A. Spallicci, S. Aoudia, J. De-freitas-pacheco, T. Regimbau, and G. Frossati, Virgo detector optimization for gravitational waves by inspiralling binaries, Class. Q. Grav, vol.22, p.461, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00120281

B. P. Abbott, Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett, vol.116, p.61102, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01273200

A. D. Spallicci, On the complementarity of pulsar timing and space laser interferometry for the individual detection of supermassive black hole binaries, Astrophys. J, vol.764, p.187, 2013.
URL : https://hal.archives-ouvertes.fr/insu-01258145

B. C. Lacki, The end of the rainbow: what can we say about the extragalactic sub-MegaHertz radio sky?, Mon. Not. Roy. Astron. Soc, vol.406, p.863, 2010.

M. Born and L. Infeld, Foundations of the new field theory, Proc. R. Soc. Lond. A, vol.144, p.425, 1934.

W. Heisenberg and H. Euler, Folgerungen aus der Diracschen theorie des positron, Zeitschr. Phys, vol.98, p.714, 1936.

G. Breit and J. A. Wheeler, Positron production in multiphoton light-by-light scattering, Phys. Rev, vol.46, p.1087, 1934.

O. Halpern, Scattering processes produced by electrons in negative energy states, Phys. Rev, vol.44, p.855, 1934.

H. Euler, Über die streuung von licht an licht nach der Diracschen theorie, Ann. Phys. (Leipzig), vol.26, p.398, 1936.

A. Achieser, Über die streuung von licht an licht, Physik Zeits. Sowjetunion, vol.11, p.263, 1937.

R. Karplus and M. Neuman, Non-linear interactions between electromagnetic fields, Phys. Rev, vol.80, p.380, 1950.

R. Karplus and M. Neuman, The scattering of light by light, Phys. Rev, vol.83, p.776, 1951.

D. L. Burke, R. C. Field, G. Horton-smith, J. E. Spencer, D. Walz et al., Positron production in multiphoton light-by-light scattering, Phys. Rev. Lett, vol.79, p.1626, 1997.

G. O. Schellstede, V. Perlick, and C. Lämmerzahl, Testing non-linear vacuum electrodynamics with Michelson interferometry, Phys. Rev. D, vol.92, p.25039, 2015.

L. De-broglie, Rayonnement noir et quanta de lumière, J. Phys. et Radium VI, vol.3, p.422, 1922.

L. De-broglie, Ondes et quanta, Comptes Rendus Hebd. Séances Acad. Sc. Paris, vol.177, p.507, 1923.

L. De-broglie, La méchanique ondulatoire du photon, Une novelle théorie de la lumiére, 1940.

A. Proca, Sur la théorie du positon, Comptes Rendus Hebd. Séances Acad. Sc. Paris, vol.202, p.1366, 1936.

A. Proca, Sur leséquations fondamentales des particulesélementaires, Comptes Rendus Hebd. Séances Acad. Sc. Paris, vol.202, p.1490, 1936.

A. Proca, Sur les photons et les particules charge pure, Comptes Rendus Hebd. Séances Acad. Sc. Paris, vol.203, p.709, 1936.

A. Proca, Sur la théorie ondulatoire desélectrons positifs et négatifs, J. Phys. et Radium VII, p.347, 1936.

A. Proca, Particules libres photons et particules charge pure, J. Phys. et Radium VIII, p.23, 1937.
URL : https://hal.archives-ouvertes.fr/jpa-00233468

A. Proca, Théorie non relativiste des particulesà spin entier, J. Phys. et Radium IX, p.61, 1938.

F. Bopp, Eine lineare theorie des elektrons, Ann. Phys. (Leipzig), p.345, 1940.

B. Podolsky, A generalized electrodynamics. Part I -non-quantum, Phys. Rev, vol.62, p.68, 1942.

B. Podolsky and C. Kikuchi, A generalized electrodynamics. Part II -quantum, Phys. Rev, vol.65, p.228, 1944.

B. Podolsky and P. Schwed, Review of a generalized electrodynamics, Rev. Mod. Phys, vol.20, p.40, 1948.

E. C. Stueckelberg, Théorie de la radiation de photons de masse arbitrairement petite, Helv. Phys. Acta, vol.30, p.209, 1957.

