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1. INTRODUCTION 

LET C BE a nonempty closed subset of R”. For each x E C, the tangent cone T,(x) in the sense of 
Clarke consists of all y E R” such that, whenever one has sequences t, 10 and xk --f x with xk E C, 
there exist yk + y with xk + t,y, E C for all k. This is not Clarke’s original definition in [l, 21, 
but it is equivalent to it by his Proposition 3.7 in [2] (see also [3, Remark 2;1] and more recently 
Hiriart-Urruty [4, Chapter VII; 51). 

It is obvious that 0 E T,(x) and that 7”(x) really is a cone (i.e. y E T,(x) implies ly E T,(x) for all 
1 > 0). Moreover T,(x) is closed. What is remarkable, however, is that T,(x) is always convex (cf. 
Clarke [l, 21; a direct proof is also provided below). This property is surprising, because it is 
obtained without any convexity or smoothness assumptions on C. In the absence of such assump- 
tions (and related ‘constraint qualifications’), the other local cones that have been studied in 
optimization theory (cf. [6]) are typically not convex, and this has always posed difficulties. If C 
is a “differentiable submanifold” of R”, T’(x) is the classical tangent space (as a subspace of R”), 
while if C is convex T,(x) is the usual closed tangent cone of convex analysis [7]. 

Tangent cones in this sense have a natural role in the theory of flow-invariant sets and ordinary 
differential equations (and inclusions), see Clarke [2] and Clarke-Aubin [3]. They are funda- 
mental in the study of optimization problems through duality with the normal cones 

N,(x) = T,(x)’ = {z E R”]y E T,(x), (y, z> < O} (Ll) 

and through their consequent close connection with the generalized gradient sets Clarke has 
defined for any lower semicontinuous function f:R” -+ (- CO, CO] by 

‘f(x) = (2 E R”l(z, m.1) E Nepif(x, f(x))} (1.2) 

(where epif is the (closed) epigraph set {(x, g) E Rnfl ICI 2 f(x)}; iff(x) = co, af(x) is taken to be 
empty). Clarke has shown in [8-131 that these notions provide the means for extending to the 
nonconvex case the kinds of necessary conditions for optimality that have been developed for 
nonsmooth variational problems of convex type (cf. [7-161). 

* Research sponsored by the Air Force Office of Scientific Research, Air Force Systems Command, USAF, under 
grant number 77-3204. 
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146 R. T. ROCKAFELLAR 

The main purpose of this article is to establish a strong property of interior tangent vectors 
(Theorem 2) which implies that the boundary of C must be Lipschit~an around any boundary 
point x where int T,(x) # 0. The condition int T,(x) $ 0 is equivalent to N=(x) being a ~~~~~e~ 
cone, in the sense that 0 # z E N&) implies -z 4 N,(x). This result is used to derive a rule for 
estimating the tangent cones and normal cones to the intersection of two sets and the inverse 
image of a set under a differentiable mapping (Theorem 5). A strengthened convexity property of 
C is also proved (Theorem 1). It is shown that 4$(x) cannot be a nonempty bounded set unless f 
is actually Lispchitzian around x (Theorem 4). 

2. CONVEXITY OF THE TANGENT CONE 

Clarke’s original approach to the definition of T,(x) in [l, 23 is based on special properties of 
Lipschitzian functions (for which he initially defined af( x in another manner). It is of some in- ) 
terest to know that the convexity of T,(x) can also be deduced straight from the equivalent defini- 
tion adopted here. For the record we provide a proof which also shows how the convexity is 
approached ‘uniformly’ in the limit, a property that will be needed in deriving the fundamental 
theorem in the next section. 

Let B denote the closed unit ball in R”, so that x + 6B is the closed ball of radius 6 about x. 
One has y E T&x) if and only if for every E > 0 there exist 6 > 0 and ;1 > 0 such that 

C n [x’ + t(y + EB)] # 0 for all x‘ E C n (x + 6B), to[O,/%]. (2.1) 

In what follows, the convex hull of a set D is denoted by COD. 

THEOREM 1. Let D be any nonempty compact subset of T,(x). Then for every E > 0 there exist 
6 > 0 and A > 0 such that (2;l) is valid simultaneously for all YE COD. (Thus in particular 
co D c T,(x), so T,(x) is convex.) 

