Non-abelian Gerbes and Enhanced Leibniz Algebras

Abstract : We present the most general gauge-invariant action functional for coupled 1- and 2-form gauge fields with kinetic terms in generic dimensions, i.e., dropping eventual contributions that can be added in particular space-time dimensions only such as higher Chern-Simons terms. After appropriate field redefinitions it coincides with a truncation of the Samtleben-Szegin-Wimmer action. In the process one sees explicitly how the existence of a gauge-invariant functional enforces that the most general semistrict Lie 2-algebra describing the bundle of a non-Abelian gerbe gets reduced to a very particular structure, which, after the field redefinition, can be identified with the one of an enhanced Leibniz algebra. This is the first step towards a systematic construction of such functionals for higher gauge theories, with kinetic terms for a tower of gauge fields up to some highest form degree p, solved here for p=2.
Type de document :
Article dans une revue
Phys.Rev.D, 2016, 94 (2), pp.021702. 〈10.1103/PhysRevD.94.021702〉
Liste complète des métadonnées
Contributeur : Inspire Hep <>
Soumis le : lundi 3 juillet 2017 - 17:34:22
Dernière modification le : mercredi 13 février 2019 - 01:44:00

Lien texte intégral




Thomas Strobl. Non-abelian Gerbes and Enhanced Leibniz Algebras. Phys.Rev.D, 2016, 94 (2), pp.021702. 〈10.1103/PhysRevD.94.021702〉. 〈hal-01553971〉



Consultations de la notice