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Thermoacoustic Helmholtz solvers provide a cheap and efficient way of predicting combustion instabilities.
However, because they rely on the inviscid Euler equations at zero Mach number, they cannot properly describe the
regions where aerodynamics may interact with acoustic waves, in the vicinity of dilution holes and injectors, for
example. A methodology is presented to incorporate the effect of non-purely acoustic mechanisms into a three-
dimensional thermoacoustic Helmholtz solver. The zones where these mechanisms are important are modeled as
two-port acoustic elements, and the corresponding matrices, which notably contain the dissipative effects due to
acoustic-hydrodynamic interactions, are used as internal boundary conditions in the Helmholtz solver. The rest of the
flow domain, where dissipation is negligible, is solved by the classical Helmholtz equation. With this method, the
changes in eigenfrequency and eigenmode structure introduced by the acoustic-hydrodynamic effects are captured,
while keeping the simplicity and efficiency of the Helmholtz solver. The methodology is successfully applied on an
academic configuration, first with a simple diaphragm, then with an industrial swirler, with matrices measured from

experiments and large-eddy simulation.

I. Introduction

OMBUSTION instabilities are a major issue for modern
combustion engines, such as rockets, turbojet engines, or gas
turbines [1-3]. When the fluctuations of pressure and heat release are
in phase, a coupling between flame and acoustics creates strong
pressure oscillations in the combustor, potentially leading to an
important structural damage or even a catastrophic engine failure.
From an academic perspective, the phenomenon has been studied
since the 1900s [4], but is still not fully understood. It is, therefore, an
intense topic of research among the combustion community [3,6].
For engine manufacturers, combustion instabilities must be
avoided, preferably early enough in the design stage. There is
consequently a need for numerical tools capable of predicting the
stability of a combustor even before it is built. These tools range from
simple network models that are fast and easy to implement [7-11]
to more complex and time-consuming large-eddy-simulation (LES)
solvers [12-18]. In-between, linearized Navier—Stokes equation
(LNSE) solvers and Helmholtz solvers provide a fair tradeoff
between computational cost and fidelity. They are suitable for
complex three-dimensional (3-D) industrial geometries, but are
simpler and faster than LES. LNSEs have the merit of directly
including acoustic-hydrodynamic effects as demonstrated for
simple two-dimensional (2-D) and 3-D configurations [19-21], but
to the authors’ knowledge, most LNSE studies focus on the

propagation of acoustic fluctuations in nonreactive flows. In the
context of combustion instabilities, we are more interested in
determining the eigenmodes of a reactive flow, and this is well
achieved by a Helmholtz solver. Compared to LNSE solvers,
Helmbholtz codes solve the linearized inviscid Euler equations with
a baseline flow at rest, and require less computational power and
less refined meshes. This simplicity comes at a price, because any
mechanism implying interactions with fluid viscosity, heat transfer,
or hydrodynamics is left apart. In a typical combustor (Fig. 1), even
if the zero Mach-number assumption is justified in most of the
domain, these mechanisms could still have an acoustic impact
(Table 1) [22-36].

Some of these contributions are well known and can be accounted
for in the Helmholtz solution. This is the case of the acoustic losses
created at thermoviscous boundary layers. When acoustic waves
interact with the boundary layers, acoustic energy is dissipated
through shear stress and heat losses. A synthetic model has been
proposed by Searby et al. [25] and is of great interest because it can be
used to postprocess a Helmholtz computation. The treatment extracts
the damping rate due to thermoviscous effects for any standing mode
computed by the dissipation-free Helmholtz solver.

One interesting observation in the study of Searby et al. [25] is
that thermoviscous damping scales as the square root of the frequency,
and is therefore a high-frequency phenomenon, more common in
rocket engines than in turbojet engines. Most of the unstable modes
encountered in turbine combustion chambers have low-enough
frequencies to neglect thermoviscous damping. At these frequencies,
another mechanism is at stake. When a mean flow is present, a shear
layer is created at sudden section changes and can extract energy from
the acoustics by converting it into vorticity [28,31,37,38]. In the case of
perforated plates, such as the ones involved in cooling the combustor
walls (see Fig. 1), the impact on acoustics can be quantified using, for
example, Howe’s model [28], as recalled in Appendix A.

Howe’s model and its counterparts [29,30,39] can be used to
represent perforated plates as homogeneous boundary conditions in a
Helmholtz solver [32] or in a computational fluid dynamics (CFD)
code [30]. For more complex systems, such as swirlers, no analytical
model is available to describe the acoustic—hydrodynamic effects.
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Fig. 1 Typical turbojet combustor design and its components.

Still, provided that such a complex system behaves like a linear time-
invariant causal system, it can be abstracted as a 2 X 2 matrix in the
frequency domain. The latter can be measured experimentally
[40,41] or numerically [42]. The method is well known, and has often
been used in the acoustic analysis of ducts and mufflers [35,43-45],
and flame dynamics [46—48]. Some studies also report results on
swirlers [34] and heat exchangers [49]. The equivalent matrix can be
plugged into an acoustic network to provide results for complex
configurations by decomposing them into simpler elements
[43,50.51].