S. Chern and J. Simons, Characteristic forms and geometric invariants, Ann. Math, vol.99, p.48, 1974.

A. Landé, Finite self-energies in radiation theory. Part I, Phys. Rev, vol.60, p.121, 1941.

A. Landé and L. H. Thomas, Finite self-energies in radiation theory. Part II, Phys. Rev, vol.60, p.514, 1941.

A. Landé and L. H. Thomas, Finite self-energies in radiation theory. Part III, Phys. Rev, vol.65, p.175, 1944.

J. Gratus, V. Perlick, and R. W. Tucker, On the self-force in Bopp-Podolsky electrodynamics, J. Phys. A: Math. Theor, vol.48, p.435401, 2015.

W. Greiner and J. Reinhardt, Field quantization, 1996.

L. Tu, J. Luo, and G. T. Gillies, The mass of the photon, Rep. Progr. Phys, vol.68, p.77, 2005.

A. Accioly, J. Helayël-neto, and E. Scatena, Upper bounds on the photon mass, Phys. Rev. D, vol.82, p.65026, 2010.

A. S. Goldhaber and M. M. Nieto, Photon and graviton mass limits, Rev. Mod. Phys, vol.82, p.939, 2010.

G. Spavieri, J. Quintero, G. T. Gillies, and M. Rodriguez, A survey of existing and proposed classical and quantum approaches to the photon mass, Eur. Phys. J. D, vol.61, p.531, 2011.

E. R. Williams, J. E. Faller, and H. A. Hill, New experimental test of Coulomb's law: A laboratory upper limit on the photon rest mass, Phys. Rev. Lett, vol.26, p.721, 1971.

D. D. Ryutov, The role of finite photon mass in magnetohydrodynamics of space plasmas, Plasma Phys. Contr. Fus, vol.39, p.73, 1997.

D. D. Ryutov, Using plasma physics to weigh the photon, Plasma Phys. Contr. Fus, vol.49, p.429, 2007.

K. A. Olive, the Particle Data Group, Review of particle physics, Chin. Phys. C, vol.38, p.90001, 2014.

A. Retinò, A. D. Spallicci, and A. Vaivads, Solar wind test of the de Broglie-Proca's massive photon with Cluster multi-spacecraft data, Astropart. Phys, vol.82, p.49, 2016.

A. Barnes and J. D. Scargle, Improved upper limit on the photon rest mass, Phys. Rev. Lett, vol.35, p.1117, 1975.

G. V. Chibisov, Astrophysical upper limits on the photon rest mass, Sov. Phys. Usp, vol.19, p.624, 1976.

Y. Yamaguchi, A composite theory of elementary particles, Progr. Theor. Phys. Suppl, vol.11, p.1, 1959.

E. Adelberger, G. Dvali, and A. Gruzinov, Photon-mass bound destroyed by vortices, Phys. Rev. Lett, vol.98, p.10402, 2007.

G. Amelino-camelia, J. Ellis, N. E. Mavromatos, D. V. Nanopoulos, and S. Sarkar, Tests of quantum gravity from observations of ?-ray bursts, Correction, vol.393, p.525, 1998.

G. Amelino-camelia, Relativity in space-times with short-distance structure governed by an observerindependent (Planckian) length scale, Int. J. Mod. Phys. D, vol.11, p.35, 2002.

J. Kowalski-glikman and S. Nowak, Doubly special relativity theories as different bases of k-Poincaré algebra, Phys. Lett. B, vol.539, p.126, 2002.

J. Magueijo and L. Smolin, Generalized Lorentz invariance with an invariant energy scale, Phys. Rev. D, vol.67, p.44017, 2003.

A. A. Abdo, A limit on the variation of the speed of light arising from quantum gravity effects, Nat, vol.462, p.331, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00436584

G. Amelino-camelia, Burst of support for relativity, vol.462, p.291, 2009.

N. E. Mavromatos, String quantum gravity, Lorentz-invariance violation and gamma ray astronomy, Int. J. Mod. Phys. A, vol.25, p.5409, 2010.

