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Loss of a blade from a running turbofan

rotor asymmetric as well. In a nonsym

dependent. In this paper, all the dynami
cal equations include the effect of the rotary inertia and gyroscopic moments as a result of both 
shaft bending as well as staggered blades flexing in-and-out of the plane of the disk. The governing equations also account for internal 
extern
material damping in the shaft and the 

n, the shaft may also be subjected to a t
ave coupled flexural–torsional motion i
l spanwise direction of the blade airfoi

namic stability of the rotor, especially du
introduces not only huge imbalance into the dynamical system rather it makes the entire 
 rotor, the various terms of mass, gyroscopic and stiffness matrices also become time-

al damping in the support bearing system. In addition to the unbalance load at the disk 
orque and axial forces. Here, the fan blades are modeled as pre-twisted thin shallow shells. 
n the lateral out-of-plane direction as well as extensional degrees-of-freedom in the long-

l. The effect of blade tip rub forces being transmitted to the shaft are analyzed in terms of 
ring windmilling.
1. Introduction

Losing a blade from a turbofan rotor of a jet engine during its normal operation either due to bird-strike or due to
fatigue damage is a real possibility, and as such it is a major safety concern in commercial civil aviation [1–6].
This possibility has led to the certification requirements of demonstrating the engine capability by running a successful
Fan Blade-Out (FBO) test and being able to shut-it off successfully in 15 s. Recently, due to certain field events this
requirement has been made more stringent by adding the clause on analyzing the engine blade-out loads during the
windmilling of a damaged rotor [7] as a consequence of the fan blade-out event. The civil aviation regulatory agencies such
as US Federal Aviation Administration has additional regulation (CFR 33.74) requiring the engine manufacturer to show
that continued rotation of the rotors after an FBO event for the remaining diversion mission (up to 3 or more hours) will
also result in a safe condition. Other international regulatory agencies such as European Aviation Safety Agency (EASA) also
have similar requirements. FAA [8] advisory circular, AC33.74-92-1A, provides guidance on how to demonstrate
compliance with the continued rotation regulation. This demonstration is normally done by analysis.

Loss of a fan blade from a turbofan rotor introduces many different types of nonlinearities in the dynamical system.
First, the release blade applies a large impact load on the containment system, which is generally a ring type of structure.
During this phase of the impact event, depending upon the strength of the containment structure the release blade may
or may not be able to punch a hole in the inner shell of the fan casing [9,10]. Most of the test data related to the full fan
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blade-loss event on an engine are of proprietary nature and are not currently available in public domain. Any experiment
simulating blade-loss or tip-rub under controlled conditions [11] is not only extremely expensive, rather sometimes they
involve serious risk to the safety of the rig and the test personnel as well. As such there is a scarcity of test data, to compare
the results of any fan blade-out analytical model in the published literature. However there are ample information from
the actual field events and their investigation reports [12], which provide the necessary evidence about the magnitude of
the dynamic loads due to fan blade-loss under operating conditions of a turbofan engine.

In the aftermath of blade-loss, the fan–disk rotating system starts moving off-center in the heavier side of the disk due
to sudden large imbalance introduced on the rotor–shaft. This eccentric rotor no longer remains symmetric about its
center of rotation, and the spinning of the asymmetric rotor introduces another set of nonlinearities. Recently an attempt
has been made to analyze the free vibrational characteristics of a weakly asymmetric rotor [13]. The present work is the
first paper of its kind in the field of rotormechanics which addresses the forced transient response of an asymmetric
flexible bladed-rotor with also considering the casing rub-surface flexibility in its formulation while the outer fan-case is
still effectively undeformed. The inner surface abradable flexibility is expressed by an equivalent term KRub and its
dynamic effect on the blade-tip is included using a penalty method approach.

In this paper, we consider the transient dynamic response of a complete rotor system in a jet engine with its blade
rubbing against the containment case. In the past, researchers have studied the dynamic stability of a typical rotor shaft in
many different forms by varying parameters such as internal damping, torque, tip-rub, pulsating axial force etc. [14–25].
However in general, these studies invariably consider the bladed-disk assembly as rigid with entire flexibility of the
dynamical system attributed to the shaft material with an artificial nonlinear spring to account for blade-tip rub forces.
Flexibility of a blade–disk assembly has always been a concern in terms of dynamic behavior of a bladed-disk–rotor
system, but no comprehensive studies have been carried out which has focused on all the interaction effects. The blade/
casing interaction can be of many different types, such as deformable case response [26] or a plastically deformable
abradable inner surface [27,28] with material removal being considered due to tip-rub. In 1995 Hsieh and Abel [29] were
the first ones to use finite-element analysis to investigate into the combined effect of flexibilities of disk and individual blades.
Genta [30] carried out a stability analysis of a bladed-rotor dynamical system. For the first time, Sinha [31] combined the
bending flexibility of individual blades with that of the rotating shaft in a fixed coordinate system by treating each component
as separate Euler–Bernoulli’s beams. Lesaffre et al. [32] extended Sinha’s model to carry out the dynamic stability analysis of a
typical overhung disk–rotor system commonly used in a turbofan engine. Similar approach was followed by Cao et al. [33] to
analyze the nonlinear effect of such a system with a squeeze film damper. Legrand and his team’s [34,35] research have been
focused on the interaction effects of flexibility of the bladed-disk and the outer casing. Gruin et al. [36] studied the nonlinear
dynamics of a bladed dual shaft. Recently, Shang et al. [37] have used a simplified rotor–stator model for analyzing the global
response during the rub with friction. Arzina [38] wrote a thesis analyzing the compressor blades rubbing against the case.
Williams [39] used an implicit time marching forward numerical scheme to analyze heavy tip-rub. Turner et al. [40] considered
the blade deflection characteristics during the rub event. Torkhani et al. [41] experimentally and numerically analyzed different
amounts of rub during speed transients of the rotor. Lahriri et al. [42] studied the stator–rotor contact dynamics using a
nonideal drive system. Kim and Lee [43] have done a groundbreaking work by studying the interaction effects between an
asymmetric rotor with an anisotropic stator.

Here in the current formulation, the blade geometry is assumed to be a pre-twisted airfoil [44] which can deform both
in the flexural as well as in extensional modes [45]. Both the shaft and all the individual blade deformations are
represented by a set of Rayleigh–Ritz’s trial functions which satisfy all the geometric as well as natural boundary
conditions arbitrarily. Thus, by using Galerkin’s method a direct matrix formulation of the nonlinear dynamic problem has
been developed, which does not make any such simplifying assumptions, nor does it need any transformation. Yet, it is
general enough to include the effect of viscoelasticity in the shaft material, aerodynamic load on the blades, nonuniform
support damping as well as the gyroscopic terms. In the prevailing rotordynamics approach, due to complexity of the
nonlinear analysis, the flexible shaft–disk of the dynamical system are frequently reduced to much simplified two-degrees
of freedom Jeffcott-rotor models made up of a set of lumped-masses and springs. Furthermore, due to large computation
time involved, attempt is usually limited to obtain the solution only in frequency domain, where peak response are
determined at certain pre-determined harmonic excitation frequencies, which happens to be the entire range of the
running speed of the rotor during normal operation.

2. Mathematical formulations

In the current paper, we consider dynamic response of an overhung rotor supported by a set of Nc number of bearings at
multiple axial locations and deformable blades rubbing against a case at the other end (see Fig. 1). The rotor shaft may be
under a periodic sinusoidal axial force of magnitude Pt superimposed on a constant static axial load P0 and torque T0 on the
system. In rotating machinery, such pulsating axial forces are usually caused by misalignment, aerodynamic forces, and
inlet distortion etc. The rotor system considered in this paper is composed of a flexible hollow shaft, a rigid disk, and a full
set of elastically deformable blades, a sector of which may be rubbing against the inside surface of an outer cylindrical
containment structure. In this study, we have assumed that the containment structure behaves like a rigid wall and the
spinning shaft–disk with bladed rotor as an impactor hitting its inside concave surface at a shallow oblique angle.
The dynamics of rotating blade-tips hitting a rigid cylindrical wall was considered in full detail in author’s previous
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Fig. 1. Overhung fan disk rotor shaft being supported by multiple bearings with a typical pre-twisted airfoil fan blade.
investigations [45,46]. The inner surface of the fan case has a lining of a relatively soft material like honeycomb, foam or,
an abradable coating against which the blade tip is allowed to rub with stiffness in the radial direction represented as KRub.
The tip-rub forces can deform the blade in all the three directions of the fan–rotor viz., tangential, axial and radial. The
radial force at the blade-tip FRub calculated in this fashion would also result into a tangential load of magnitude mFRub

acting in the direction opposite to the direction of shaft rotation. The effective coefficient of friction m at the blade-tip/
abradable contact interface surface is usually established in an empirical way by measuring the instantaneous speed-drop
of the rotor–shaft during the rub-event.

It should be recognized that in determining the dynamic characteristics of an overhung rotor–shaft, the gyroscopic
moments play a significant role. This effect is further magnified in an asymmetric rotor with a large-size fan blade missing
from one of the disk-sectors caused by a blade-loss. Appendix A describes the energy method approach to derive the
mathematical relationship to determine the gyroscopic effects in a bladed nonsymmetric fan–rotor. As it can be seen that
this effect not only makes the mass matrix time-dependent varying at twice the frequency of running speed rather
gyroscopic matrix also becomes a sinusoidal function of time.