In this paper, we propose to incorporate this matrix formalism into a
Helmbholtz solver, in a similar way to what was proposed by Campa and
Camporeale [52] and Laera et al. [53]. With this approach, the acoustic
impact of non-purely acoustic mechanisms can be reproduced in the
Helmholtz solver for very general systems (for example, the swirler
and the dilution holes in Fig. 1), so that the result is more representative
of an actual combustor. Whereas the work of Laera et al. [53] uses the
matrix formalism mainly to describe flame—acoustics coupling, the
present work deals with the dissipative effects due to acoustic—
hydrodynamic interaction. The methodology is applied to an academic
configuration containing a dissipative element (first a diaphragm, then
a swirler), whose dissipative behavior is quantified experimentally and
by the proposed enhanced Helmholtz-solver approach. The target
configuration is also computed with LES so that comparisons between
the Helmholtz solver, the LES computation, and experimental results
can be provided.

The paper is structured as follows. The methodology and its
practical implementation in a Helmholtz solver are presented in
Sec. II. To check its validity, comparisons between LES,
experiments, and Helmholtz-solver results are performed for an
academic configuration. The overall validation strategy and the target
configuration are described in Sec. III. The results are then presented
for a diaphragm in Sec. IV, and for an industrial swirler in Sec. V.

II. Description of the Methodology

As briefly stated in the Introduction, we propose to model the
dissipative behavior of an element inside an inviscid domain by

Table1 Examples of non-purely acoustic mechanisms present
in a typical combustor (Fig. 1)

Available
Mechanism Location in combustor models
Acoustic losses in thermal and No-slip walls, [22-25]
viscous boundary layers nonadiabatic walls
Drag/thermal losses due to liquid Liquid spray [26,27]
particles
Acoustic-hydrodynamic interactions Multiperforated plates [28-33]
at perforated plate
Acoustic-hydrodynamic interactions  Switler, dilution holes, [21,34-36]

at other elements T-junctions

AT s L ~s AT T
A e N e~ A
2-port matrix

Fig. 2 Modelization of an acoustic system (here, a slit) as a two-port
filter.

measuring its two-port matrix. The concept is well defined when plane
modes are considered. The acoustic states up- and downstream of the
dissipative zone are fully described by two quantities, for example, p’
and p,c,u’, the acoustic pressure and velocity fluctuations, or A* =
(p' +poxco*xu’)/2 and A~ = (p' —p, * ¢, *u’)/2 the right
and left traveling waves. The direction of the longitudinal axis x is
chosen so that #’ > 0 corresponds to a velocity perturbation moving
toward the right. For a linear system, the upstream and downstream
states are connected by a2 X 2 matrix; see Fig. 2. When A% and A~ are
used instead, this matrix is called the scattering matrix. Other
conventions exist, and some are listed in Table 2.

In the following, we show how the damping effect of acoustic—
hydrodynamic systems can be included in a typical 3-D
thermoacoustics Helmholtz solver (the AVSP solver [54] in this
study). For this purpose, the zones that cannot be described by
acoustics only are removed from the domain where the Helmholtz
equation is solved, and replaced by their 2 X 2 matrix (Fig. 3). This
operation requires the coupling of a 3-D Helmholtz solver with a two-
port matrix, which is achieved by a matrix boundary condition
(MBC) described next. Dissipative effects located at the boundaries
of the total fluid domain, such as radiation, are modeled with classical
impedances (Fig. 3).

The acoustic quantities are decomposed as p'(x, £) = R[p(x)e~"]
and u’(x, 1) = R[i(x)e™*"], assuming a harmonic time dependence
and a spatially varying amplitude. Their behavior in the frequency
domain is determined by the Helmholtz equation (1) (given here in the
absence of a source term) and the linearized momentum equation (2).

Table2 Examples of acoustic two-port formulation (from [34])

Name State variables Defining equation
’ ’ -
Transfer matrix P/’ u' [pd/cu;.,dc(),d) ] = Ta |: pu/g};;u(’uu) ]
d u
. . A+ A+
Scatt t A 4 )=5(""
cattering matrix At A (Au_) (Ag
HH . ’ ’ ul; f— pli/(po.uc().u)
Mobility matrix ,u =M T
Y P ( Uy ) [pd/(pa.dc().d)
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Fig.3 Locally dissipative elements inside a globally inviscid domain are modeled by two-port matrices.
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with y the ratio of specific heats (constant, equal to 1.4 for ambient air)
and P, the temporal average of the pressure. The Helmholtz
eigenvalue problem made up of Eqs. (1) and (2) is discretized at nodes
and solved by the AVSP solver [54] with a finite volume strategy. To
close the problem at boundaries, information about the pressure
gradient along the boundary normal must be provided in the form of
pressure boundary conditions (Fig. 4). To account for the two-port
matrix in the truncated flow domain, a new boundary condition should
therefore be defined, which relates the pressure fluctuation p to its
gradient. This is obtained by combining the mobility-matrix
formulation (last row of Table 2) with the linearized momentum
equation (2).

~ — [OR iw Pou 7
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in which the upstream and downstream boundary normal vectors n,,
and n; are defined with an inward normal convention (Fig. 3). System
(3) defines a pair of Robin conditions suited to represent the effect of a
non-purely acoustic element, including its dissipation (Fig. 3). These
boundary conditions are applied pointwise to a pair of patches. To link
the noncoincident upstream and downstream meshes, the nodes of
each patch are projected onto the other, and the field of p is linearly
interpolated on the projected nodes.

With the MBC, itis possible to account for nonacoustic elements in
a Helmholtz solver with the following strategy:

1) Remove all dissipative/nonacoustic zones from the domain.
Note that this is different from the LNSE approach, in which the
dissipative elements need to be meshed. Once the dissipation
matrices are obtained, the MBC procedure runs with lighter and
simpler meshes than the LNSE ones.

Fig.4 Discretization of a 2-D boundary node in AVSP (dual cell in grey).

2) Link the remaining inviscid domains with a pair of internal
MBCs, representative of the element previously removed.