J. Bolmont and A. Jacholkowska, Lorentz symmetry breaking studies with photons from astrophysical observations, Adv. Sp. Res, vol.47, p.380, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00572237

G. Amelino-camelia, Quantum spacetime phenomenology, Liv. Rev. Rel, vol.16, 2013.

J. Ellis and N. E. Mavromatos, Probes of Lorentz violation, Astropart. Physics, vol.43, p.50, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00329984

F. Zelati, N. Rea, A. Papitto, D. Viganò, J. A. Pons et al., The x-ray outburst of the galactic centre magnetar SGR J1745-2900 during the first 1.5 year, Mon, Not. R. Astroc. Soc, vol.449, p.2685, 2015.

V. M. Kaspi, R. F. Archibald, V. Bhalerao, F. Dufour, E. V. Gotthelf et al., Timing and flux evolution of the galactic center magnetar SGR J1745-2900, vol.786, p.84, 2014.

P. Torne, R. P. Eatough, R. Karuppusamy, M. Kramer, G. Paubert et al., Simultaneous multifrequency radio observations of the galactic centre magnetar SGR J1745-2900, Mon. Not. Roy. Astron. Soc, vol.451, p.50, 2015.
URL : https://hal.archives-ouvertes.fr/insu-01254428

T. T. Pennucci, A. Possenti, P. Esposito, N. Rea, D. Haggard et al.,

A. Israel and . Minter, Simultaneous multi-band radio and x-ray observations of the galactic center magnetar SGR 1745-2900, Astrophys. J, vol.808, p.81, 2015.

D. R. Lorimer and M. Kramer, Handbook of pulsar astronomy, 2005.

G. Feinberg, Pulsar test of a variation of the speed of light with frequency, Science, vol.166, p.879, 1969.

A. S. Goldhaber and M. M. Nieto, Terrestrial and extraterrestrial limits on the photon mass, Rev. Mod. Phys, vol.43, p.277, 1971.

L. Tu, H. Ye, and J. Luo, Variations of the speed of light with frequency and implied photon mass, Chin. Phys. Lett, vol.22, p.3057, 2005.

Z. Bay and J. A. White, Frequency dependence of the speed of light in space, Phys. Rev. D, vol.5, p.796, 1972.

B. E. Schaefer, Severe limits on variations of speed of light with frequency, Phys. Rev. Lett, vol.82, p.4964, 1999.

M. P. Van-haarlem, LOFAR: the low frequency array, Astron. Astrophys, vol.556, p.2, 2013.
URL : https://hal.archives-ouvertes.fr/insu-01288431

M. Pilia, J. W. Hessels, B. W. Stappers, V. I. Kondratiev, M. Kramer et al.,

J. C. Bukowski, A. Miller-jones, H. Nelles, M. Paas, M. Pandey-pommier et al., Wide-band, low-frequency pulse profiles of 100 radio pulsars with LOFAR, Astron. Astrophys, vol.586, p.92, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01467174

Y. P. Shitov and V. M. Malofeev, A superdispersion of the meter wave pulses of PSR 0809+74, Sov. Astron. Lett, vol.11, p.39, 1985.

A. D. Kuz'min, Pulsar radio pulses: the frequency-dependent dispersion measure and the extra arrival-time delay, Sov. Astron. Lett, vol.12, p.325, 1986.

Y. P. Shitov, V. M. Malofeev, and V. A. Izvekova, Superdispersion delay of low-frequency pulsar pulses, Sov. Astron. Lett, vol.14, p.181, 1988.

T. H. Hankins, V. A. Izvekova, V. M. Malofeev, J. M. Rankin, Y. P. Shitov et al., Microstructuredetermined pulsar dispersion measures and the problem of profile alignment, Astrophys. J. Lett, vol.373, p.17, 1991.

J. M. Cordes, R. M. Shannon, and D. R. Stinebring, Frequency dependent dispersion measures and implications

T. E. Hassall, B. W. Stappers, J. W. Hessels, M. Kramer, A. Alexov et al.,

P. Verbiest, K. Weltevrede, R. Zagkouris, R. A. Fender, L. Wijers et al.,

L. V. Jong, M. Koopmans, G. Kuniyoshi, G. M. Kuper, P. Loose et al., Wide-band simultaneous observations of pulsars: disentangling dispersion measure and profile variations, Astron. Astrophys, vol.543, p.66, 2012.
URL : https://hal.archives-ouvertes.fr/insu-01253922

J. A. Phillips and A. Wolcszan, Precision measurements of pulsar dispersion, Astrophys. J, vol.385, p.273, 1992.

A. L. Ahuja, Y. Gupta, D. Mitra, and A. K. Kembhavi, Tracking pulsar dispersion measures using the giant metrewave radio telescope, Mon. Not. Roy. Astron. Soc, vol.357, p.1013, 2005.