Proof: Let E > 0. Since D is compact, it can be covered by a finite family of balls yi + .sB, where 
y,ET,(x)fori= l,...,m.Then 

COD c co c (yi + EB) = co(y,,...,yJ + EB. (2.2) 
i=l 

It will suffice to show that (2.1) holds for all y in co(yl,. . . , y,,J, because this will imply via (2.2) 
that for 2s in place of E it holds for all y E co D (a property equivalent to the desired conclusion, 
since E is arbitrary anyway). 

For i = 1,. . . , m, (2.1) holds for y, and certain di > 0, Ai > 0. Taking 6 and X to be the smallest 
of these values, one has 

Cn[x’+t~,+~B)]#~fora11x’~Cn(x+BB),t~[0,~,andi=1,...,m. (2.3) 

Choose 6 E (0, &J and ;1 E (0, X] small enough that 

6 + n(p + E) d 8, where p = max{lyll,. . . , Iy,I). (2.4) 

The assertion 

C n [x’ + t(y + EB)] # ~25 for all x’ E C n (x + 6B), t E [0, A] and ally E co(y,, . . . , y& (2.5) 
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holds trivially for k = 1, in view of (2.3); make the induction hypothesis that it holds for k = 
m - 1. For any x’ E C n (x + 6B), t E (0, A), y E co{yl,. . . , y,}. Write y = ay’ + (1 - a)~,,,, where 

Y’ E co{y,, . . ., y,_ ,} and a E [0, 11. Since at E [0, A], we have by induction that C meets 
x’ + at(y’ + EB). Let x” be any point in the intersection. Then in particular 

X” E [(x + 6B) + at(ly’)B + EB)] = x + [S + at(ly’J + E)]B, 

where ly’l < max{ Jyr I,. . . ,I y,_ r I} < p in (2) and consequently 

6 + at(ly’l + E) G 6 + A(p + E) d 8. 

Thus x” E C n (x + 8B), and since also (1 - a)t < A < 2 it follows from (2.3) that C meets 
x” + (1 - a)t(y, + EB). Hence C meets 

[x’ + at(y’ + EB)] + (1 - a)t(y, + EB) = x’ + t(y + EB). 

This verifies (2.5) for k = m and completes the proof. 

Remark. The proof of Theorem 1 is easily extended to infinite-dimensional spaces and thereby 
demonstrates that the convexity of Clarke’s tangent cone (under the corresponding extension of 
the present form of the definition) is a far more general phenomenon than has been realized. For 
applications of this approach to the study of generalized directional derivatives of lower semi- 
continuous functions on locally convex spaces, see [17]. 

3. INTERIORS OF TANGENT CONES 

The following theorem will be fundamental to the rest of this paper. (C still denotes a closed 
subset of R", and x is a point of C.) 

THEOREM 2. One has y E int T’(x) if any only if there exist E > 0, 6 > 0, I > 0 such that 

X’ + ty’ E C for all x’ E C n (x + 6B), t E [O, 21, y’ E (y + EB). (3.1) 

Proof: Sufficier~cy. Suppose the condition holds, and consider arbitrary y’ E (y + EB). For any 
sequences X~(E C) + x, t, 10, one has xk E (x + 6B) and t, E (0, A) for all k sufficiently large, and 
consequently xk + tkyk E C for yk E y’. Thus by definition J’ E TAX). This proves 7”~) 3 (y + EB). 

Necessity. Given YE int T’(x), choose E > 0 small enough that y + 3&B c T,(x). Apply 
Theorem.1 to D = y + 3&B to obtain 6’ > 0 and 1’ > 0 such that 

C n [x’ + t(y’ + EB)] # 0 whenever x’ E C n (x + 6’B), t E [O, 21, y’ E (y + 3&B). (3.2) 

Next choose 6 > 0 and ;i > 0 small enough that 

A < ;1’ and6 + 2n(lyl + E) d 6’. 

It will be demonstrated that (3.1) holds for this choice of E, 6, ;I. 
Suppose (3.1) does not hold. Then there exist 

X E C n (x + 6B), 2 E co, 47 JE(Y + 8% 

such that X + Ajj $ C. Choose any p > 0 small enough that 

C n (2 + Xj + pB) = 0 (hence p < 1~ - (X + Xy)l = Xljl). 