3) Solve the discretized Helmholtz eigenproblem with the MBC
internal boundaries. Note that the introduction of MBC makes the
Helmbholtz eigenproblem nonlinear with respect to the eigenvalues,
because the eigenproblem operator at boundaries now depends on the
eigenfrequency; see Eq. (3). The problem remains, however, linear
with respect to the eigenvectors (pressure mode shape), because no
dependency with the amplitude is considered in this study. The
nonlinear eigenvalue search is treated in AVSP with a fixed-point
loop described in [54].

As a verification test, it was checked (not shown) that the MBC
implementation matches the analytical eigenmodes and eigenfre-
quencies in cases in which analytical solutions are available [e.g.,2-D
tubes connected by a simple identity matrix or the matrix
corresponding to Howe’s model, Eq. (A1)].

III. Validation Strategy

In the configuration described in Fig. 3, the conventional
Helmholtz solver cannot account for the dissipative effects created by
acoustic—hydrodynamic interactions at the swirler even if the whole
geometry of the latter is represented by the finite volume mesh.
However, adding the MBC should improve the results. To apply the
MBC methodology, the matrix of the dissipative element is required
and must be retrieved either experimentally or numerically. To check
whether the resulting eigenfrequencies and eigenmodes are “better”
than without MBC, they are compared to reference eigenmodes and
eigenfrequencies, which are again either computed by LES or
measured in experiments.

This section explains how the MBC methodology is applied to a
target configuration described in Sec. IIL.A. For this configuration,
the matrix data and reference eigenpairs are obtained from
experiments (Sec. III.B) and from LES (Sec. III.C). The matrices are
used to define MBC in the Helmholtz computation of the truncated
domain. The corresponding numerical setup is presented in
Sec. ILD.

To check the validity of the MBC methodology, four types of
comparisons, called C1, C2-LES, C2-EXP, and C3 in Fig. 5, are
performed:

1) C1: Matrices obtained from the experiments and from the LES
are compared, to check their validity and robustness to either
numerical or experimental artifacts.

2) C2-LES: The LES-matrix data are used as an input of the
Helmholtz solver with MBC. The resulting eigenfrequencies and
eigenmodes are compared with the LES values, and with the results
of the Helmholtz solver without MBC.

3) C2-EXP: The experimental-matrix data are used as an input of
the Helmholtz solver with MBC. The resulting eigenfrequencies and
eigenmodes are compared with the experimental values and with the
results of the Helmholtz solver without MBC.
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Fig. 5 MBC validation strategy with its four axes of comparison.

4) C3: The MBC Helmbholtz-solver results from the LES matrix
and from the experimental matrix are compared to check the
sensitivity of the results to the input data used to model the
nonacoustic element.

A. Target Setup

Two dissipative elements are considered in this study: a diaphragm
(Fig. 6a) and a switler (Fig. 6b). They are installed in an experimental
rig composed of cylindrical ducts of different lengths (Fig. 7). The
experiments are run at ambient temperature 7, = 299 K and
ambient pressure P, = 101, 550 Pa with air (specific ratio of y =
1.4 and molecular mass of W = 28.97 g/mol).

Airflow is driven by eight uniformly distributed radial injectors. To
perform acoustic measurements, the rig airflow is excited by a
loudspeaker (Focal ISN 100) fixed in a PVC airtight module. This
loudspeaker is placed at the end of the inlet tube for the acquisition of
two-port matrices (Fig. 7a), or on the side of the tube for the
acquisition of acoustic modes (Fig. 7b). Six microphones (Briiel &
Kjer 1/4 in. Type 4954-B) measure the acoustic pressure in the rig:
three upstream and three downstream of the dissipative element.

Three PVC tubes (T1, T2, T3) with the same cross section but
different lengths are used in the experimental studies. Their inner
radius is 0.041 m, and lengths are /; = 0.26 m, /, = 0.34 m, and
I3 = 0.56 m, respectively. End corrections of §;, = 0.010 m and
Oout = 0.025 m were used to match the experimental and Helmholtz-
solver eigenfrequencies, in the absence of mean flow.

T1, T2, and T3 are combined to obtain four independent
configurations for the experimental measurement of the matrix, as
explained in Sec. IIL.B.2. Regarding the measurement of acoustic
modes and frequencies, only tubes T3 and T2 are used, and are placed
upstream and downstream of the element of interest, respectively

b) Swirler
Fig. 6 Acoustic elements: a) diaphragm and b) swirler.

a) Diaphragm

(Fig. 7b). In this case, the loudspeaker is also moved to the side of the
upstream duct, so as not to alter the closed boundary condition at the
upstream end.

Acoustic matrices and modes are determined for three different
flow rates characterized by their bulk velocities: U = 0.0, 0.17, and
0.34 m/s. These bulk velocities, imposed by a mass-flow meter, are
controlled with a precision of 2% by using hot-wire-based velocity-
profile measurements. In every case, the Mach number is lower than
0.001, and Mach-number effects in the inviscid zones can be
neglected.

The acquisition system is based on the LabVIEW software and its
associated multichannel acquisition board. Measurements are
performed with harmonic excitations, for frequencies ranging from
50 up to 1000 Hz, well below the cutoff frequency of 2500 Hz. This
ensures that only plane waves exist in the ducts. For each frequency
and configuration, samples of 2 s are recorded at a sampling rate
of 10 kHz.

B. Experimental Matrices and Modes

To perform comparison C2-EXP (Fig. 5), the acoustic modes and
acoustic matrices are measured experimentally.