The Coulomb friction between the blade tip and the outer surface introduces skew-symmetric terms in the stiffness
matrix for the rotor shaft which, depending upon the amount of effective damping present in the dynamical system, can
initiate instability in the bladed-rotor shaft. The basic model has been described in the author’s first paper of 2004 on the
related topic [31]. In the current paper, the shaft is assumed to be supported at multiple axial locations zi along the length

of the shaft ‘, which may be either ball-bearing or roller-bearing, with their respective stiffness SðiÞb and damping DðiÞb

parameters. As a general case, these support bearing may not necessarily be symmetrical in the X–Y plane and as such for
any typical ith bearing located at Z¼zi their effective stiffness and damping in the matrix form are written as,

SðiÞb ¼

SbðiÞ
xx SbðiÞ

xy

SbðiÞ
yx SbðiÞ

yy

BbðiÞ
xx

BbðiÞ
yy

2
6666664

3
7777775

and, DðiÞ
b ¼

DbðiÞ
xx DbðiÞ

xy

DbðiÞ
yx DbðiÞ

yy

2
4

3
5 (1)

where, matrix terms such as SbðiÞ
xx , SbðiÞ

yy , SbðiÞ
xy , and SbðiÞ

yx have the dimensions of linear stiffness as force per unit length, and BbðiÞ
xx ,

and BbðiÞ
yy have the dimensions of bending stiffness as moment/unit radian. For, roller bearings with no rotational resistance

the terms BbðiÞ
xx and BbðiÞ

yy will be zero, but for ball bearings with rotational load carrying capability the terms BbðiÞ
xx and BbðiÞ

yy are

nonzero. VanDuyn [47] discusses the current design approach and its stiffness and damping characteristics for such a
bearing support arrangement used in a typical turbofan rotor for specific applications to an aeroengine.
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2.1. Equations of motion of a rotor–shaft with deformable pre-twisted blades

In the current derivation, we assume that the turbofan rotor is in the form of an overhung cantilever beam with N

number of flexible blades mounted on a rigid disk at Z ¼ ‘. Gennaretti and Muro [48] have used a reduced order
formulation for a multibladed rotor system which takes into account of aeroelastic deformation in a rotating frame of
reference. Thus, with the usual shaft and bearing notations, we have following two equations to represent the shaft
motions in the global X (horizontal) and Y (vertical) directions respectively:
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where, the time-dependent gyroscopic and inertia terms on the shaft are the cumulative sum of the blade sequence
number ranging from j¼1yNb attached to the fan–disk and rotating about the engine axis. Thus Nb makes a step-change
with Nb¼N for a fully-bladed normal running rotor with its value suddenly changing to Nb¼(N�1) for a damaged
turbofan–rotor after losing a blade from the disk. Similarly:
(a)
 Bladed-disk dynamic moment at the shaft center about the global X-axis:

MX ¼
XNb

j ¼ 1

Mb rþL=2
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2
4

3
5
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and,

(b)
 Bladed-disk dynamic moment at the shaft center about the global Y-axis:
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64
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Z ¼ ‘

(5)
In the above Eqs. (2) and (3), T(t) is the dynamic torque in the shaft, which has positive sign if it is acting in the direction
of the spin of the shaft and would have negative sign otherwise. Thus, for equations written earlier for the shaft with
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external forces coming from the clamped roots of individual blades in the lateral and longitudinal directions for each
blades are, �[FZ]s¼0 and �[Fz]s¼0, respectively. Here again, the blade-count parameter j varies from 1 to N in a fully-
bladed symmetric rotor, and the limit changes to (N�1) for a bladed-disk with a missing blade after a fan blade-out event
for an asymmetric rotor.

In this formulation, the blade airfoils on the fan–disk are modeled as pre-twisted thin shells [44], which are
cantilevered with the clamped-end attached to the top surface of the disk at radius ‘r’. The actual turbofan blade will
have a total pre-twist of (bL�b0) radians with a negative sign. It should be noted that the sample blade shown in Fig. 1 has
a positive b, which is consistent with the right-hand vector rotation rule. These blades can bend both along the span and
chord as well as twist due to transverse deformation Z(s,c,t) in the thickness direction and can also have membrane
stretching due to longitudinal deformation z(s,t) in the span direction of the airfoil. Thus, for an axis-symmetric rotor, we
will have N sets of following two equations representing each individual fan blade deformation in their own local lateral
and longitudinal directions:
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In the above Eqs. (6) and (7), the force terms [FZ]s¼0 and [Fz]s¼0 represent pseudo-external forces coming from the disk at
the clamped roots of blades at s¼0 in the lateral and longitudinal directions of the respective fan airfoils as,
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The dynamic torque on the shaft at Z ¼ ‘ due to tangential component of [FZ]s¼0 is

TðtÞ ¼ r CDZ,sss

� �
cosb0 (11)

The dynamic torque shown in Eq. (11) causes speed change in the shaft and its rate written as,

dO
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cosb0

JD�XXþ JD�YY
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Additionally in Eqs. (6) and (7), €z0 and €Z0 represent the components of clamped-end support accelerations experienced
by individual blades in the longitudinal and lateral directions of the blades (see Fig. 2).

The chord length C of the fan-blade airfoil is the distance from its leading to the trailing edge, which at the clamped-end
root becomes equal to C ¼DL=cosb0. Thus, in Eqs. (6) and (7) for local support accelerations being fed from the disk to each
of the fan blade with its trailing edge located at Z ¼ ‘, we have,
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Fig. 2. Schematic diagram for the fan blade vibratory motion (Z0, z0) at the airfoil root caused by the shaft and fan–disk movement.
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The centrifugal stress in the blade at any typical span location ‘s’ from the root of the airfoil is given by,

scfð Þs ¼ ðrbO
2=2Þ½L2

þ2rL�2rs�s2� (15)

The centrifugal force Fcf from each individual blade reacts at the airfoil root, which acts like an external steady-state
force in the local span direction on the top of the disk and its magnitude with blade mass Mb¼(rbChL) is expressed as,

Fcf ¼Mb rþL=2
� �

O2 (16)

The chord-wise component of centrifugal forces Fcf on individual blades generate steady-state torque about the span
axis of the airfoil due to pre-twist (bL�b0) in the blade, the tendency of which is to untwist the free tip-end of the
cantilevered configuration, and is determined as,

T ¼ Fcf C=2
� �

sin2 bL�b0

� �
(17)

In the consistent-mass matrix formulation, the pseudo-external forces on the shaft used in Eqs. (2) and (3) from the
root of the airfoils at s¼0 are,
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and,
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However, in the simplified approach of typical rotordynamics applications [17] with lumped-mass matrix formulation,
shown above in Eqs. (18) and (19), we use only stiffness terms as,
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The above quasi-external force components on the shaft (FX)j and (FY)j are in fact internal forces in the bladed-disk
system, and hence balance out completely by equal and opposite reactions at the clamped-end root reaction of the
individual blades. The following Fig. 3 illustrates the asymmetricity in the rotor introduced due to missing blade in one of
the disk-sectors. In this figure originally, there are total N blades on the fan rotor in the normal running condition with a
fully-balanced rotor-shaft. It is assumed that during a blade-out event one of the blades on the rotor, identified as Blade-N

circumferentially located at an angle y0, gets suddenly released from the fan–disk.
The torque shown in Eq. (17) caused by the unbalanced centrifugal force FU about the blade local span-axis produces

bending moment in the shaft, which balances out completely in an axis-symmetric fully-bladed rotor. However, in a non-
symmetric bladed rotor with a missing bladed, it is not balanced out and acts like an external load in the form of a bending
moment at the free overhung end of the shaft. The components of this unbalanced bending moment (BMU) at any instant
due to missing blade during the initial state of (t¼0) located at y0 in the global frame of reference are:

BMUð ÞX ¼Mb rþL=2
� �

O2 C=2
� �

sin2 bL�b0

� �
sin y0þOtð Þ (22)
6



Fig. 3. Schematic front view of the bladed-fan–disk with asymmetric rotor due to blade-loss during a typical fan-blade-out (FBO) event.
BMUð ÞY ¼Mb rþL=2
� �

O2 C=2
� �

sin2 bL�b0

� �
cos y0þOtð Þ (23)

Due to this imbalance force FU acting radially outward at the heavier side of the disk and simultaneously rotating at
the instantaneous angular velocity O of the rotor, the rotor starts moving eccentrically. The local oscillatory movements of
the blade root in the longitudinal and lateral directions are given by,

½z0ðtÞ�j ¼ uð‘Þcos OtþWj

� �
þvð‘Þsin OtþWj

� �
þu0ð‘Þ DL=2

� �
cos OtþWj

� �
þv0ð‘Þ DL=2

� �
sin OtþWj

� �
(24)

and,

½Z0ðtÞ�j ¼ cosb0½uð‘Þsin OtþWj

� �
�vð‘Þcos OtþWj

� �
�þu0ð‘Þ½rsinb0cos OtþWj

� �
þ DL=2
� �

cosb0sin OtþWj

� �
�þv0ð‘Þ½rsinb0sin OtþWj

� �
� DL=2
� �

cosb0cos OtþWj

� �
� (25)

The objective of the current study is to determine the transient dynamic response of this system, which is subjected to
an impulsive load due to sudden blade release and subsequent sustained rotation during windmilling. Now, we will
introduce the following Rayleigh–Ritz trial functions, which naturally satisfy all the geometric boundary conditions in the
earlier system of Eqs. (2) and (3) for the shaft and (6) and (7) for blades:

u Z,tð Þ ¼
X1
i ¼ 0

UiðtÞwiðZÞ ¼U0ðtÞþ
X1
i ¼ 1

UiðtÞ½1�cosfiZ� (26)

v Z,tð Þ ¼
X1
i ¼ 0

ViðtÞwiðZÞ ¼ V0ðtÞþ
X1
i ¼ 1

ViðtÞ½1�cosfiZ� (27)

Z s,c,tð Þ ¼
X
j ¼ 0

X1
i ¼ 0

YiðtÞWiðsÞ

" #
j

yjðcÞ ¼ Y0ðtÞþ
X
j ¼ 1

X1
i ¼ 1

YiðtÞWiðsÞ

" #
j

cosaj cþ
C

2


 �
(28)

z s,tð Þ ¼
X1
i ¼ 0

ZiðtÞXiðsÞ ¼ Z0ðtÞþ
X1
i ¼ 1

ZiðtÞXiðsÞ ¼ Z0ðtÞþ
X1
i ¼ 1

ZiðtÞ½sinjis� (29)

