Isometries, gaugings and $ \mathcal{N} $ = 2 supergravity decoupling

Abstract : We study off-shell rigid limits for the kinetic and scalar-potential terms of a single $ \mathcal{N} $ = 2 hypermultiplet. In the kinetic term, these rigid limits establish relations between four-dimensional quaternion-Kähler and hyper-Kähler target spaces with symmetry. The scalar potential is obtained by gauging the graviphoton along an isometry of the quaternion-Kähler space. The rigid limits unveil two distinct cases. A rigid $ \mathcal{N} $ = 2 theory on Minkowski or on AdS$_{4}$ spacetime, depending on whether the isometry is translational or rotational respectively. We apply these results to the quaternion-Kähler space with Heisenberg ⋉ U(1) isometry, which describes the universal hypermultiplet at type-II string one-loop.
Type de document :
Article dans une revue
JHEP, 2016, 11, pp.169. 〈10.1007/JHEP11(2016)169〉
Liste complète des métadonnées
Contributeur : Inspire Hep <>
Soumis le : lundi 3 juillet 2017 - 18:19:01
Dernière modification le : mardi 22 mai 2018 - 19:45:35

Lien texte intégral



Ignatios Antoniadis, Jean-Pierre Derendinger, P. Petropoulos, Konstantinos Siampos. Isometries, gaugings and $ \mathcal{N} $ = 2 supergravity decoupling. JHEP, 2016, 11, pp.169. 〈10.1007/JHEP11(2016)169〉. 〈hal-01554798〉



Consultations de la notice