A. L. Ahuja, D. Mitra, and Y. Gupta, The effect of pulse profile evolution on pulsar dispersion measure, Mon. Not. Roy. Astron. Soc, vol.377, p.677, 2007.

L. Bonetti, S. Perez, A. D. Bergliaffa, and . Spallicci, Electromagnetic shift arising from Heisenberg-Euler dipole, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01669443

B. Dennison, Fast radio bursts: constraints on the dispersing medium, Mon. Not. Roy. Astron. Soc, vol.443, p.11, 2014.

A. V. Tuntsov, Dense plasma dispersion of fast radio bursts, Mon. Not. Roy. Astron. Soc, vol.441, p.26, 2014.

E. F. Keane, S. Johnston, S. Bhandari, E. Barr, N. D. Bhat et al., A fast radio burst host galaxy, vol.530, p.453, 2016.

J. I. Katz, Fast radio bursts -a brief review: some questions, fewer answers, Mod. Phys. Lett. A, vol.31, p.1630013, 2016.

E. Petroff, E. D. Barr, A. Jameson, E. F. Keane, M. Bailes et al., FRBCAT: The Fast Radio Burst catalogue, Publ. Astron. Soc. Australia, vol.33, p.45, 2016.

L. Bonetti, J. Ellis, N. E. Mavromatos, A. S. Sakharov, E. K. Sarkisian-grinbaum et al., Photon mass limits from fast radio bursts, Phys. Lett. B, vol.757, p.548, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01316496

X. Wu, S. Zhang, H. Gao, J. Wei, Y. Zou et al., Constraints on the photon mass with fast radio bursts, vol.822, p.15, 2016.

C. M. Trott, S. J. Tingay, and R. B. Wayth, Prospects for the detection of fast radio bursts with the Murchison widefield array, Astrophys. J. Lett, vol.776, p.16, 2013.

A. Karastergiou, J. Chennamangalam, W. Armour, C. Williams, B. Mort et al.,

V. I. Keane, M. Kondratiev, J. Kramer, A. Van-leeuwen, S. Noutsos et al., Limits on fast radio bursts at 145 MHz with ARTEMIS, a real-time software backend, vol.452, p.1254, 2015.
URL : https://hal.archives-ouvertes.fr/insu-01323135

M. Obrocka, B. Stappers, and P. Wilkinson, Localising fast radio bursts and other transients using interferometric arrays, Astron. Astrophys, vol.579, p.69, 2015.

N. Thyagarajan, A. P. Beardsley, J. D. Bowman, and M. F. Morales, A generic and efficient E-field parallel imaging correlator for next-generation radio telescopes, 2015.

S. J. Tingay, C. M. Trott, R. B. Wayth, G. Bernardi, J. D. Bowman et al., A search for fast radio bursts at low frequencies with Murchison widefield array high time resolution imaging, Astron. J, vol.150, p.199, 2015.

A. Rowlinson, M. E. Bell, T. Murphy, C. M. Trott, N. Hurley-walker et al.,

D. A. Mcwhirter, M. F. Mitchell, E. Morales, D. Morgan, S. M. Oberoi et al.,

K. S. Srivani, R. Subrahmanyan, R. B. Wayth, R. L. Webster, A. Williams et al., Limits on fast radio bursts and other transient sources at 182 MHz using the Murchison widefield array, Mon. Not. Roy. Astron. Soc, vol.458, p.3506, 2016.

S. W. Ellingson, G. B. Taylor, J. Craig, J. Hartman, J. Dowell et al.,

P. S. Kassim, L. J. Ray, F. K. Rickard, K. W. Schinzel, and . Weiler, The LWA1 radio telescope, IEEE Trans. Ant. Prop, vol.61, p.2540, 2013.

J. D. Bowman, I. Cairns, D. L. Kaplan, T. Murphy, D. Oberoi et al.,

A. A. Rogers, J. E. Roshi, R. J. Salah, N. Sault, K. S. Shankar et al.,

. Wyithe, Science with the Murchison widefield array, Publ. Astron. Soc. Australia, vol.30, p.31, 2013.