1. Frequencies and Dissipation of Acoustic Modes in the Experiment

The first step is to measure the frequencies and damping rates of
the acoustic modes in the experiment (Fig. 7b). To do this, the test rig
is excited by a loudspeaker producing a monochromatic harmonic
signal at a constant voltage, and the resulting pressure waves are
measured by microphones for a discrete set of frequencies. Under the
plane-wave assumption, the complex acoustic-pressure amplitude at
location z; can be expressed as

Plz)) = ajeiti = ATe*'s  Ame™h 5 4

PoColi(z)) = ATe 5 — A=e™ 75

&)

in which A" and A~ are the amplitudes of the right and left traveling
waves, respectively. The origin z = 0 of the axial coordinate z; in the
duct is chosen at the center of the acoustic element (diaphragm or
swirler).

By measuring the complex acoustic pressure at different locations,
the wave amplitudes are retrieved at each frequency, thanks to the
multimicrophone technique [41,55].
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System (6) is overdetermined when more than two microphones
are used, and is inverted with a least-squares approach as done
in Eq. (7).

The wave amplitudes are combined to reconstruct &£, the period-
averaged acoustic energy integrated over the volume V of the rig, as
defined in Eq. (8).

1
/v (4/10 c

For plane waves at low Mach number in a forced harmonic regime,
the wave amplitudes are constant in each inviscid rig portion, and the
term in the integral of Eq. (8) is independent of the coordinate z. The
integration can thus be performed separately over the upstream and
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The spectrum of acoustic energy £(w) contains information about
the eigenfrequencies of the system, in the form of resonance peaks
(Fig. 8). A fit is performed on these peaks to retrieve the complex
eigenfrequencies [36,57] based on the idea that the complex wave
amplitudes AT and A~ in the system are solutions of a damped
oscillator equation of the form:

i1(1) = 200:7(1) + @gn(r) = F (10)
in which F = Fe~® is the harmonic-forcing term, and 5(t) is
to be replaced by A+ e~ or A~ ¢!, The forcing angular frequency
w is to be distinguished from the unknown complex angular
eigenfrequency wy = 2zf, = wy, + iwy;, whose imaginary part @,
is the growth rate. Equation (10) is valid only for negative values of
y;, corresponding to purely damped acoustics, as is the case here.
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Fig. 8 &(w) spectra for two modes of the diaphragm case at U = 0.17 m/s.



Transposing Eq. (10) in the Fourier domain gives an expression for
AT and A~ as a function of w,, and wy;, which is combined with
Eq. (9) to yield an expression for £(w):

1 G
21 (w3, — w?)? + dw}0*

Etheo (a)) = (1 1 )

with G = |1:"|2(Vup + Vaown)/(20,¢2). This is the form used to fit
&(w). The three parameters G, wy,, and wy; are tuned so that Eq. (11)
produces the best possible match of the measured spectrum E(w).
This method is equivalent to but more precise than measuring the
width at half-height of the peaks [57,58]. The quality of the fit is
assessed by computing the uncertainty on fo = (g, + iwg;)/(27)
with a 95% confidence interval. This uncertainty displayed as a £+
value in the captions of Fig. 8 is low when the data are well fitted
(Fig. 8a), and increases as soon as the quality of the fit deteriorates,
when the signal is noisy, for example (Fig. 8b). In Fig. 8, £(w) is
normalized by the value fitted at .

Once the eigenfrequencies are estimated, the associated
eigenmodes and acoustic fields can easily be reconstructed using
Egs. (4) and (J).

2. Experimental Two-Port Matrices

The two-port matrix is reconstructed following [59], with the
scattering-matrix formalism (see Table 2). This requires at least
two linearly independent configurations. More robust results are
obtained by using four independent configurations. In this study,
this is achieved by combining in different ways the three ducts T1,
T2, and T3, and switching the outlet impedance from open to closed
(Fig. 9). For each configuration, the wave amplitudes are measured
upstream and downstream of the acoustic element of interest with
the multimicrophone technique exposed previously. As in the
multimicrophone technique, an overdetermined system (12) is
defined from the four independent configurations of Fig. 9 with the
ty Tq

matrix coefficients § =
ry d

) as unknowns, and inverted with

a least-squares approach.
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Equation (13) provides the scattering-matrix coefficients, as well
as an estimation of the least-squares error. The second index j runs
from 1 to N =4, and denotes the ith independent state. This
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Fig.9 Configurations used to measure the matrices in the experiments.

scattering matrix is easily converted into the mobility matrix required
for the MBC.

C. LES Matrices and Modes

The two-port matrices and acoustic eigenmodes can also be
determined through LES computations performed with the AVBP
solver, codeveloped by the Centre Européen de Recherche et de
Formation Avancée en Calcul Scientifique (CERFACS) and the Institut
Francais du Pétrole Energies Nouvelles (IFPEN) [60]. This solver is
widely used and has been validated in numerous situations
experiments in comparison C1 and to perform comparison C2-LES
(Fig. 5). The numerical parameters and boundary conditions based on
the models in [65-68] are given in Appendix B. This section presents the
methodology used to obtain the numerical matrices and eigenmodes.

1. LES Matrices

To compute the two-port matrix from the LES data, two
independent harmonic-forcing states are used [59,69]. In state 1, the
acoustic element is excited from the inlet, with a nonreflective
condition prescribed at the outlet. In state 2, the acoustic element is
excited from the outlet, with a nonreflective inlet. This is the only
difference with the approach used in the experiments, in which the
independent states were obtained by changing the outlet impedance,
while always forcing at the inlet.

