L. A. Allen, F. R. Deleo, A. Gallois, S. Toyoshima, K. Suzuki et al., Transient association of the nicotinamide adenine dinucleotide phosphate oxidase subunits p47phox and p67phox with phagosomes in neutrophils from patients with X-linked chronic granulomatous disease, Blood, vol.93, pp.3521-3551, 1999.

D. R. Ambruso, C. Knall, A. N. Abell, J. Panepinto, A. Kurkchubasche et al., Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation, Proceedings of the National Academy of Sciences, vol.97, issue.9, pp.4654-4663, 2000.
DOI : 10.1073/pnas.080074897

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC18288

R. J. Botelho, M. Teruel, R. Dierckman, R. Anderson, A. Wells et al., Localized Biphasic Changes in Phosphatidylinositol-4,5-Bisphosphate at Sites of Phagocytosis, The Journal of Cell Biology, vol.267, issue.7, pp.1353-68, 2000.
DOI : 10.1074/jbc.272.28.17756

E. Caron and A. Hall, Identification of Two Distinct Mechanisms of Phagocytosis Controlled by Different Rho GTPases, Science, vol.282, issue.5394, pp.1717-1738, 1998.
DOI : 10.1126/science.282.5394.1717

S. Garcia, P. M. Dang, C. Dewas, M. Gaudry, M. Fay et al., Identification of the phosphatidylserine binding site in the C2 domain that is important for PKC alpha activation and in vivo cell localization Priming of human neutrophil respiratory burst by granulocyte/macrophage colony-stimulating factor (GM-CSF) involves partial phosphorylation of p47(phox), Biochemistry J Biol Chem, vol.40, issue.274, pp.13898-905, 1999.

C. V. Finkielstein, M. Overduin, and D. G. Capelluto, Localization of Rac2 via the C terminus and aspartic acid 150 specifies superoxide generation, actin polarity and chemotaxis in neutrophils Cell migration and signaling specificity is determined by the phosphatidylserine recognition motif of Rac1, Nat Immunol J Biol Chem, vol.5, issue.281, pp.744-51, 2006.

Y. Groemping, K. Rittinger, R. Hanayama, M. Tanaka, K. Miwa et al., Activation and assembly of the NADPH oxidase: a structural perspective, Biochemical Journal, vol.386, issue.3, pp.401-417, 2002.
DOI : 10.1042/BJ20041835

A. D. Hoppe and J. A. Swanson, Cdc42, Rac1, and Rac2 Display Distinct Patterns of Activation during Phagocytosis, Molecular Biology of the Cell, vol.15, issue.8, pp.3509-3528, 2004.
DOI : 10.1091/mbc.E03-11-0847

F. Kanai, H. Liu, S. J. Field, H. Akbary, T. Matsuo et al., The PX domains of p47phox and p40phox bind to lipid products of PI(3)K Binding of the PX domain of p47(phox) to phosphatidylinositol 3,4- bisphosphate and phosphatidic acid is masked by an intramolecular interaction, Nature Cell Biology, vol.3, issue.7, pp.675-683, 2001.
DOI : 10.1038/35083070

M. Lavielle and F. Mentre, Estimation of Population Pharmacokinetic Parameters of Saquinavir in HIV Patients with the MONOLIX Software, Journal of Pharmacokinetics and Pharmacodynamics, vol.32, issue.2, pp.229-278, 2007.
DOI : 10.1007/s10928-006-9043-z

URL : https://hal.archives-ouvertes.fr/inserm-00156907

M. A. Magalhaes and M. Glogauer, p47phox Phox homology domain regulates plasma membrane but not phagosome neutrophil NADPH oxidase activation Pivotal Advance: Phospholipids determine net membrane surface charge resulting in differential localization of active Rac1 and Rac2, J Biol Chem J Leukoc Biol, vol.285, issue.87, pp.35169-79, 2010.

S. Mclaughlin and A. Aderem, The myristoyl-electrostatic switch: a modulator of reversible protein-membrane interactions, Trends in Biochemical Sciences, vol.20, issue.7, pp.272-278, 1995.
DOI : 10.1016/S0968-0004(00)89042-8

A. Mizrahi, Y. Berdichevsky, P. J. Casey, and E. Pick, A Prenylated p47phox-p67phox-Rac1 Chimera Is a Quintessential NADPH Oxidase Activator: MEMBRANE ASSOCIATION AND FUNCTIONAL CAPACITY, Journal of Biological Chemistry, vol.285, issue.33, pp.25485-99, 2010.
DOI : 10.1074/jbc.M110.113779

W. M. Nauseef, Assembly of the phagocyte NADPH oxidase, Histochemistry and Cell Biology, vol.90, issue.4, pp.277-91, 2004.
DOI : 10.1007/s00418-004-0679-8

M. T. Quinn, F. R. Deleo, and G. M. Bokoch, Neutrophil methods and protocols. Preface, Methods Mol Biol, vol.412, pp.vii-viii, 2007.