M. Kramer, I. H. Stairs, R. N. Manchester, M. A. Mclaughlin, A. G. Lyne et al.,

A. Lorimer, N. Possenti, J. M. D'amico, G. B. Sarkissian, J. E. Hobbs et al., Tests of general relativity from timing the double pulsar, p.97, 2006.

D. Stinebring, Effects of the interstellar medium on detection of low-frequency gravitational waves, Class. Q. Grav, vol.30, p.224006, 2013.

M. Lam, J. Cordes, S. Chatterjee, and T. Dolch, Pulsar timing errors from asynchronous multi-frequency sampling of dispersion measure variations, Astrophys J, vol.801, p.130, 2015.

L. Levin, Interstellar medium mitigation techniques in pulsar timing arrays, J. Phys. Conf. Ser, vol.610, p.12020, 2015.

N. Palliyaguru, D. Stinebring, M. Mclaughlin, P. Demorest, and G. Jones, Correcting for interstellar scattering delay in high-precision pulsar timing: simulation results, Astrophys. J, vol.815, p.89, 2015.

C. Cutler, W. A. Hiscock, and S. L. Larson, Lisa, binary stars, and the mass of the graviton, Phys. Rev. D, vol.67, p.24015, 2003.

C. Deffayet and K. Menou, Probing gravity with spacetime sirens, Astrophys. J. Lett, vol.668, p.143, 2007.
URL : https://hal.archives-ouvertes.fr/in2p3-00172577

B. Kocsis, Z. Haiman, and K. Menou, Premerger localization of gravitational wave standard sirens with LISA: triggered search for an electromagnetic counterpart, Astrophys. J, vol.684, p.870, 2008.

A. Nishizawa and T. Nakamura, Measuring speed of gravitational waves by observations of photons and neutrinos from compact binary mergers and supernovae, Phys. Rev. D, vol.90, p.44048, 2014.

V. Branchina and M. D. Domenico, Simultaneous observation of gravitational and electromagnetic waves, 2016.

M. Liu, Z. Zhao, X. You, J. Lu, and L. Xu, Violation of Einstein's equivalence principle on gravitational wave event GW150914 associated with GBM transient GW150914-GBM, 2016.

X. Wu, H. Gao, J. Wei, X. Fan, P. Mészáros et al., Testing Einstein's equivalence principle with gravitational waves, Phys. Rev. D, vol.94, p.24061, 2016.

C. M. Will, The confrontation between general relativity and experiment, Living Rev. Relativity, vol.17, p.4, 2014.

R. T. Rajan, A. Boonstra, M. J. Bentum, M. Klein-wolt, F. Belien et al., Spacebased aperture array for ultra-long wavelength radio astronomy, Exp. Astron, vol.41, p.271, 2016.

C. J. Verhoeven, M. J. Bentum, G. L. Monna, J. Rotteveel, and J. Guo, On the origin of satellite swarms, Acta Astronaut, vol.68, p.1392, 2011.

E. Dekens, S. Engelen, and R. Noomen, A satellite swarm for radio astronomy, Acta Astronaut, vol.102, p.321, 2014.

A. Budianu, A. Meijerink, and M. J. Bentum, Swarm-to-Earth communication in OLFAR, Acta Astronaut, vol.107, p.14, 2015.

A. Tartaglia, M. L. Ruggiero, and E. Capolongo, A null frame for spacetime positioning by means of pulsating sources, Adv. Sp. Res, vol.47, p.645, 2011.

R. T. Rajan, M. J. Bentum, and A. J. Boonstra, Synchronization for space based ultra low frequency interferometry, IEEE Aerospace Conference, 2013.

S. Knappe, P. D. Schwindt, V. Gerginov, V. Shah, L. Liew et al., Microfabricated atomic clocks and magnetometers, J. Optics A: Pure Appl. Optics, vol.8, 2006.

P. Zarka, M. Tagger, L. Denis, J. N. Girard, A. Konovalenko et al., Int. Conf. Antenna Theory and Techniques (ICATT), pp.8-21, 2015.