The geometry and overview of the mesh are shown in Fig. 10 for
the diaphragm, and Fig. 11 for the swirler. The duct lengths used in
the LES do not have to correspond to the experimental tubes. They
were chosen long enough to let acoustic waves become one-
dimensional away from the dissipative elements, and short enough to
minimize computational times. The swirler vanes are discretized with
18 points along the smallest dimension, and the diaphragm is meshed
with 40 points in the diameter. Both meshes contain a few million
nodes (2.5 million points for the swirler and 1 million points for the
diaphragm).

The pressure is measured at probes equidistributed along the
pipe circumference for several axial locations. For the diaphragm,
7 upstream stations and 11 downstream stations are used. For the
swirler, only four upstream stations and five downstream stations are
used because the hydrodynamic fluctuations created by the swirler
extend further than in the diaphragm case. The wave amplitudes and
the scattering matrix are then reconstructed with the same method as
for the experimental data.

2. LES Eigenmodes and Damping Rates

The experimental data provide references for the real
eigenfrequencies and the associated mode structure. This was
obtained by forcing the experiment at hundreds of frequencies and

0.082 m

0.002 m

Fig. 10 LES geometry and mesh overview for the pulsed computations
of the diaphragm.
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Fig.11 LES and mesh overview for the pulsed computations of the swirler.

constructing the £(f) curve of Fig. 8, which is not practical in LES.
Therefore, a different method is used to obtain the dissipation rates
from LES: the acoustic-mode-triggering (AMT) approach [70].

The idea of the AMT is to superimpose a given acoustic mode
(computed from a Helmholtz solver, say) to the mean flowfields
computed by a nondisturbed LES [70]. The resulting disturbed
solution is used to initialize a new LES computation, in which the
initial acoustic perturbations are damped by the presence of the
diaphragm or swirler. No forcing is applied. The acoustic system is
simply initially displaced from equilibrium. As for a damped
oscillator, this results in decaying acoustic oscillations, whose decay
rate and frequency are captured by the LES (Fig. 12).
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The geometries used in the AMT computations are basically the
same as those used for the pulsed computations (Figs. 10 and 11),
but the duct lengths are modified to match the experimental duct
lengths, plus the end corrections. The mesh refinement is the same
as for the pulsed computations. A velocity-imposed, fully reflective
boundary condition is enforced at the inlet. For the outlet, a
pressure-imposed characteristic condition with relaxation toward a
target value was tuned to obtain a reflection coefficient with
radiation losses [71] Rpq(®) = —[1/4(ka)? —1]/[1/4(ka)* + 1]
(with a the pipe radius). The formulation of the outlet boundary
condition is an extension of the one described in the work of Selle
et al. [61]. With their notation, the incoming wave amplitude £, is
set to L, = K(P—P,) — RgLs, and the associated reflection
coefficient is (Fig. 13)

1- Ry

Rigs(w) = —Rg — le/[()

(14)

with K the relaxation coefficient and Ry the value of the reflection
coefficient when K — 0. A cut-off frequency can be defined as
fe =K/4r, at which the phase is equal to 7+ ¢ with
¢ =tan"![(1 — Rg)/(1 + R)]. For the diaphragm, K is fixed to
ensure no pressure drift, whereas Ry is adjusted to set | Ry gs|(wg) =
|Raa(myg)] at the desired angular frequency w, (Table 3). For the
swirler, K is fixed to the highest value allowed in the LES code to
obtain a fully reflective boundary, as will be recalled later.

To measure the real frequency and damping rate, the dynamic
mode decomposition (DMD) [72] is performed on the pressure and
velocity signals measured at upstream and downstream probes. The
DMD is able to isolate the frequency of the excited mode and its
decay rate. Figure 12 shows an example of such a filtering for a probe

[RiEs|

Ryl -

0fe 10 f. 0fe 10fe
Fig. 13 Modulus (left) and phase (right) of the AMT outlet reflection
coefficient Ry pg.
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Fig. 12 DMD reconstruction of the pressure (left) and velocity (right) signal at a probe.



Table 3 Reflection coefficient R; g effectively
measured in the diaphragm AMT computations vs
theoretical values with radiation losses R4

Frequency, Hz R |RiEs| arg(Ry gs), rad
77 -0.9984  1.0063 3.1408
269 —-0.9803  0.9847 3.1413
387 -0.9596  0.9597 3.1727
604 -0.9039  0.9029 3.1551
757 -0.8534  0.8500 3.1438
894 -0.8012  0.8022 3.1414

signal in the AMT computation of the swirler (U = 0.34 m/s and
f = (284.9-13.2i) Hz). DMD also provides the amplitude and
phase of the acoustic fluctuations for each frequency. This
information could be used directly to reconstruct the eigenmode, but
an additional least-squares fit was performed to determine the
acoustic quantities as a sum of plane-wave amplitudes, as done for the
experiments in Sec. IIL.B.1. The pressure signals at LES probes are
used to construct system (6) that is inverted using Eq. (7). This
procedure smoothes the acoustic fields and helps separate them from
noise or hydrodynamic fluctuations (Fig. 14).

D. Helmholtz-Solver Eigenmodes and Eigenfrequencies with MBC
Boundaries

Once the experimental (Sec. II.B.2) and LES (Sec. ILC.1)
matrices are measured, they can be used in the Helmholtz solver with
MBC. To use the MBC, the setup geometry has to be modified. As
explained in Sec. II, the acoustic element is not meshed anymore.
Instead, the upstream and downstream tubes are cut so as to remove
completely the acoustic element. The matrices constructed in
Secs. II.LB.2 and IIL.C.1 are used to represent adequately the
transition between up- and downstream cuts (Fig. 15b).