C. Shao, V. A. Novakovic, J. F. Head, B. A. Seaton, and G. E. Gilbert, Crystal Structure of Lactadherin C2 Domain at 1.7A Resolution with Mutational and Computational Analyses of Its Membrane-binding Motif, Journal of Biological Chemistry, vol.283, issue.11, pp.7230-7271, 2008.
DOI : 10.1074/jbc.M705195200

J. Shi and G. E. Gilbert, Lactadherin inhibits enzyme complexes of blood coagulation by competing for phospholipid-binding sites, Blood, vol.101, issue.7, pp.2628-2664, 2003.
DOI : 10.1182/blood-2002-07-1951

J. Shi, C. W. Heegaard, J. T. Rasmussen, and G. E. Gilbert, Lactadherin binds selectively to membranes containing phosphatidyl-l-serine and increased curvature, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1667, issue.1, pp.82-90, 2004.
DOI : 10.1016/j.bbamem.2004.09.006

URL : http://doi.org/10.1016/j.bbamem.2004.09.006

S. Shpungin, I. Dotan, A. Abo, and E. Pick, Activation of the superoxide forming NADPH oxidase in a cell-free system by sodium dodecyl sulfate. Absolute lipid dependence of the solubilized enzyme, J Biol Chem, vol.264, pp.9195-203, 1989.

R. V. Stahelin, A. Burian, K. S. Bruzik, D. Murray, and W. Cho, Membrane Binding Mechanisms of the PX Domains of NADPH Oxidase p40phox and p47phox, Journal of Biological Chemistry, vol.278, issue.16, pp.14469-79, 2003.
DOI : 10.1074/jbc.M212579200

M. J. Stasia and X. J. Li, Genetics and immunopathology of chronic granulomatous disease, Seminars in Immunopathology, vol.35, issue.Suppl 1, pp.209-244, 2008.
DOI : 10.1007/s00281-008-0121-8

URL : https://hal.archives-ouvertes.fr/hal-00382245

B. E. Steinberg, S. Grinstein, M. Tamura, T. Tamura, S. R. Tyagi et al., Pathogen destruction versus intracellular survival: the role of lipids as phagosomal fate determinants, Journal of Clinical Investigation, vol.118, issue.6, pp.2002-2013, 1988.
DOI : 10.1172/JCI35433

A. Tlili, S. Dupre-crochet, M. Erard, and O. Nüsse, Kinetic analysis of phagosomal production of reactive oxygen species, Free Radical Biology and Medicine, vol.50, issue.3, pp.438-485, 2011.
DOI : 10.1016/j.freeradbiomed.2010.11.024

A. Tlili, M. Erard, M. C. Faure, X. Baudin, T. Piolot et al., Stable accumulation of p67phox at the phagosomal membrane and ROS production within the phagosome, Journal of Leukocyte Biology, vol.91, issue.1, pp.83-95, 2012.
DOI : 10.1189/jlb.1210701

T. Ueyama, T. Kusakabe, S. Karasawa, T. Kawasaki, A. Shimizu et al., Sequential Binding of Cytosolic Phox Complex to Phagosomes through Regulated Adaptor Proteins: Evaluation Using the Novel Monomeric Kusabira-Green System and Live Imaging of Phagocytosis, Liposomes comprising anionic but not neutral phospholipids cause dissociation of Rac(1 or 2) x RhoGDI complexes and support amphiphile-independent NADPH oxidase activation by such complexes, pp.629-669, 2006.
DOI : 10.4049/jimmunol.181.1.629

C. L. Williams, The polybasic region of Ras and Rho family small GTPases: a regulator of protein interactions and membrane association and a site of nuclear localization signal sequences, Cellular Signalling, vol.15, issue.12, pp.1071-80, 2003.
DOI : 10.1016/S0898-6568(03)00098-6

D. A. Williams, W. Tao, F. Yang, C. Kim, Y. Gu et al., Dominant negative mutation of the hematopoietic-specific Rho GTPase, Rac2, is associated with a human phagocyte immunodeficiency, Blood, vol.96, pp.1646-54, 2000.

X. Xu, D. C. Barry, J. Settleman, M. A. Schwartz, and G. M. Bokoch, Differing structural requirements for GTPase-activating protein responsiveness and NADPH oxidase activation by Rac, J Biol Chem, vol.269, pp.23569-74, 1994.

T. Yeung and S. Grinstein, Lipid signaling and the modulation of surface charge during phagocytosis, Immunological Reviews, vol.281, issue.1, pp.17-36, 2007.
DOI : 10.1016/j.tcb.2005.05.001

T. Yeung, B. Heit, J. F. Dubuisson, G. D. Fairn, B. Chiu et al., Contribution of phosphatidylserine to membrane surface charge and protein targeting during phagosome maturation, The Journal of Cell Biology, vol.63, issue.5, pp.917-945, 2009.
DOI : 10.1083/jcb.200903020.dv

T. Yeung, M. Terebiznik, L. Yu, J. Silvius, W. M. Abidi et al., Receptor Activation Alters Inner Surface Potential During Phagocytosis, Science, vol.313, issue.5785, pp.347-51, 2006.
DOI : 10.1126/science.1129551