We define fi ¼ 2i�1ð ÞpÞ=2‘
�

, ji¼(((2i�1)p)/2L)C2, and, aj¼(((j�1)p)/C)C1 with nondimensional terms for the geome-
trical parameters of the airfoil as C1, C2 (see Appendix B). Then using Eq. (29) and taking its first derivative with respect to
s, we also obtain,

z,s s,tð Þ9s ¼ 0 ¼
X1
i ¼ 1

ZiðtÞjicosjis9s ¼ 0 ¼
X1
i ¼ 1

ZiðtÞji (30)

By substituting the above-mentioned displacement functions and applying the Rayleigh–Ritz technique we obtain the
equations of motion in a matrix form made up of typical M, Cand K matrices. In a gyroscopic system, the velocity-
dependent matrix C is usually broken into two parts called CD for the damping effect and CG for the gyroscopic effect,
with former mostly being a symmetric matrix due to damping in the bearings and joints along with the latter as
7



skew-symmetric containing the gyroscopic terms, which results in,

M €f ðtÞþ CDþCGð Þ_f ðtÞþ KsþKFþKOð ÞfðtÞ ¼ pðtÞ (31)

Similarly, components of stiffness matrix such as Ks contains an elastic modulus-dependent stiffness, whereas KF and KO

represent the force-dependent and angular velocity dependent stiffness terms, respectively. The different sub-matrices
forming the above global matrix are shown in detail in Appendix B. Here, column vector p(t) represents the external forces
which are essentially generated due to friction forces due to blade tip-rub (see Fig. 4).

In the consistent mass matrix formulation, the blade mass terms contributions are weighted according to the
deformation shape function Z(s,c,t) in the lateral direction, which results into rigid-body translational inertia mass effect at
the airfoil clamped root being as:

Mb €Z0ðtÞ ¼Mbcosb0½sin WjþOt
� � €U0�cos WjþOt

� � €V 0� (32)

Similarly in the longitudinal direction of the blade due to deformation function z(s,t), the respective rigid-body
translational inertia mass effect at the clamped-end becomes:

Mb
€z0ðtÞ ¼Mb½cos WjþOt

� � €U0þsin WjþOt
� � €V 0� (33)

in addition, the flexural bending of the blades introduces additional inertia terms as,
(a)
 Blade rotary inertia due to tangential motion:

rbCh

Z L

0
rþsð Þ

2cosbW 0
pds (34)
(b)
 Blade gyroscopic inertia due to axial motion:

rbCh

Z L

0
rþsð Þ

2sinbW 0
pds (35)
Thus, the global mass and stiffness matrices M and K for the current flexible bladed-rotor system can be expressed in
terms of multiple sub-matrices. The global stiffness matrix K is made up of smaller sub-matrices such as, K(U,U), K(U,V),
K(V,V), KðjÞ

ðZ,U0Þ,K
ðjÞ
ðZ,V0Þ and KðjÞ

ðZ,ZÞ etc. Each term of the sub-matrices such as KðjÞ
ðZ,U0Þ,K

ðjÞ
ðZ,V0Þ and KðjÞ

ðZ,ZÞ etc. are derived individually
and is shown in Appendix B. Using these sub-matrices and the computed values of generalized coordinates like u, v and
y(j), z(j) etc. for any typical blade, the force–displacement relationship in the pseudo-static condition can be written as,

KðjÞZ,U0ð Þ
U0þKðjÞZ,V0ð Þ

V0þKðjÞZ,Uð Þ
uþKðjÞZ,Vð Þ

vþKðjÞZ,Zð Þ
yðjÞ þKðjÞZ,zð Þ

zðjÞ ¼ pðjÞZ (36)

KðjÞz,U0ð Þ
U0þKðjÞz,V0ð Þ

V0þKðjÞz,Uð Þ
uþKðjÞz,Vð Þ

vþKðjÞz,Zð Þ
yðjÞ þKðjÞz,zð Þz

ðjÞ ¼ pðjÞz (37)

In a steady-state condition of a typical rotating blade no. ‘j’, the external force term pðjÞz is due to centrifugal forces and
pðjÞZ is caused by the blade tip-rub. Using the superscript (j) for the fan blade sequence number (j¼1yN), the corresponding
rotordynamic equations of motion in the matrix form for the flexible bladed-rotor system under consideration can be
Fig. 4. Components of friction forces at the blade-tip during the fan blade rub with the outer casing in the global frame of reference.
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written as,
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(38)

In the above global matrix, the sign ‘�’ is used to indicate the generic form of fully-populated sub-matrices with nonzero
terms such as, KðjÞBS, KðjÞSB, and KðjÞB with superscript ‘j’ ranging from 0 to N for an axi-symmetric rotor, and 0 to (N�1) for
nonsymmetric rotor with a blade missing due to blade-loss.

In the above relationships, the stiffness sub-matricessuch as KðjÞBS and KðjÞTSB , due to cross-coupling effect between rotor–
shaft and the blades, are actually time-dependent with sinusoidal functions containing terms like sin WjþOt

� �
and

cos WjþOt
� �

. It should be obvious that the above sub-matrices pertaining to individual fan blades, are repeated along the
diagonal of the global stiffness matrix K as many times as the number of fan blades attached to the rotating shaft.
An identical process is used to form the respective global inertia matrix M and the velocity-dependent coefficient matrix C.
Similarly in a nonsymmetric bladed rotor, we have time-dependent terms appearing in the mass sub-matrix MS with
parameters like sin2 WjþOt

� �
and cos2 WjþOt

� �
.

2.2. Displacement and external force vectors for the rotor–shaft due to blade-loss

In Eq. (40), the respective displacement vector terms for the rotor–shaft and the individual blades such as ds and dðjÞB

in the expended form are,

dðjÞS2 mþ1ð Þ
¼

U0

V0

um

vm

8>>><
>>>:

9>>>=
>>>;

and dðjÞB n1þn2ð Þ
¼

yðjÞn1

zðjÞn2

8<
:

9=
; (39)

In this section, the terms of the generalized displacement vector f(t) and the external force vector p(t) are shown in the
expanded form as,
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n
j

n
j
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m
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t
t

t
t
tV
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t
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t
t
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tF
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p

p
p

p
p

p

Y

X

Y0

X0

(40)

The external forces p(t) in such a rotor–shaft are invariably caused due to inherent unbalance in the rotating system.
Usually these imbalance forces during the normal operations of the rotor are relatively small in magnitude, and as such do
not affect the overall dynamical characteristics of the system. However, sudden loss of a blade from the overhung fan not
only generates extremely high impulsive forces on the rotor system, rather it changes the global characteristics of the
dynamical system by making the rotor nonsymmetric. In a nonsymmetric bladed-fan rotor, the terms of mass matrix M are
no longer constant rather they oscillate with twice the frequency of the spin. Due to large imbalance, the tips of the fan
9



blade also start rubbing against the fan case, which introduce additional set of highly nonlinear contact-impact forces into
the system. In this sub-section, we will attempt to account for all these external forces in this typical nonsymmetric rotor
system. As external forces on the dynamical system under consideration, suppose we have on a typical jth blade radial
interference with the abradable material or the inner surface of the outer casing¼ej(t) such that the radial cold clearance
¼g, which yields,

Radial interference ejðtÞ ¼ ds ‘,tð Þþz L,tð Þ�g (41)

The dynamic rub forces FðjÞRub acting on the blade-tip being contact-impact type in nature will always be compressive with
nonzero values only for positive values of ej(t). Additionally, the steady-state centrifugal force Fcf on the blade is treated like
an external force acting radially outward at the mass-center of the blade with total radial force being,

FðjÞR ¼ Fcf�FðjÞRub ¼Mb rþL=2
� �

O2
�FðjÞRub (42)

Thus, the respective external force vector terms on the right-hand side of the equations for this dynamical system after
losing a fan-blade are:
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(43)

The tip of a spinning blade located at s¼L pushes against a rub-surface made up of an abradable material, the radial
stiffness of which can be defined as KRub resulting into the rub forces on the blade tip called FðjÞRub acting along the
longitudinal direction of the blade. Thus in the numerical integration scheme, the magnitude of the radial rub-force on the
blade tip at the new time-step is determined by the local radial incursion ej(t) using a penalty-method approach. If a
typical jth fan blade is rubbing against the abradable on the inside surface of the outer containment ring after consuming
the running tip clearance g then the radial component of the rub-force FðjÞRub is,

FðjÞRubðtÞ ¼ KRubejðtÞ ¼ KRub½z0ðtÞþz L,tð Þ�g�j (44)

and, the corresponding tangential component of the rub-force FðjÞT will be either,
(a)
 with blade-tip skating/sliding on abradable:

FðjÞT ¼ 7mFðjÞRubðtÞ or, (45)
(b)
 with abradable removal across the entire chord at the blade-tip:

FðjÞT ¼
1

2
rAbradable ORcosbL

� �2
CejðtÞþmKRubejðtÞ (46)
In the numerical time-marching forward scheme, the blade total tip movement at s¼L in the global frame of reference is
written as,

½z0ðtÞ�jþ½z L,tð Þ�j ¼ ½Z0ðtÞ�jþ
Xn2

i ¼ 1

½ZiðtÞ�XiðLÞ ¼ U0þ
Xm

q ¼ 1

uq wqð‘Þþw0qð‘Þ
DL

2

� �" #
cos WjþOt
� �

þ V0þ
Xm
q ¼ 1

vq wqð‘Þþw0qð‘Þ
DL

2

� �" #
sin WjþOt
� �

þ
Xn2

i ¼ 1

½ZiðtÞ�XiðLÞ (47)

In the above equation, the generalized deflection terms (U0,V0) depend upon the bearing support stiffness, whereas the
shaft deformation terms (uq,vq) depend upon the its elastic stiffness and the generalized terms Zi depend upon the blade
10



stiffness in the longitudinal direction. Thus, it should be obvious that the actual magnitude of rub forces depend upon the
component stiffnesses of the entire dynamical system and not just one individual component.