At the test-rig ends, the boundary conditions are similar for both
swirler and diaphragm cases (Fig. 15b). The inlet and outlet patches
are defined, respectively, as a u’ = 0 boundary condition with an end
correction of §;; = 1 cm and a p’ = 0 boundary condition with an
end correction of §,,, = 2.5 cm (see Sec. II.A). With k = w/c being
the wave number, the inlet and outlet reduced impedances p/(p, ¢, it)
are then

When comparing the Helmholtz eigenmodes with experiments or
LES runs with a partially reflective outlet (C2-EXP and C2-LES in
Fig. 5), ais set to 1, and the term —(1/4ka?) accounts for radiation
losses [71]. For the diaphragm study, a is therefore fixed to 1. In the
swirler case, Helmholtz solutions are compared only to the LES data
with a fully reflective outlet, so that no radiation loss is added in the
Helmbholtz computation (o = 0).

The mean thermodynamic properties are the same as the
experimental ones, given in Sec. IILA.

Additionally, Helmholtz computations on the complete geometry
(i.e., with the same duct lengths as the experimental setup and with a
discretized diaphragm/swirler; see Fig. 15a for the diaphragm case)
are performed for two reasons: 1) to get acoustic fluctuations for LES
eigenmode runs with the AMT approach, and 2) to compare the result
of a conventional Helmholtz solution (i.e., assuming the Helmholtz
equation holds within the diaphragm and the swirler) with the one
obtained, thanks to the MBC methodology in comparisons C2-LES
and C2-EXP (Fig. 5).

The meshes for the complete geometries and MBC geometries are
optimized for the Helmholtz solver, and are consequently coarser and
more uniform than the LES ones. All but one mesh contain around
100,000 nodes and 500,000 cells, with a typical cell size of 3.6 mm.
The exception is the complete swirler mesh, which contains 300,000
nodes and 1,500,000 cells necessary to discretize the fine swirler
vanes. The typical cell size for the latter mesh varies from 1 mm in the
vanes to 8.2 mm in the pipes.

IV. Application to a Diaphragm

The methodology is first validated on the diaphragm
configuration. It was checked that the chosen boundary conditions
provide values of eigenfrequencies close to the experiment when
computing the complete geometry with the Helmholtz solver; see
Table 4. Taking into account the radiation losses at the outlet only
introduces a small damping rate. For the first mode, however, a 10 Hz
discrepancy is observed. This is due to acoustic coupling between the
test rig and the loudspeaker casing. The coupling introduces a
velocity discontinuity that is stronger for frequencies close to the
Helmbholtz resonance frequency of the loudspeaker cavity (=75 Hz),
as is the case for the first main rig eigenmode. For higher-order
modes, the coupling between the rig and the loudspeaker cavity is
negligible. It was checked but not shown here that the first
eigenfrequency is better predicted (around 90 Hz) when including the
loudspeaker casing in the Helmholtz geometry. However, to simplify

2iks;, ’ .
Z, = 6,74'1 (15) the LES and Helmholtz computations, we decided to remove the
?ikon — loudspeaker casing from all geometries, keeping in mind that this
makes comparison with the first experimental mode inappropriate.
2iks For the diaphragm case, the quality of the results and the subsequent
Loyt = e - 1 —la(ka)z (16) conclusions are the same for U = 0.17 m/s and U = 0.34 m/s.
o Pk ] 4 Therefore, all the results shown here are valid for U = 0.34 m/s if
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Fig. 14 Plane waves fit of an acoustic mode (swirler case at U = 0.34 m/s, f = (284.9-13.2i) Hz).
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nothing is mentioned. The scattering-matrix coefficients acquired
experimentally for the diaphragm of Fig. 6a, as well as the values
obtained numerically, are plotted in Fig. 16. The agreement between
experimental, numerical, and theoretical (Howe’s model [28]) results
is good (comparison C1 in Fig. 5): the numerical coefficients match
almost exactly the experimental ones, confirming that LES is suitable
to compute acoustic matrices. (The matrix associated to Howe’s model
. . 1 —¢(w) . .
is defined as S(w) = 1/[1 — f(a))][_f(w) ) :| with é(w) =
iwd? /2co Ky for a plate of size d and Rayleigh conductivity K g.)

The S matrix already contains information relevant to dissipation.
For example, an acoustic-flux-balance criterion [73] based on the
eigenvalues A, 4.« Of the real-valued matrix I — $*S, with S* the
Hermitian form (complex conjugate transpose) of S states that

1) If Ay;n > O and A, > O, S dissipates acoustic energy.

2) If Apin < 0 and A, < 0, S produces acoustic energy.

3) If Ayin <0 and 4, > 0, S can produce or dissipate acoustic
energy. Nothing can be said a priori. The sign of the acoustic flux
balance can change, depending on the inlet acoustic variables, which
are not known before connecting the matrix to the Helmholtz solver.

Figure 17 confirms the dissipative behavior of experimental and
numerical matrices, although numerical matrices seem to dissipate
slightly less than experimental matrices. For reference, the criterion is
also computed for Howe’s model in Fig. 17. (The eigenvalues 4,
Amax can be computed analytically for Howe’s model as A, (w) = 0
and Ay (@) = —{4R[E(w)]/|1 = E(w)|?}. The quantity R[E(w)] =
—{wd*A(w) /4coall(®)? + A(w)?]} depends on the real-valued
functions I'(w) and A(w) defined in [28]. Because A(w) is positive
forall @, A, (@) is always positive. According to Howe’s model, the
perforated plate always dissipates acoustic energy.)

