Covariant affine integral quantization(s)

Abstract : Covariant affine integral quantization of the half-plane is studied and applied to the motion of a particle on the half-line. We examine the consequences of different quantizer operators built from weight functions on the half-plane. To illustrate the procedure, we examine two particular choices of the weight function, yielding thermal density operators and affine inversion, respectively. The former gives rise to a temperature-dependent probability distribution on the half-plane whereas the latter yields the usual canonical quantization and a quasi-probability distribution (affine Wigner function) which is real, marginal in both momentum p and position q.
Type de document :
Article dans une revue
J.Math.Phys., 2016, 57 (5), pp.052102. 〈10.1063/1.4949366〉
Liste complète des métadonnées
Contributeur : Inspire Hep <>
Soumis le : lundi 3 juillet 2017 - 18:31:07
Dernière modification le : mardi 19 février 2019 - 08:25:10

Lien texte intégral




Jean Pierre Gazeau, Romain Murenzi. Covariant affine integral quantization(s). J.Math.Phys., 2016, 57 (5), pp.052102. 〈10.1063/1.4949366〉. 〈hal-01554995〉



Consultations de la notice