The oscillating axial force P(t) along the longitudinal axis of the shaft due to imbalance and asymmetric mass matrix M
creates parametric resonance in the rotating condition. Due to this parametric resonance the rotating shaft may exhibit
large amplitude vibrational responses at several sub-harmonic frequencies. The axial force P(t) on the rotor shaft with
(N�1) blades remaining on the rotor, is computed as,

PðtÞ ¼Mb

XN�1

j ¼ 1

AðjÞaxial (48)

The axial force on the fan–shaft P(t)shown in Eq. (48) is resisted by the ball bearing on the rotor–shaft assembly. With
subscript ‘q’ varying in the range of (1rqrm) for the number of shaft modes m, the oscillating axial load on the rotating
shaft due to unbalance load on the nonaxisymmetric rotor is expressed as,

PðtÞ ¼Mbr
Xm

q ¼ 1

w0qð‘Þ
½ €uqþ2 _vqO�uqO2

�cos y0þpþOtð Þ

þ½ €vq�2 _uqO�vqO2
�sin y0þpþOtð Þ

2
4

3
5 (49)

In the lateral force relationship on the blade-tip shown in Eq. (43), the sign of the Z-component of the rub forces are
established by keeping it opposite of the sign of _Z L,cð Þ, which in the inertial frame of reference is determined as follows:

_Z L,cð Þ ¼ _Y 0ðtÞþ
Xn1

i ¼ 1

_Y iðtÞWiðLÞypðcÞ (50)

We also consider that the blade-tip rigid body velocity in the tangential direction due to spinning of rotor is �OR,
whereas the blade clamped-root tangential velocity due to shaft oscillation is determined by,

_Y 0ðtÞ ¼

_U 0þ
Xm

q ¼ 1

_uqðtÞ wqð‘Þþ
DL

2
w0qð‘Þ


 �" #
sin WjþOt
� �

� _V 0þ
Xm

q ¼ 1

_vqðtÞ wqð‘Þþ
DL

2
w0qð‘Þ


 �" #
cos WjþOt
� �

2
666664

3
777775cosbL (51)

The dynamic torque in the fan–rotor shaft of the engine T(t) is expressed in the form of a sum of two components, a
quasi-steady-state parameter T0 and a time-dependent parameter of peak magnitude Tt as,

TðtÞ ¼ T0þTtcosOt (52)

where, T0 represents the driving-torque at the turbine-end and is a load-torque at the fan-end of the rotor. It should be
noted that T0 is due to aero-gas load on the fan blades and is proportional to the square of the running speed, which results
in, (T0)New¼(ONew/OOld)2(T0)Old. The magnitude of the time-dependent component of the torque Tt is controlled by the rub
parameters such as the coefficient of friction m, the depth of the radial incursion ej(t) of the blade-tip inside the abradable
surface and the radial stiffness KRub given as,

Tt ¼ m rþLð ÞKRubejðtÞ (53)

The general solution of Eq. (31) can be assumed in the form of a Fourier series with the generalized coordinate f(t)
expressed as,

fðtÞ ¼ elt b0

2
þ
X1
q ¼ 1

½aqsinðqOtÞþbqcosðqOtÞ�

" #
(54)

Then the corresponding velocity and acceleration column vectors _f ðtÞ and €f ðtÞ are written as,

_f ðtÞ ¼ elt lb0

2
þ
X1
q ¼ 1

½ laq�qO
� �

bqsinðqOtÞþ lbqþqO
� �

aqcosðqOtÞ�

#"
(55)

and,

€f ðtÞ ¼ elt l2b0

2
þ
X1
q ¼ 1

½ l2
�ðqOÞ2

� 	
aq�2lqObq�sinðqOtÞ

þ½ l2
�ðqOÞ2

� 	
bqþ2lqOaq�cosðqOtÞ�

2
64

3
75

2
64

3
75 (56)

where, the Fourier coefficient terms such as b0, aq, bq etc. are determined from the initial conditions of the dynamical
system. The substitution of above terms in the equation of motion and setting the right-hand-side forcing function terms
equal to zero, enables us to establish the stability conditions of the rotor in frequency domain [15,16].
11



In a forced response analysis, once the components of the generalized column vectors _f and f have been solved, the
other rotordynamic parameters such as whirl frequency _j of the shaft at any axial location can also be determined as,

_j ¼ d

dt
tan�1 u

v

h i
radians=s (57)

Thus, the shaft whirl frequency in Hz at the axial location of the fan disk is simplified as

Fan disk whirl frequency¼
1

2p½1þ u=v
� �2

�

_u

v
�

u

v2
_v

� �
Z ¼ ‘

Hz (58)

2.3. Numerical formulation of bearing supports with gap nonlinearity

The current time marching-forward numerical integration scheme is fully capable of handling multiple Nc sets of
nonlinear bearings used to support the bladed shaft–disk system including bearings with a radial gap. In forming the
global stiffness matrix K the contributions of respective bearing stiffness terms Sb outlined in Eq. (1) are updated at each
time-step ‘t’ and are considered active only when the local (at Z¼zi) shaft radial deflection ds(zi) exceeds the pre-specified
value of the corresponding radial gap gi of the bearing in that location, such that

ds zið Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u zi,tð Þ

2
þv zi,tð Þ

2
q� �

t

4gi (59)

Using the penalty-method approach, the components of external force vector on the shaft due to nonlinearity and the
gap in the bearing supports in the right-hand side of the equation is determined as,

FXð Þ
b
i ¼ ½�SbðiÞ

xx u�gicos j
� �

�SbðiÞ
xy v�gisin j
� �

�BbðiÞ
xx u,ZZ �Z ¼ zi

(60)

FXð Þ
b
i ¼ ½�SbðiÞ

yx u�gicos j
� �

�SbðiÞ
yy v�gisin j
� �

�BbðiÞ
yy v,ZZ �Z ¼ zi

(61)

where, the shaft radial deformation angle for a particular bearing located at the axial coordinate of Z¼zi is determined as,

j¼ tan�1 u zi,tð Þ

v zi,tð Þ
radians (62)

3. Solution of a sample numerical problem

As a numerical example, we will consider a hypothetical overhung fan–rotor running at the top speed of 3000 rev/min.
The specific geometrical details of the fan–rotor considered here are listed in Table 1.

In the above example data, the effective abradable stiffness KRub is estimated as,

KRub ¼ Ab E=h
� �

Abradable
(63)

Furthermore, the general test data based upon static coefficient of friction is 0.15, but the dynamic coefficient of friction
is usually an order of magnitude less. Hence, in the current transient simulation with the assumption of light-rub resulting
in blade-tips simply sliding/skating on the abradable surface, we have used the value of m¼0.01.

3.1. Eigenvalue solutions of the flexible-bladed rotor shaft

We have developed a detailed finite element model of the above typical large commercial engine hypothetical turbofan
rotor. This bladed-rotor model with the typical values of elastic parameters of various components of the dynamical
system such as blade stiffness, abradable stiffness, nonlinear contact stiffness etc. has been analyzed using a commercial
nonlinear finite-element code. The frequencies for different components and the blade-disk–rotor assembly are
determined in the stationary condition as well as two different speed conditions. In the spinning condition the rotor
rotates at 3000 rev/min as the top speed of the shaft and at 1000 rev/min as the windmilling speed of the asymmetric rotor
in the damaged condition. The analytically determined first three frequencies and the corresponding mode shapes (1F, 1T,
2T y etc.) for the fan blade are summarized in Fig. 5.

As shown here, the natural frequencies of a stationary blade for the first 3 modes of vibration (1F, 1T and 2T) are
45.89 Hz, 182.78 Hz and 552.50 Hz, respectively. The natural frequencies in the rotating conditions are also determined at
two different speeds highlighting the significant effect of stress-stiffening for the first flexural mode (1F), a relatively small
effect for the first torsional (1T) mode and a distinct effect of stress-softening for the second torsional (2T) mode of
vibration. We have also determined the shaft vibrational mode frequencies of the fully-bladed rotor. When the blades are
treated as rigid, the eigenvalue solution yields first two fundamental modes of shaft vibration as 63.8 and 70.11 Hz. The
respective mode shape of the rotor is shown in Fig. 6.
12



Table 1
Details of the parameters considered for the sample bladed-disk rotor.

Mb Mass of one blade (Mb¼rbChL) 10 kg

(MD)0 Mass of the overhung fan–disk 150 kg

Mass of additional rotor components (spinner cone, booster spool) 280 kg

DL Axial length of the fan–disk (rigid) 25 cm

R Blade tip radius 150 cm

r Blade root radius¼disk Outer radius 50 cm

L Blade span length 100 cm

Ab Blade cross-sectional area 5000 mm2

Ib Blade cross-sectional area moment of inertia 0.5E6 mm4

KRub Case filler material (abradable) stiffness 10 M N/m

‘ Length of the shaft 350 cm

ro Outside radius of the rotor shaft 7.0 cm

ri Inside radius of the rotor shaft 5.5 cm

rs Mass density of the shaft material 7.833 g/cc

bL Blade stagger angle at the tip �601

O Initial spin velocity of rotor (radian/s) 314.1 rad/s

mr Mass moment of imbalance about engine axis 1E6 g cm

y0 Circumferential location of the unbalance at time ‘t’¼0 (constant) 1801

N Original number of blades on the fan–rotor 20

Nc Number of discrete bearings supporting the shaft 3

Zi Bearing support locations 0.3, 266.7 cm, 325 cm

g Blade radial tip clearance (nonrotating) 2 cm

m Coefficient of friction between the blade tip and abradable (dynamic) 0.01

Es Elastic Young’s modulus of the rotor shaft material 200 G Pa

Eb Elastic Young’s modulus of the blade material 117 G Pa

C0 Blade chord at the root 25 cm

CL Blade chord at the tip 50 cm

C Average chord of the blade airfoil 37.5 cm

Rotational speed (rev/min) 3000 rev/min

Roller Bearing-1: at Z¼z1¼0.3 cm Sbð1Þ
xx ¼ Sbð1Þ

yy ¼ 2000:0 M N=m

Roller Bearing-2: at Z¼z2¼265.0 cm Sbð2Þ
xx ¼ Sbð2Þ

yy ¼ 715:0 M N=m

Ball Bearing-3: at Z¼z3¼325.0 cm Sbð3Þ
xx ¼ Sbð3Þ

yy ¼ 565:0 M N=m and Bbð3Þ
xx ¼ Bbð3Þ

yy ¼ 7:500E6 N m=radian

Bearing-3 Radial load capability 1 M N
However, when the blades are considered flexible, with its representative elastic Young’s modulus value, the first shaft
bending mode frequency drops by 8.4 percent to 58.45 Hz. As shown in Fig. 7, there is a very clear participation of the
blade first flexural mode shapes with the deformation of the shaft.