This dissipative behavior is fairly well captured in the
eigenfrequencies computed with Helmholtz—MBC, compared to
the ones measured in the experiment and in the LES (Fig. 18). The
exception is the first experimental mode, as expected and explained
earlier. The agreement is much better when comparing MBC with
LES, because the LES and Helmholtz-solver geometries were the
same in this case. Compared to the standard Helmholtz approach, the
introduction of MBC improves the damping-rate prediction for all
modes computed. It also provides the correct evolution of the
eigenfrequencies with a flow-rate increase with both the matrices

Table4 Eigenfrequencies (in Hz) of the diaphragm case at
U = 0 m/s (experiments and standard Helmholtz computations with
and without radiation losses)

Experiment Standard Helmholtz ~ Standard Helmholtz with end losses

87.5 78.1 —0.0i 78.1 —0.0i
267.2 268.1 —0.0i 268.1 —0.8i
3723 3754 -0.0i 3754 -1.0i
605.2 604.9 — 0.0i 604.9 — 0.6i
751.4 760.1 — 0.0i 759.8 - 9.7i
898.7 897.0 —0.0i 896.7 — 0.91
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Fig. 17 Diaphragm case at U = 0.34 m/s; Eigenvalues of [ — $*S in
experiments, LES and analytical model.

from experiments and from LES (comparison C3 in Fig. 5), as shown
for the first four modes in Figs. 19 and 20.

To further evaluate the impact of the dissipative diaphragm on the
surrounding acoustics, the structure of the second eigenmode is now
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Fig. 20 Diaphragm case. Eigenfrequencies vs U, continued (top: real part, bottom: imaginary part).

compared between experiments, LES, and Helmholtz-solver (Fig. 22) show that the presence of a mean flow through the
computations. This is done by plotting the modulus and phase of diaphragm modifies the pressure jump across the orifice, which is a
D, normalized at x = —0.58 m. Both experiments (Fig. 21) and LES direct indication of acoustic losses. This effect is captured by the
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Helmholtz solver with MBC, but not by a standard Helmholtz
computation (Figs. 21 and 22). These good results support our initial
assumption that, at first order, the impact of mean flow is important
only at locations where damping through vortex shedding is present,
and can be neglected elsewhere, so that acoustics are well represented
by the zero-mean-flow Helmholtz equation (1).

V. Application to an Industrial Swirler

In the diaphragm configuration, the flow was laminar and fairly
simple: the only complexity was the shear layer created at the
downstream lips of the diaphragm. Moreover, the analytical model of
Howe [28] was available for comparison. Now, the methodology is
applied to the more challenging swirler element (Fig. 6b) for which
there is no theoretical formula. Downstream of the swirler, the flow
features complex phenomena, such as recirculation zones or
precessing vortex cores. Because the comparison with the LES
(C2-LES in Fig. 5) gave the best results for the diaphragm,
it is the only comparison performed for the swirler. The LES
computations were performed for the highest bulk velocity U =
0.34 m/s to maximize the acoustic-hydrodynamic coupling.
Compared to the diaphragm case, the outlet is fully reflective both
in the LES and in the Helmholtz solver. Two modes are studied here:
mode A and mode B with frequencies around 285 and 590 Hz,
respectively, at U = 0.34 m/s (as assessed by LES, Table 5). The
swirler matrix coefficients were computed at 280, 290, 370, and
590 Hz, and are listed in Table 6, and linear interpolation is used to
obtain the effective coefficients at the Helmholtz-solver frequency.
With the exception of 370 Hz, which is used later to assess the error
made if the matrix is not measured at the correct frequency, the other
frequencies were chosen close to the frequencies of mode A and
mode B.

In Table 5, the results of the Helmholtz solver are compared
to the LES for mode A and mode B. In terms of damping rates, the
MBC methodology captures the correct order of magnitude,
contrary to the standard Helmholtz solver, which leads to w; = 0, as
expected. The relative error on the frequencies, computed as
| fHelmholz — fLES/fLEs|, remains around 1% for both modes.

Table5 Complex frequencies (in Hz) of mode A and mode B with the
swirler at U = 0.34 m /s, from LES, Helmholtz solver with LES matrix,
and standard Helmholtz solver

Mode A Mode B
Standard Helmholtz 317.4 - 0.0i 591.2 - 0.0i
LES 284.9 —13.2i 589.1 —3.2i
Helmholtz with LES matrix 287.5-13.7i 597.7 - 1.3i
Relative error, % 0.9 1.5

The relative difference between Helmholtz and LES results is also displayed.

Table 6 Swirler matrix

280 Hz 290 Hz 370 Hz 590 Hz
t 0.18940.002  0.268 —0.054j 0.465+0.043j  0.043+0.117;
ra  0.83340.099j 0.775+0.076; 0.568+0.203j 0.946+0.012;
r.  0.8064+0.079; 0.71240.094; 0.53840.033; 0.955+0.001;
t,  0.170-0014j 021740.005; 0.392—0.079; 0.034+0.196;
Junin ~0.006 0.016 0.003 ~0.038

0.582 0.741 0.965 0.176

‘max

Scattering-matrix coefficients from LES for U = 0.34 m/s and eigenvalues of [ — $*S.
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The eigenmode structures are also well retrieved by the MBC
approach, as illustrated in Figs. 23 and 24.