T. J. Lazio, The Square Kilometre Array pulsar timing array, Class. Q. Grav, vol.30, p.224011, 2013.

V. Salzano, M. P. Dabrowski, and R. Lazkoz, Probing the constancy of the speed of light with future galaxy survey: the case of SKA, Euclid, and WFIRST-2.4, Phys. Rev. D, vol.93, p.63521, 2016.

B. Lounis, J. Reichel, and C. Salomon, Laser cooling of atoms in micro-gravity, Comptes Rendus Acad. Sc. Paris II, vol.316, p.739, 1993.

/. Nl, /. Vk, . Grasse, . Dlr, and . Paris, Time & Frequency science utilization and Space Station study, Technical Report Contract 11287/94, ESA Study scientist

B. Altschul, Q. G. Bailey, L. Blanchet, K. Bongs, P. Bouyer et al., Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission, Adv. Sp. Res, vol.55, p.501, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00981241

R. Decher, J. L. Randall, P. L. Bender, and J. Faller, Design aspects of a laser gravitational wave detector in space, Proc. SPIE on Active optical devices and applications, vol.228, pp.149-159, 1980.

B. Bertotti, Future of laser interferometry in space, SPLAT: Space and Laser Applications and Technology, vol.202, p.147, 1984.

L. Bonetti, L. R. Dos-santos-filho, J. A. Helayël-neto, and A. D. Spallicci, Massive photons from Super and Lorentz symmetry breaking, 2016.

J. Shamir and R. Fox, Is the cosmological red-shift an aging of photons?, N. Cim. B, vol.50, p.371, 1967.

W. B. Bonnor, Size of a hydrogen atom in the expanding universe, Class. Q. Grav, vol.16, p.1313, 1999.

Y. V. Dumin, A new application of the Lunar Laser Retroreflectors: searching for the 'local' Hubble expansion, Adv. Space Res, vol.31, p.2461, 2012.

R. H. Price and J. D. Romano, In an expanding universe, what doesn't expand?, Am. J. Phys, vol.80, 2012.

S. M. Kopeikin, Optical cavity resonator in an expanding universe, Gen. Rel. Grav, vol.47, p.5, 2015.

G. Bekefi, Radiation processes, 1966.

D. B. Melrose, the emission, absorption and transfer of waves in plasmas, vol.1, 1980.

D. R. Nicholson, Introduction to plasma theory, 1983.

T. S. Bastian, Notes on electromagnetic waves in a plasma, 2005.

V. L. Ginzburg, Propagation of electromagnetic waves in plasma, 1961.

E. Wolf and J. T. Foley, Scattering of electromagnetic fields of any state of coherence from space-time fluctuations, Phys. Rev. A, vol.40, p.579, 1989.

J. T. Foley and E. Wolf, Frequency shifts of spectral lines generated by scattering from space-time fluctuations, Phys. Rev. A, vol.40, p.588, 1989.

A. Laio, G. Rizzi, and A. Tartaglia, Quantum theory of frequency shifts of an electromagnetic wave interacting with a plasma, Phys. Rev. E, vol.55, p.747, 1997.

, The nature of light is considered to be double, according to the scale, with respect to the wavelength, at which we are observing it. Not only wave packets are composed of photons, but also plane waves. Further, if we refer to a quantum theory, its Hamiltonian will be given in terms of annihilation and creation operators. This means that photons with a defined wave numbers are destroyed or destroyed. These are supposed to be diffused wavefunctions, which, in the classical limit that is of interest here translate into to plane wave with a well defined wavelength, Photons can indeed be interpreted as quanta of harmonic waves. However, it must be noted that the concept of photon has its own independence

, 63-65] deals with plasmas as we deal with in this paper. Feinberg [63] pointed out that pulse arrival times show no sign of any dispersion, except that implied by the simple quadratic, over the whole range of frequency from radio to optical, Nevertheless, the literature on massive photons, vol.35, pp.129-132

, Instead, we have not addressed nor the classic or quantum frequency shifts

, going as 1/ f 2 . For clarity, this upper limit does not rely on a comparison with photon times of arrival but solely on the gravitational waveforms. Obviously, such limit is not to be intended as on a single graviton, but on the dispersion that an ensemble of massive gravitons would produce macroscopically. Otherwise, for the Heisenberg principle the strict measurement of the mass upper limit as 2 × 10 ?58 kg on a single graviton would demand an observation time of approximately a month