Interestingly, for this rotor the bending mode of the shaft in the rotating condition at the top speed of 3000 rev/min
again moves up to 62.73 Hz, which is very close to the rotor frequency with the rigid blade assumption. Thus, it shows that
in case of an axi-symmetric rotor the assumption of blade being rigid is good enough for determining the critical speed of
the rotor. However when the same rotor is analyzed with a missing blade making it asymmetric, the shaft mode at
58.45 Hz bifurcates in two vibrational modes with the lowest rotor modes showing at 58.35 Hz and the next one slightly
higher at 59.97 Hz. Similarly, the other mode previously showing up at 70.26 Hz shifts along 70.26 Hz and 70.28 Hz,
respectively. In the rotating condition with spinning speed as 1000 rev/min and 3000 rev/min, the corresponding natural
frequencies of this rotor are computed as follows:
(a)
 61.31 Hz and 70.30 Hz at 1000 rev/min (rotating condition)
62.85 Hz and 70.35 Hz at 1000 rev/min (rotating condition)
(b)
 63.23 Hz and 70.20 Hz at 3000 rev/min (rotating condition)
64.44 Hz and 70.21 Hz at 3000 rev/min (rotating condition).
It should be noted that the above frequencies still inherently assume that all the bearing supports are fully active.
However, in general by the time the windmilling of the asymmetric rotor with a blade missing occurs, the bearing no. 3,
closest to the overhung fan–disk may also be damaged or fused due to huge imbalance in the system. The design
philosophy behind the failure of bearing ]3 allowed to fail is discussed in quite detail by VanDuyn [47] in his patent
disclosure. For this type of asymmetric rotor with a large imbalance, the critical speeds are best established by determining
the forced response of the rotor at varying rotational speed of the shaft. Fig. 8 shows the forced harmonic response of such
a damaged rotor–shaft by computing its amplitudes of horizontal and vertical motions at the bearing support location
separately for each speed (0–3000 rev/min) being changed at the increment of 1 rev/min. The response plot highlights the
existence of two resonant speeds for this type of decelerating damaged rotor, with the first one occurring at 2380 rev/min
(39.67 Hz) and the second one at 100 rev/min (1.67 Hz). In general a damaged rotor–shaft due to blade-loss invariably
decelerates due to aerodynamic stalling of the turbofan. That is the most common observation after a typical blade-loss.
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Fig. 5. Fan blade frequencies and respective mode shapes in stationary and running conditions: (a) 1F—mode (45.89 Hz stationary blade, 51.65 Hz at

1000 rev/min, 84.08 Hz at 3000 rev/min), (b) 1T—mode (182.78 Hz stationary blade, 183.44 Hz at 1000 rev/min, 198.89 Hz at 3000 rev/min) and

(c) 2T—mode (552.50 Hz stationary blade, 550.82 Hz at 1000 rev/min, 549.86 Hz at 3000 rev/min).
A rapidly decelerating rotor–shaft may exhibit its peak vibrational response within a band of speed slightly lower than its
resonant speed computed in this manner.

However, in a hypothetical scenario of a fan blade-loss event coupled with the simultaneous mid-shaft failure, the
turbine-end of the rotor–shaft may accelerate after the blade-out occurs. The original shaft mode frequency (correspond-
ing to 58.45 Hz stationary and 62.73 Hz in rotating condition of 3000 rev/min with 3 undamaged bearing support system),
shown in Fig. 7 drops to 39.67 Hz with only Bearings-1 and -2 remaining active as a result of the fusing of Bearing-3 soon
after encountering the large imbalance caused by the fan-blade-loss. The shaft mode frequencies of 39.67 Hz, sometime
14



Fig. 6. Symmetric rotor natural modes with rigid blades (no blade participation).

Fig. 7. Symmetric rotor natural modes with flexible blades (blades deforming in its own flexural vibrational mode). (a) 58.45 Hz, And 70.26 Hz at zero

speed (stationary condition) and (b) 62.73 Hz and 70.20 Hz at 3000 rev/min (rotating condition).

Fig. 8. Critical speed determination by the forced harmonic response analysis (u,v) of the rotor at the bearing support location for a nominal rotating

unbalance as the speed drops.
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known as ‘decoupled mode’, and the lower one at 1.67 Hz can also be easily identified by solving eigenvalue problem of the
fan rotor–shaft supported only on two remaining bearings i.e. Bearing-1 and Bearing-2, respectively.

The fan–rotor starts slowing down immediately after the blade-loss as the rotor shaft decelerates and its rotational
speed drops from the peak speed of 3000 rev/min to the state of rest. In most of the cases also per FAA requirements for
safe operation of the crippled aircraft, this happens in 15 s or less. The resonant speed of 2380 rev/min of the damaged
rotor-bearing system exhibits the fan blades momentarily rubbing against the fan-case/abradable during the transient
event as the rotor–shaft during the spool-down passes through the 39.67 Hz excitation frequency. As some of the blade-
tips may experience intermittent rubs, the rotor–shaft response frequency moves up slightly due to additional load-path in
the dynamical system. Thus, effectively the fan–rotor response frequency during the transient event of the spool-down
may have slight shift due to nonlinearity of the system. These nonlinear contact-rub effects will definitely influence the
dynamic response of the damaged rotor during the windmilling phase in a significant way. The dynamic characteristics of
such a nonlinear system can only be predicted with any confidence by using a time-marching numerical scheme for
integrating the equations of motion. Section 3.2 discusses the transient response of such a rotor.

The lower resonant speed of 100 rev/min may become important in the windmilling of the damaged rotor during the
fly-home mission. At this time since the rotor is very lightly damped and the natural frequencies in the two directions are
slightly separated, the rotor can wildly oscillate around 100 rev/min and also at multiples of the windmilling speed.
3.2. Numerical results of transient response

The transient solution of the dynamical equation is obtained by using the initial conditions at time t¼0 due to sudden
blade-loss and by representing Eq. (31) in the inverse form. In this paper, the above systems of equations of motion are
integrated using a sixth-order Runge–Kutta time-marching forward numerical scheme. In this phase of the analysis, it is
assumed that a full fan blade gets released at the top speed of 3000 rev/min. The transient analysis is performed for 3 s
from the time of blade release under two separate assumptions:
(a)
 Rigid blade formulation.

(b)
 Elastically deformable blade formulation.
The results indicate that under rigid-blade assumption, the rotor responds much quicker than in an identical blade-loss
condition of deformed blade formulation. This is because in the early phase of dynamic event, the fan blades offer much
bigger resistance due to inertia, but once it starts responding the eventual rotor movement is significantly larger than the
rigid-bladed response. The rotor movement may also depend upon the number of blades coming in contact with
abradable, which can change every instant.

The transient dynamic response of the rotor is summarized in terms of varying horizontal and vertical movements of
the fan–disk by plotting its orbital motion (see Fig. 9). The magnitude of radial excursions uð‘Þ and vð‘Þ in the horizontal
and vertical planes is changing due to rotor being asymmetric. In the orbit plot it can be seen that as the blade-tip pushes
against the abradable surface, it bends essentially in the first flexural mode [45], and it loses contact, and then the next
blade may come into contact. Although, the flexural bending appears to be the dominant mode of blade deformation
during rub, the actual deformed shape at any instant may be a combination of several different modes such as 1F, 1T, 1EB
etc. (see Fig. 5). The numerical scheme keeps track of the contact for each individual blade on the fan–rotor by computing
radial location of that particular blade-tip using Eq. (58). It is determined at each time-step by the radial coordinate of the
blade-tip in the deformed configuration of the shaft. In a flexible bladed-rotor system with each blade having its own
lateral and longitudinal degrees-of-freedom (Z,z), the number of blades rubbing can change at each instant. In the
numerical integration scheme and the computer code developed for this purpose does a flawless job in keeping track of all
the blades which might potentially rub. In our current example, sometimes only one blade has been found to be rubbing
and sometimes at the most two to three blades also. It is worth noting that we do not make any assumption a priori about
the number of blades which may or may not rub.

As shown in Fig. 9, the transient nondimensional radial movement of the fan–disk is as much as 5 percent of fan radius
from the engine axis. However, under a realistic condition of flexible blade formulation most of the eccentric movement of
the fan–disk center is within 72 percent range. The corresponding blade bending movement is about 2 percent, indicating
the magnitude of the radial load on the bearing would have peaked at 11.3 M N. Here, the stiffness and damping of the
bearing no. 3 is removed out of the transient analysis after the load on the bearing support has reached to its maximum
load carrying capacity of 1 M N.

Fig. 10 highlights the differences in the transient behavior of deformable blade model versus rigid-blade response of the
rotor. Under the rigid blade solution, there is a phase change of the radial excursion of the shaft with the heavier-side of
the disk rubbing against the case in the beginning and then changing to the light-side of the disk making contact with the
fan-casing. Due to the whirling motion of the shaft the phase-change between the heavy-side of the disk to the light-side
of the disk rubbing against the case is an intermittent event. With this back-and-forth phase-change there may be certain
instants occurring periodically when for small durations no blades will be rubbing at all. This duration of no contact can be
longer if the particular disk-sector with the missing blade is moving closer to the fan casing. In the current example, such a
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Fig. 9. Analytically predicted rotor orbits of an asymmetric rotor–shaft at the fan disk-center subsequent to a sudden blade-loss at 3000 rev/min.

