Beyond the standard gauging: gauge symmetries of Dirac Sigma Models

Abstract : In this paper we study the general conditions that have to be met for a gauged extension of a two-dimensional bosonic σ-model to exist. In an inversion of the usual approach of identifying a global symmetry and then promoting it to a local one, we focus directly on the gauge symmetries of the theory. This allows for action functionals which are gauge invariant for rather general background fields in the sense that their invariance conditions are milder than the usual case. In particular, the vector fields that control the gauging need not be Killing. The relaxation of isometry for the background fields is controlled by two connections on a Lie algebroid L in which the gauge fields take values, in a generalization of the common Lie-algebraic picture. Here we show that these connections can always be determined when L is a Dirac structure in the H-twisted Courant algebroid. This also leads us to a derivation of the general form for the gauge symmetries of a wide class of two-dimensional topological field theories called Dirac σ-models, which interpolate between the G/G Wess-Zumino-Witten model and the (Wess-Zumino-term twisted) Poisson sigma model.
Type de document :
Article dans une revue
JHEP, 2016, 08, pp.172. 〈10.1007/JHEP08(2016)172〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01553972
Contributeur : Inspire Hep <>
Soumis le : lundi 3 juillet 2017 - 17:34:23
Dernière modification le : mardi 19 février 2019 - 08:55:17

Lien texte intégral

Identifiants

Collections

Citation

Athanasios Chatzistavrakidis, Andreas Deser, Larisa Jonke, Thomas Strobl. Beyond the standard gauging: gauge symmetries of Dirac Sigma Models. JHEP, 2016, 08, pp.172. 〈10.1007/JHEP08(2016)172〉. 〈hal-01553972〉

Partager

Métriques

Consultations de la notice

34