In a general case with turbulent complex flow, as is the case with
the swirler, it can be difficult to properly separate acoustic
fluctuations from hydrodynamic ones. This results in uncertainties in
the acoustic matrix coefficients. Moreover, the frequencies of the
modes of interest are not always available beforehand. In this case,
the matrix can be measured for a chosen set of frequencies, and linear
interpolation is applied to retrieve the coefficients at the desired
frequency, as was done here. This introduces an additional
uncertainty. To assess the effect of these uncertainties on the result of
the MBC-Helmholtz methodology, 50 additional Helmholtz
computations are performed for mode A by varying the coefficients
of the scattering matrix as follows. Each coefficient can have five
different values: the nominal value, the nominal value plus Ag, the
nominal value minus Ag, the nominal value plus jAg, and the
nominal value minus jAg. The total number of matrix combinations
amounts to 695, among which 50 combinations are sampled
randomly. A is areal number chosen arbitrarily to 0.03, and accounts
for the uncertainty on the matrix due to the measurement method, but
also on the frequency at which measurements are taken. Variations of
the order of Ag on the scattering matrix were observed when
interpolating the matrix between 280 and 290 Hz instead of 280 and
370 Hz (Table 6).

Figure 25 shows that the complex eigenfrequency computed
with MBC-Helmbholtz is indeed sensitive to the value of the matrix
coefficients (the nominal result is recalled in Fig. 25 as a white
square). In particular, the variations of the imaginary part of the
frequency can reach up to 3.5 Hz, corresponding to approximately
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Fig. 25 Swirler case. Sensitivity of the frequency of mode A to matrix
coefficients.

25% of the nominal value. The eigenmode structure is also greatly
impacted (Fig. 26). In Fig. 26, the normalization is different from
that used in Fig. 23, because fixing p = 1 at x = —0.58 m would
force all modes to collapse in the upstream section. To better see
the changes in both upstream and downstream mode structures, p
is fixed to 1 at x = 0, the matrix location. The great dispersion of
mode shapes around the nominal result in black suggests that the
matrices should be carefully measured to obtain satisfying results
with the MBC methodology. In our experience, the biggest source
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of error is the frequency of measurement, which should ideally be
chosen as close as possible to the frequency of the mode found
by AVSP.

VI. Conclusions

A methodology was presented to describe the acoustic
behavior of non-purely acoustic elements in a zero-mean-flow
Helmbholtz solver. Compared to other approaches, such as LNSE,
it has the advantage of being slightly faster and compatible with
the prediction of thermoacoustic instabilities (although no
instability was investigated in this paper). Here, the elements of
interest are represented by their two-port matrix, introduced in
the Helmholtz solver, thanks to an MBC. The methodology was
applied on an academic configuration to retrieve the dissipative
effects of two elements: a diaphragm and a swirler. For these
elements, the acoustic—hydrodynamic interaction was the source
of important damping rates and changes in the eigenmode
structures. These modifications were correctly captured by the
Helmbholtz solver with MBC, with matrices measured numeri-
cally and experimentally, whereas the standard Helmholtz
solution misses them. However, a simple sensitivity analysis
showed that the matrix should be carefully measured to obtain
meaningful results. In particular, the frequency at which the
matrix is measured should be as close as possible to the
frequency of the mode of interest.

Appendix A: Howe’s Model for the Acoustic Damping
of a Perforated Plate

Howe [28] derived a model to account for the acoustic damping
created by a perforated plate. Across the plate, the acoustic pressure p
is discontinuous, whereas the acoustic volume-flow rate G = d%i -
n is conserved; d is the average distance between perforations, see
Fig. Al. This creates a difference between the inlet acoustic flux
1/2R(p*G™) and the outlet acoustic flux 1/2R(p~G"), which
corresponds to the flux dissipated at the plate. The flux difference is
directly controlled by a quantity known as the Rayleigh conductivity
[32]. The Rayleigh conductivity K quantifies the ratio of the

acoustic-pressure jump over the acoustic volume-flow rate [4], and
was derived analytically by Howe [28] for perforated plates. For the
plate of Fig. Al

ip,wG

T

= 2a(Ty, — iAg,) (A1)

in which a is the radius of the perforations (assumed of cylindrical
shape), and I', and Ag, are two real valued functions of the Strouhal
number given in [28]. The Strouhal number is defined with the orifice
bias speed as Sr = wa /U ;-

Howe’s model can also be used to compute the Rayleigh
conductivity of one perforation in a circular plate. In this case, the
average distance between perforations d is replaced by /7R, with R
the radius of the plate.

Appendix B: Numerical Parameters for LES
Computations

All CFD computations are performed with the LES solver AVBP
[60], codeveloped by CERFACS and IFPEN. This tool is widely used
numerical scheme two-step Taylor-Galerkin C is third-order accurate
in time and space, and was specifically designed to properly represent
unsteady compressible flows with or without combustion [65]. The ¢
model [66,67] is used to model the subgrid-scale stress tensor
accurately.

For all computations, the diaphragm and swirler parts are modeled
as adiabatic no-slip walls, whereas the duct walls are represented with
adiabatic slip conditions. The acoustic losses due to shear stress or
thermal diffusion in the main duct are therefore neglected. As said in
the Introduction, this is because this effect is small compared to
acoustic—hydrodynamic damping in the low-frequency range.

Characteristic Navier—Stokes inlet and outlet boundary conditions
[68] are used for pulsed computations. For AMT computations, the
inlet and outlet are switched to completely reflecting boundaries, so
as to measure the damping rate associated with the diaphragm or
swirler, and not the one due to losses at boundaries.

——————|a

p.0

s :
i 2a i
i d |
1

Fig. A

Quantities used in Howe’s model.
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