(a) Rigid blade formulation and (b) deformable blade formulation.
dynamic behavior of the rotor has been exhibited through a purely analytical solution using the sixth-order Runge–Kutta
numerical scheme, but this has also been observed in high-speed movie of a typical fan-blade-out event. Under the rigid-
blade assumption, the rotor moves radially outward much faster, and the computed radial deflection of the shaft peaks at
inner surface of the hard containment casing. The dynamic response of the rotor with rigid-blades is very much identical to
the results shown by Lahriri et al. [42]. However, the deformable blade solution indicates that blade tip-bending against
abradable surface plays a very important role in determining the orbit as well as the rate at which rotor moves off-center.
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Fig. 10. Radial excursion of the rotor shaft at the fan disk-center after blade-loss at 3000 rev/min (deformable versus rigid blade solution).
The current pre-twisted blade model automatically takes into account of many different types of complex mode shapes as
well (see Fig. 5).

4. Windmilling of an asymmetric rotor after blade-loss

A typical turbofan rotor starts behaving like a turbine rotor, when it is subjected to a head-wind, which feeds energy to
the dynamical system. The safety objective of FAA regulation 33.74 is to ensure that an engine that continues to rotate
after shutdown will not create a hazard to the aircraft. Continued rotation refers to a condition in which any part of the
main rotating system in an engine continues to rotate after the engine has been shut down. Continued rotation can be
caused by windmilling or mechanical effects, or a combination of both. Windmilling is the rotation of a nonoperating
engine due to the airflow-induced forces on the blades caused by the forward motion of the aircraft. Mechanical effects
include, for example, drive shaft clutch drag in some multiengine rotorcraft installations, which may result in continued
rotation of the engine after it has been shut down. The FAA document [8] describes, ‘‘ The vibratory loads resulting from
the failure of a fan blade have traditionally been regarded as insignificant relative to other portions of the design load
spectrum for the airplane. However, the progression to larger fan diameters and fewer blades with larger chords has
changed the significance of engine structural failures that result in an imbalanced rotating assembly. This condition is
further exacerbated by the fact that fans will continue to windmill in the imbalance condition following engine shut down.
Current rules require provisions to stop the windmilling rotor where continued rotation could jeopardize the safety of the
airplane. However, large high bypass ratio fans are practically impossible to stop in flight.’’

In a damaged fan rotor after losing a blade, intermittent rub can produce very large vibrational response, which may
contain many different types of sub-harmonic characteristics. In an aircraft engine after a fan blade-out event, the
windmilling of an asymmetric rotor takes place during the fly-home period. A typical turbofan rotor usually will windmill
at 1/3 of the full-thrust speed of the rotor. Using the same transient response technique described in Section 3.2, we have
analyzed the dynamic response of the damaged rotor, if it were windmilling at 1000 rev/min. The time-domain dynamic
response of the damaged nonaxisymmetric rotor at 1000 rev/min is summarized as follows:
(a)
 Horizontal and vertical movement of the fan disk.

(b)
 Blade tip-rub load time-history.

(c)
 Rotor response frequency.
The above time-domain results are analyzed at 1000 rev/min for 8 s. Here, the forcing function is the unbalanced force
caused by the missing blade as well as the solution scheme updates the mass and stiffness matrices as the rotor spins.
As shown in Fig. 11, the peak horizontal movement of the rotor at the center of the fan disk oscillates between 0.5 cm and
2.0 cm. The zoomed-in dynamic response of this rotor, shown in Fig. 12, exhibits many different types of frequency
content. This time-domain response includes the effect of both oscillations in the mass matrix at twice the rotational speed
of the rotor as well as the time-dependent terms in the stiffness matrix due to intermittent blade tip-rub against abradable
inner surface.

Similar time-domain response of the rotor in the vertical direction has been plotted and is shown in Fig. 13.
The asymmetricity of the rotor is quite evident by the fact that the horizontal direction response is significantly different
than its vertical direction response. As shown in Fig. 13, the peak vertical movement of the rotor at the center of the fan
disk oscillates between 1.0 cm and 1.7 cm.

Fig. 14 shows the zoomed-in view of the vertical response in a quasi-steady state of the rotor windmilling at 1000 rev/min.
The time-domain response of the asymmetric rotor during windmilling shown in Fig. 14 clearly highlights the fact that in
its dynamic behavior, there are multiple frequencies superimposed on one another. We also recover the rub response of
the running asymmetric rotor during windmilling in the aftermath of the blade-loss. At this point, we will determine the
frequency content of the dynamic response by using a fast-Fourier transform of the time-domain data displacement data.
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Fig. 11. Time-domain horizontal response of a nonsymmetric shaft at the fan disk-center during windmilling at 1000 rev/min after a blade-loss.

Fig. 12. Zoomed-in view of a typical 1 s window of the horizontal response of the nonsymmetric shaft windmilling at 1000 rev/min after a blade-loss.

Fig. 13. Time-domain vertical response of a nonsymmetric shaft at the fan disk-center during windmilling at 1000 rev/min after a blade-loss.
The actual time-domain behavior of the rotor–shaft comprises of responses at several different frequencies, and the
instantaneous whirl-frequency of this type of asymmetric fan–rotor can also be determined using Eq. (58).

The above time-domain results also help us in determining the rub-load on the rotor coming from the blade-tips
rubbing against the abradable. Fig. 15 shows the time-domain instantaneous magnitudes of the analytically determined
rub-loads on the fan–rotor. The plot shows that the magnitude of the contact-impact rub-load in the radial direction of this
rotor at the fan–disk oscillates about the mean value of 100,000 N with its amplitude peaking up to 190,000 N. A simple
hand-calculation shows that an impulsive load of this magnitude in the longitudinal direction of the airfoil will produce a
compressive membrane strain in the vicinity of rub-zone at the blade tip of the order of 0.033 percent. This strain value is
very well within the range of measured strain data reported earlier [11,46]. The detailed comparison of the current
analytical results versus measured data is discussed later on in Section 5 of this paper.

Fig. 16 shows that during windmilling a damaged nonsymmetric rotor would respond at a sub-harmonic frequency. For
example, the natural frequencies of this rotor at 1000 rev/min is at 70.35 Hz and 62.85 Hz, but the rotor shows high
magnitude oscillation not only at its excitation frequency of 16.66 Hz, rather it also exhibits sub-harmonic response at
8.25 Hz. The sub-harmonic frequency coincides with half of the excitation frequency O/2, and the system responds at its
sum-frequency of 25.4 Hz also.
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Fig. 14. Zoomed-in view of a typical 1 s window of the vertical response of the nonsymmetric shaft windmilling at 1000 rev/min after a blade-loss.

Fig. 15. Time-domain response of the radial rub load on the rotor of the asymmetric shaft at the fan disk-center during windmilling after a blade-loss.

Fig. 16. Frequency content of vibratory response of a windmilling nonsymmetric fan rotor windmilling at 1000 rev/min (16.66 Hz) at the bearing

support.
Fig. 17 is plotted for a steady-state rotational speed of 1000 rev/min (16.67 Hz) as a result of unbalance caused by the
missing blade. Any whirl response of the rotor at a frequency higher than the running excitation frequency will result in a
forward-whirl response of the rotor. Similarly, the dynamic response occurring at less than the running excitation
frequency will exhibit backward whirl characteristics of the rotor shaft. The forward and backward whirl response of the
fan–rotor can very easily be visualized by creating an animation of the fan–disk orbit from the transient response plotted
in Figs. 11 and 13. In addition, Fig. 17 shows that this damaged asymmetric rotor during windmilling at 1000 rev/min will
go into distinct backward-whirl behavior at 6.1 Hz and other two minor ones at 10.9 Hz and 12.2 Hz. In addition, it will
show a complex forward-whirl behavior with its whirling frequencies at 27.9 Hz and 34.0 Hz. There are several other
minor blips in the whirl frequency plot indicating that this shaft may exhibit a very complex forward-whirl behavior at
other frequencies such as 21.6 Hz, 24.1 Hz, 38.3 Hz and 44.6 Hz etc. as well. Depending upon the magnitude of the shaft
oscillation during whirling, the radial rub-load on the fan rotor will be oscillating between 25,000 and 190,000 N (see
Fig. 15). The most dominant whirl characteristic for this long rotor will be a synchronous whirl in the vicinity of excitation
frequency of 17 Hz. The existence of multiple whirl frequencies indicates that the different sections of the fan–rotor will be
whirling at varying frequencies. Considering its critical speed at 100 rev/min (see Fig. 8), the low frequency whirl may
result into large-magnitude oscillations of the shaft during windmilling.
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Fig. 17. Whirling frequencies of a windmilling nonsymmetric fan rotor at 1000 rev/min (16.66 Hz) with a blade missing.

Fig. 18. Comparison of measured airfoil (L¼4 cm, L/C¼10517, h¼0.125 cm, b¼�451) root strain gage data (y) versus results from the analytical blade-

tip rub model (—) during repeated radial incursion of 0.1 mm at the blade-tip with 721 circumferential rub-zone for the first 4 rub-events.
This rotor depending upon the blade tip clearance g will have occasional rub in some isolated circumferential locations
of the fan disk. During the solution of the governing equations numerically, we keep track of the particular blade tips’
coordinate locations to determine whether any parts of the blade tips are in contact with the abradable on the
containment casing. The time-depending circumferential location of a typical blade identified as ‘Blade-j’ which might be
rubbing at any time ‘t’ is expressed as, (WjþOt). The intermittent rubbing with blades being flexible in the longitudinal
direction introduces a coupling between the longitudinal and transverse deformations along its span. This coupling is
caused by the Coriolis forces as a result of longitudinal wave of the blade traveling up-and-down along the span due to the
blade rotating in the centrifugal force field [46].

