ (−− Y form a Markov chain, and because X̄
is a function of X, we have

I(X;Y ) = I(X̄;Y ). (47)

Hence the MISO channel (46) is equivalent to the SISO
channel whose input is X̄ , while the constraints (5) and (6)
on X are transformed to a set of admissible distributions for
X̄ . For example:
• When X is only subject to a peak-power constraint A

(and no average-power constraint), then X̄ is only subject
to a peak-power constraint hsumA, where

hsum ,
nT∑
i=1

h(i). (48)

• When X is only subject to an average-power constraint E
(and no peak-power constraint), then X̄ is only subject
to an average-power constraint hmaxE, where

hmax , max
i∈{1,...,nT}

h(i). (49)

Formally, we have the following two propositions.
Proposition 5: When α ≥ nT

2 ,

ChT,σ2(A, αA) = C1,σ2

(
hsumA,

hsumA

2

)
, (50)

where hsum is defined in (48).
Proof: When X satisfies the peak-power constraint (5),

X̄ must satisfy X̄ ≤ hsumA with probability one. Hence
ChT,σ2(A, αA) cannot exceed the capacity of the SISO chan-
nel with allowed peak power hsumA. By [4, Prop. 9], for a
SISO channel with allowed peak power hsumA, adding an
average-power constraint of hsumA

2 does not affect its capacity.
We hence know that the LHS of (50) is upper-bounded by the
RHS.

For the reverse direction, consider any target distribution on
X̄ satisfying peak-power constraint hsumA and average-power
constraint 1

2hsumA. We need only to show that such an X̄ can
be generated by some distribution for X satisfying peak- and
average-power constraints A and αA, respectively. To this end,
we let the transmitter send the same signal on all LEDs:

X(i) =
X̄

hsum
, i ∈ {1, . . . , nT}. (51)

One can easily check that both constraints are indeed satisfied
by this choice.



Proposition 6: Without a peak-power constraint,

ChT,σ2(E) = C1,σ2(hmaxE), (52)

where hmax is defined in (49).
Proof: When X satisfies (6), we have

E
[
X̄
]

=

nT∑
i=1

h(i) E
[
X(i)

]
≤ hmaxE, (53)

so ChT,σ2(E) ≤ C1,σ2(hmaxE). For the reverse direction, to
achieve any target distribution on X̄ satisfying E

[
X̄
]
≤ hmaxE,

the transmitter can let the LED corresponding to hmax send
X̄/hmax, and let all the other LEDs send zero.

Using Propositions 5 and 6 together with the asymptotic
capacity results for SISO channels [4, Cor. 6 and Prop. 8], we
immediately obtain the following.

Corollary 7: When α ≥ nT
2 ,

lim
A→∞

{
ChT,σ2(A, αA)− logA

}
=

1

2
log

h2
sum

2πeσ2
. (54)

Without a peak-power constraint,

lim
E→∞

{
ChT,σ2(E)− logE

}
=

1

2
log

eh2
max

2πσ2
. (55)

The last result of this section shows that (54) holds under
a less restrictive condition than the one in Corollary 7.

Theorem 8: Let the transmit LEDs be ordered such that

h(1) ≥ h(2) ≥ · · · ≥ h(nT). (56)

Limit (54) holds whenever

α ≥ αth ,
1

hsum

nT∑
i=1

(
i− 1

2

)
h(i). (57)

Note that the RHS of (57) is less than or equal to nT
2 , where

equality holds if and only if all h(i) are the same. For example,
when nT = 2, it is given by

αth =
1

2
+

h(2)

h(1) + h(2)
. (58)

Proof of Theorem 8: A tight upper bound on capacity
follows immediately from Corollary 7. Hence we only need
to derive a matching lower bound. To this end, we use [4,
Eq. (40)], which says

I(X̄;Y ) ≥ 1

2
log

(
1 +

e2h(X̄)

2πeσ2

)
. (59)

We show that, under (57), one can make X̄ uniformly dis-
tributed on the interval [0, hsumA], which gives h(X̄) =
log(hsumA), yielding the desired lower bound. The uniform
distribution is achieved as follows. For every i ∈ {1, . . . , nT},
choose with probability pi , h(i)/hsum the input signals
X(1), . . . , X(nT) jointly as

X(j) = A w.p. 1, j ∈ {1, . . . , i− 1}, (60a)
X(i) uniform over [0,A], (60b)
X(j) = 0 w.p. 1, j ∈ {i+ 1, . . . , nT}. (60c)

The average input power of this strategy is equal to the RHS
of (57) times A.

V. CONCLUDING REMARKS

MIMO wireless optical channels are different from their RF
counterparts due to different constraints on the input power.
The presence of peak and first-moment input constraints does
not seem to allow a closed-form capacity expression at finite
SNR. However, in the high-SNR regime, when the channel
matrix H has full column rank, the MIMO optical channel con-
sidered here behaves similarly to the MIMO Gaussian channel
under a second-moment constraint only. The capacity prelog
is given by the column rank nT, and the asymptotic high-SNR
capacity depends on H and the noise covariance K only via the
constant term 1

2 log det(HTK−1H). This asymptotic capacity
can be achieved by an input vector with IID components.

When H does not have full column rank, the wireless optical
channel is more difficult to analyze even at high SNR. For
the special case of MISO channels, we have identified the
optimal input strategies at high SNR for a certain range of
power constraints. Remarkably, it is possible to achieve a
uniform distribution at the single receiving antenna even with
a nontrivial average-power constraint that is smaller than nT

2 .
A generalization of these results is part of ongoing research.
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