5. Comparison of measured rub data with analytically computed results

In order to establish the accuracy of the current analytical model for its time-domain results, the numerically computed
transient dynamic response of a typical high-pressure compressor blade is compared with the previously published
[11,46] rig-test measured data under controlled conditions. In the current numerical scheme, the transient analysis has
been carried out for 4 repeated impacts with 0.1 mm radial incursion with the blade tip tangential velocity being at 400 m/
s. The measured dynamic data from a spanwise strain gage at the fillet of the airfoil root is compared with the numerically
computed strain time-history near the clamped-end of the airfoil. From the two sets of plotted data illustrated in Fig. 18, it
can be seen that the transient analytical results predicts the dynamic characteristics and the resulting strain time-history
in the rubbing blade very well.

6. Conclusions

The present study involves a comprehensive theoretical methodology to simulate a very complex nonlinear dynamic
event. The goal is to address the theoretical complexities and develop the proper mathematical basis so that such an
analysis can be carried out accurately and the results can be evaluated with full confidence. The analytical method is
properly complemented by a detailed numerical simulation.

In this paper, we have derived all the rotordynamic equations of a nonsymmetric rotor with deformable blades, which
can rub intermittently as a post-blade-out with the outer casing. The paper presents an analytical method to illustrate the
nonlinear dynamic effect of blades rubbing against the rigid outer case in a rotating machinery. The equations are
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represented in a classical matrix form of M, C, and K matrices. Each and every term of these matrices have been
derived independently and have been shown in the appendix of the paper. Both mode shapes as well as transient response
of the rotor is determined over a complete spectrum of the speed-range. An attempt has been made to quantify
the magnitude of the contact load during windmilling of a damaged rotor with a blade missing, and it is shown that during
the hard rub against the outer case, the sudden contact-impact load can go up by an order of magnitude over the
unbalance load. For a typical rotor blade the radial load from the case to the blade tip can last for 0.05 m s with a
peak magnitude reaching up to 0.1 M N. However, it is recognized that the analytically predicted dynamic contact loads in
this paper provide an upper bound of the axial load magnitude on the blades due to following two underlying
assumptions:
(1)
 Plasticity is not considered and blades remain elastic for the entire duration of impact.

(2)
 Geometrically blades are considered like a cantilever beam of uniform cross-section in the undeformed configuration.

Blades are allowed to deform in the lateral direction either due to tangential friction load at the tip, or pulse-buckled
deformation under axial impact load.
(3)
 In the dynamic response of a pre-twisted blade subjected to contact-impact rub-loads, the fan-blades can deform in
several different complex modes, such as edge-wise bending, if the contact takes place only at extreme chord-
locations, such as at the leading or trailing edge of the blade.
Due to these underlying assumptions, the actual contact load is expected to be somewhat lower than computed here for
elastic condition. The method can be refined to take into account of the yield stress and elastic–plastic deformation of the
blade material.
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Appendix A. Rotordynamic equations of motion of a nonsymmetric rotor

(A1) Gyroscopic effect of individual fan blades from energy formulation

The angular instantaneous velocity of any typical j-th fan blade at its mass-center due to oscillatory motion of the
shaft–disk assembly in the global frame of reference is expressed as, x¼ _yX îþ _yY ĵ. The instantaneous position vector of the
mass-center of that blade with respect to the origin at the engine axis is located at,

rCG ¼ rþL=2
� �

½cos WjþOt
� �

îþsin WjþOt
� �

ĵ� (A1)

The axial movement in the global Z-direction of any typical jth blade-CG due to rigid-body rotation of the disk is:

yX rþL=2
� �

sin WjþOt
� �

�yY rþL=2
� �

cos WjþOt
� �

(A2)

which yields the axial velocity vector of the blade mass center (C.G.) in the global frame of reference as,

¼ rþL=2
� �

½½Ou,Z� _v,Z �sin WjþOt
� �

�½Ov,Zþ _u,Z �cos WjþOt
� �

�k̂ (A3)

Thus, the axial kinetic energy G of the blade due to the rigid-body oscillatory motion of the fan–disk will be,

GAxial�KEð Þj ¼ 1=2
� �

Mb rþL=2
� �2 ½Ou,Z� _v,Z �sin WjþOt

� �
�½Ov,Zþ _u,Z �cos WjþOt

� �
" #2

(A4)

At this point, using the kinetic energy term G, and variational calculus in terms of generalized coordinates u,Z(Z,t) and
v,Z(Z,t) as the displacement variables, we obtain the contribution of blade inertia parameters in forming the general mass
and circulatory effects in the equations of motion:
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and,
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where the time-dependent gyroscopic and inertia terms contributed by each individual blade (j¼1yNb) on the fan–disk
rotating about the engine axis result into its cumulative sum as,
(a)
 Bladed-disk dynamic moment at the shaft center about the global X-axis:

¼
XNb

j ¼ 1

Mb rþL=2
� �2

2

€v,Z�2O _u,Z�O
2v,Z

� 	
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2v,Z

� 	
cos2 WjþOt

� �
þ €u,Zþ2O _v,Z�O

2u,Z
� 	

sin2 WjþOt
� �

2
64

3
75

Z ¼ ‘

(A7)

and,

(b)
 Bladed-disk dynamic moment at the shaft center about the global Y-axis:
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Appendix B. Determination of terms in conventional M, C and K matrices

For brevity, we introduce coefficients such as ai, ji, fi etc. to represent the sinusoidal terms of the series to develop the
deformation shape functions for various components of the turbofan rotor used in the current analysis. Here, we define,

ai ¼
i�1ð Þp

C C1

ji ¼
2i�1ð Þp

2L C2

fi ¼
2i�1ð Þp

2‘

9>>=
>>; (B1)

where nondimensional terms are,
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Using the nomenclatures shown above, we have the Rayleigh–Ritz trial functions described in Eqs. (26)–(29) for the shaft
and the blade assumed as,
(a)
 Shaft deformation (u,v):

Xm

i ¼ 1

wiðZÞ ¼
Xm

i ¼ 1

1�cosfiZ
� �

with 0rZr‘ð Þ (B2)
(b)
 Blade lateral Z(s,c): S4
j ¼ 1½S

n1

i ¼ 1WiðsÞ�jcosaj cþ C=2
� �

Þ
�

with (0rsrL) and, (�C/2rcrC/2), where

WiðsÞ ¼ 1þc2s2þc3s3�cos jis
� �

(B3)
(c)
 Blade longitudinal z(s):

Xn2

i ¼ 1

XiðsÞ ¼
Xn2

i ¼ 1

sin jis
� �

with 0rsrLð Þ (B4)
In Eq. (B3), the coefficients c2 and c3 are dependent upon the blade boundary conditions. Thus, on applying the boundary
conditions of bending moment and shear forces at the free-end of the cantilever blade being zero with W 00

i ðLÞ ¼ 0 and,
W 000

i ðLÞ ¼ 0 in Eq. (B3), one obtains, c2 ¼�3c3L� ji
2

� �
cos jiL
� �

=2, along with c3 ¼ ½ ji
3

� �
sin jiL
� �

�=6. Thus, the term Wi(s) for
the lateral deflection of the blade with all boundary conditions satisfied is,
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Hence, the transient transverse deformation term Z¼Z(s,c,t) of any typical blade for any point on its mid-surface located at
(s,c) in its local shell-coordinates, is obtained as,

Z s,c,tð Þ ¼
X4

j ¼ 1

Xn1

i ¼ 1

YiðtÞWiðsÞ

" #
j

cosaj cþ
C

2


 �
(B6)

Here, for capturing all relevant blade vibrational modes we have considered n1 number of terms in the span direction and
4 terms of the series in the chord or width direction [44] of the blade. Similarly, the transient longitudinal deformation
component z¼z(s,t) of any typical blade is expressed with n2 number of terms of the series as,

z s,tð Þ ¼
Xn2

k ¼ 1

ZkðtÞXkðsÞ ¼
Xn2

k ¼ 1

ZkðtÞsin jks
� �

(B7)

The typical nonzero terms of the global M, C and K matrices are shown in Eqs. (B8)–(B64). In these equations, the
superscript ‘(j)’ represents the fan blade sequence number with j¼1 being the first trail blade on the fan rotor after the
blade-loss. In an attempt to keep the dynamical sub-matrices derivations general enough for any rotating blade
positioning we have expressed respective vectors as sin(WjþOt) and cos(WjþOt) components. However for specific
turbofan blade-loss applications, we can write Ot¼0, which enables us to simplify the corresponding vectors in terms of
sin Wj and cos Wj components, respectively. The highest limit on the value of j can be ‘N’ as the number of blades on the
fully-bladed fan rotor–shaft, and (N�1) being as the as the number of blades left on the damaged fan rotor. In the
following equations, Nb is the number of active blades on the fan–disk, which is usually an even number N in a regular
symmetric rotor. In the aftermath of a blade-loss with (N�1) remaining blades on the rotor–shaft, the fan–rotor becomes
nonsymmetric. It should be noted that in the dynamical equations for the shaft–disk-bladed-rotor system the number of
rows and columns for various sub-matrices depend upon the following numbers:

m ¼number of deflection shape function terms used to define shaft deformation (u,v)
n1 ¼number of deflection shape function terms used to define blade lateral (Z-degree of freedom) deformation and
n2 ¼number of deflection shape function terms used to define blade longitudinal (z-degree of freedom)

deformation.

In addition, subscripts (p,q) refer to the terms in pth row and qth column for respective sub-matrices, shown below.

(B1) Inertia terms of acceleration-dependent sub-matrices Mp,q
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The contribution of inertia effect of the fan-blade movement towards the rigid-body shaft motion coming through the
airfoil clamped-end can be accounted as an equal weighted -average of the number of terms used in the blade deformation
(see Eqs. (28) and (29)). Thus, the following sub-matrices shown in Eqs. (B10) and (B11) used in the consistent mass matrix
formulation will be repeated j¼1yNb times for each blade:
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The following 2 sub-matrices of Eqs. (B14) and (B15) are used in the consistent mass matrix formulation and are repeated
j¼number of fan blades (Nb) times:
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In the following Eq. (B17), Nb is the number of active blades on the fan–disk, which is usually an even number N in a
regular symmetric rotor. In the aftermath of a blade-loss with (N�1) remaining blades the fan–rotor becomes asymmetric,
which makes the mass-matrix term [M(U,U)]p,q time-dependent resulting into twice of the running speed frequency
excitation due to contribution of the cos2 WjþOt

� �
term.
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The following 2 sub-matrices of Eqs. (B19) and (B20) are set to zero under lumped-mass assumptions but can be used in
the consistent-mass matrix formulation for each individual airfoil by varying j¼number of fan blades (Nb) times:
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In the following Eq. (B22), Nb is the number of active blades on the fan–disk, which changes its value for the reasons
described earlier following Eq. (B16):
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The following set of sub-matrices of Eqs. (B23) and (B24) are set to zero under lumped-mass assumptions but can be used
in the consistent-mass matrix formulation for each individual airfoil by varying j¼number of fan blades (Nb) times:
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(B2) Damping and circulatory terms of velocity-dependent sub-matrices Cp,q

The velocity-dependent coefficient matrix C includes the effect of gyroscopic and viscous damping present in the
dynamical system and is expressed as,

C¼ CGþCD (B31)

The components of gyroscopic matrix term CG are always skew-symmetric in nature and contain coefficients like
72OM to account for the spinning rotor with,

CGp,q ¼�CGq,p (B32)

The components of velocity-dependent coefficient matrix term CD contain the effect of bearing damping as well as any
material damping present in the shaft. Most of the times, these components are symmetric in nature, except when the

bearing damping values are different in the horizontal and vertical directions such that its DbðiÞ
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nonzero terms of the C matrix are as follows:
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(B3) Stiffness terms of displacement-dependent sub-matrices Kp,q

In the following matrices, the KRub effects are nonlinear as it depends upon the amount of tip-deformation in the
dynamical system. Similarly, for the special case of fan blades being considered as rigid, the contact tip-rub stiffness terms
is replaced by another term called KEq-Rub. Here, the term KEq-Rub is defined as an equivalent contact stiffness term, which
accounts for the combined effect of blade flexibility as well as the abradable radial rub stiffness. Its contributions are
nonzero only if the fan–shaft–disk radial movement ds is large enough to consume the running blade tip-clearance g with
the inner surface of the casing filler material, which may result into intermittent tip-rub-induced vibration of the blade.
Additionally, the contributions of frictional force due to 7mKRub effects are to generate loads in the tangential direction of
the rotor which give rise to skew-symmetric terms in the stiffness matrix K. The instantaneous positive (þ) or negative
(�) sign for any new time-step tþDt is determined based upon the direction of sliding velocity at the previous time-step t.
It should be further noted that the stiffness matrix K for a rotor spinning with angular velocity O, there will be additional
26



contribution from stress-softening terms determined as �O2M. Usually, in majority of the rotordynamic problems this
effect of stress-softening is negligible, but in a large jet engine fan–blade rotor this effect can be significant and should be
accounted for
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In the following 2 stiffness sub-matrices of Eqs. (B43) and (B44), the contributions due to individual blade deflection-
dependent terms such as Xq(0), Wq(0) and its derivatives as X

0

q(0), W
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q (0) are set to zero for a special case, when the
assumed deformation-shape functions arbitrarily satisfy the airfoil clamped-end conditions:
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Using the properties of geometry-related deformation-shape functions outlined earlier related to Eqs. (B43), (B44), in
the following Eqs. (B49) and (B50), the contributions due to individual blade (j)’s deflection-dependent terms such as Xq(0),
Wq(0) and its derivatives as X
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In the same manner, the following 2 sub-matrices of Eqs. (B55) and (B56) are repeated j¼number of fan blades (Nb) times:

½KðjÞ
U,Zð Þ
�p,q ¼ ½K

ðjÞ

Z,Uð Þ
�q,p ¼ ½�EsIcosb0w000p ð‘Þ7mKRubWqðLÞcosbLwpð‘Þ�sin WjþOt

� �

þCD
W 000

q ð0Þw
0
pð‘Þrsinb0cos WjþOt

� �
�W 00

qð0Þw
0
pð‘Þcosb0cos WjþOt

� �
þW 000

q ð0Þ½wpð‘Þþ ‘þDL=2
� �

w0pð‘Þ�cosb0sin WjþOt
� �

" #
(B55)

½KðjÞU,zð Þ
�p,q ¼ ½K

ðjÞ
z,Uð Þ
�q,p ¼�EsIw

000
p ð‘Þcos WjþOt

� �
�

EbCh

1�nb
2

� �X0qð0ÞþKRubXqðLÞ

" #
wpð‘Þþ ‘þDL=2

� �
w0pð‘Þ

h i
cos WjþOt
� �

(B56)

½K V ,U0ð Þ�p,1 ¼
XNc

i ¼ 1

SbðiÞ
yx ½wp zið Þþziw

0
p zið Þ��mKEq-Rubwpð‘Þ (B57)

½K V ,V0ð Þ�p,2 ¼
XNc

i ¼ 1

SbðiÞ
yy ½wp zið Þþziw

0
p zið Þ�þBbðiÞ

xx w00p zið Þ

� EsIð Þw000p zið Þ

" #
� EsIð Þw

000
p ð‘Þ�PðtÞw0pð‘ÞþKEq-Rubwpð‘Þ (B58)

½K V ,Uð Þ�p,q ¼
XNc

i ¼ 1

SbðiÞ
yx wp zið Þwq zið Þ�mKEq-Rubwpð‘Þwqð‘Þ�2cHO

Z ‘

0
wpw0000q dZ�TðtÞ

Z ‘

0
wpw00 0q dZ�w0pð‘Þw

0
qð‘Þ

� �

�O2Mb rþL=2
� �2

w0pð‘Þw
0
qð‘Þ

XNb

j ¼ 1

sin WjþOt
� �

cos WjþOt
� �

(B59)

½K V ,Vð Þ�p,q ¼
XNc

i ¼ 1

½SbðiÞ
yy wp zið Þwq zið ÞþBbðiÞ

xx w0p zið Þw
0
q zið Þ�þ EsIð Þ

Z ‘

0
wpw0000q dZ�wpð‘Þw

000
q ð‘Þ

� �

þ‘ EsIð Þw
0
pð‘Þw

000
q ð‘ÞþKEq-Rubwpð‘Þwqð‘Þ�PðtÞ

Z ‘

0
wpw00qdZ�wpð‘Þw

0
qð‘Þ

� �

�O2Mb rþL=2
� �2

w0pð‘Þw
0
qð‘Þ

XNb

j ¼ 1

sin2 WjþOt
� �

(B60)

Similarly, for the reasons described earlier, the following sub-matrices of Eqs. (B61)–(B64) are repeated j¼number of fan
blades (Nb) times:
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½KðjÞV ,zð Þ
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½KðjÞZ,Zð Þ
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½KðjÞz,zð Þ�p,q ¼
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In the above equations, viz. Eqs. (B63) and (B64) the contributions of the bearing direct stiffness parameters are

included only on the diagonal terms of the sub-matrices ½KðjÞZ,Zð Þ
�p,qand ½KðjÞz,zð Þ�p,q, respectively. Additionally, for any particular

jth blade on the overhung fan the magnitude of rub forces FðjÞRubðtÞ on the blade tip are computed as follows:
(a)
 Radial component of blade tip rub-load coming from the abradable layer:

½FðjÞz �s ¼ L ¼ �FðjÞRubðtÞ ¼�KRubejðtÞ ¼ �KRub½z0ðtÞþz L,tð Þ�g�j (B65)
(b)
 Tangential component of blade tip rub-load coming from the abradable layer:

½FðjÞZ �s ¼ L ¼ mFðjÞRubðtÞcosbL ¼ mKRubejðtÞcosbL ¼ mKRub½z0ðtÞþz L,tð Þ�g�jcosbL (B66)
Thus, the column vector related to blade-tip external forces along its longitudinal direction is:

pðjÞz ¼ Fcf Xp L=2
� �

�FðjÞRubðtÞXpðLÞ (B67)

The effect of tip-clearance g is accounted by adding a fictitious force on the right-hand side of the equation which results in,

pðjÞz

� 	
tþDt
¼ Fcf Xp L=2

� �
�FðjÞRubðtÞXpðLÞþKRubgXpðLÞ with 1rprn2ð Þ (B68)

Similarly, the column vector related to blade-tip external forces in its lateral direction is:

pðjÞZ

� 	
tþDt
¼ mFðjÞRubðtÞcosbLWpðLÞ with 1rprn1ð Þ (B69)

In the above equations, the terms of the series related to the shaft deformation shape functions wi(Z) and its derivatives along
the span of the rotor–shaft 0rZr‘ð Þ are determined as follows:

wiðZÞ ¼ ½1�cosfiZ�

w0iðZÞ ¼fisin fiZ
� �

w00i ðZÞ ¼ fi

� �2
cos fiZ
� �

w000i ðZÞ ¼� fi

� �3
sin fiZ
� �

w0000i ðZÞ ¼� fi

� �4
cos fiZ
� �

9>>>>>>>>=
>>>>>>>>;

(B70)

The typical blade deformation vector dB is usually of interest only in rotating coordinates êt ,êa,êr

� �
called tangential–axial–

radial system attached with the fan–rotor. The corresponding deformation terms (Z,z) in the lateral and longitudinal
directions of any of the blade thus calculated using Eqs. (B6) and (B7) can easily be converted in the new coordinate system
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of interest using,

dB s,c,tð Þ ¼ Z s,c,tð Þcos b0þsb0
� �

êtþZ s,c,tð Þsin b0þsb0
� �

êaþz s,tð Þêr (B71)
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