(3.3) 

(3.4) 

(3.5) 
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Define 

X = max{sE[O,X]ICn(X + sq; + pB) # @}; (3.6) 

this maximum is attained, because C is closed and B is compact. Since (3.5) holds but X E C, one 
has 

O<X<XdA<,<. (3.7) 

Select any 3 E C n (X + /iji + pB), as exists by (3.6). The interior of the ball X + xj + pB cannot 
meet 6, in view of (3.6), so actually 

X=%+Xj+pewithJe/=l. (3.8) 

Then by (3.4), (3.5), (3.7), one has 

11 - XI d 1% - x/ + /Z - ZF/ d 6 + /XJ + pe] < 6 + X/jj/ + Ajji d 6 + 2A(/yl + e). 

It follows from (3.3) that for this 2 and for y” = j - 2&e one has 

z?:~Cn(x + 6’B)andjE(y + 3aB), 

and therefore by (3.2) 

C n [% + t(y” + EB] # @ for all t E [0, n’]. (3.9) 

However, consider any t small enough that 

0 < t < minfp/2e, J. - I> (hence t < ,? < d’). (3.10) 

It will be shown that 

C n [a + t(y” + EB] = @ (even though t E [0, A’]). (3.11) 

The contradiction between this and (3.9) will finish the proof. Since t -c p/2& in (3.10), one has 
0 < p - 2Et < p - Et, so that 

t(p - p) = pe = (p - 2d)e E (p - Et)B. 

Then X + tjT6 (2 - pe + tij + (p - et)@. Using (3.8) one obtains 

5z f t(J7 + EB) c 51 + (I + t)jj + pB, 

where x < li: + t < X (since t < X - li in (3.10)). This yields (3.11), because 

C n (X + (X + t)j + pB) = 0 

by the definition (3.6) of 1. 

Co~n~erexa~ple 1. Theorem 2 is no longer true when R" is replaced by an in~nite-dimensional 
Banach space, even in the case of a convex set. Let C be the closed convex subset of the Hilbert 
space 1’ x R which is the epigraph of the function 

f(5) = f j$, where 5 = (tl, &, . . . -1. 
j=l 

4



Clarke’s tangent cones and the boundaries of closed sets in R” 149 

It can be verified that T’,(O,O) is the upper half-space ((5, a)la > 0} and hence has nonempty 
interior containing y = (0,l). But the interior of C is empty, because f is not bounded above on 
any neighborhood of 0. Hence the property in Theorem 2 cannot hold at x = (0,O). 

Remark. Hiriart-Urruty [5, Theorem 41 has proved for Banach spaces a result somewhat akin 
to Theorem 2 but involving the interior of U,(x) = T,(x) n (- T&X)), where C’ is the closure of 
the complement of C. He assumes x is a ‘regular’ boundary point (an ‘angularity’ property) and 
proves that for y E int V,(x) there then exist E > 0 and J. > 0 with x + ty’ E C and x - ty’ E C’ 
for all y’ E (y + EB), t E (0, A). His argument is based heavily on the ‘regularity’ assumption and is 
very different from ours. In the finite-dimensional case, one obtains from Theorem 2 (cf. also the 
remarks in the next section) that the same conclusion is valid not only for x but all neighboring 
boundary points x’, whether or not x is ‘regular’, and assuming merely that y E int T,(x). 

COROLLARY 1. One has x E int C if and only if x is a point of C such that T,(x) is all of R” (i.e. 
N,(x) = (0)). Thus C has at least one nonzero normal vector’ at each of its boundary points. 

Proqf: This is the case of Theorem 2 where y = 0. 

COROLLARY 2. Let x be a point of C where int T,(x) # @ (i.e. N,(x) is pointed). Then the multi- 
function N, is closed at x, in the sense that 

XL(EC) -+ x, zk E N,(x,), zk -+ z =a z E N,(x). (3.12) 

Proof. To prove (3.12), consider first any YE int T,(x). The property in Theorem 2 implies 
y E T,(x’) for all x’ E C n (x + 6B), and hence y E T(x,) for all k sufficiently large. Then (y, z,J d 0 
by the definition (1.1) of N,, so that 0 3 lim (y, zk) = (y, z). This shows that 

(y,z) < 0 forallyeint T,(x). (3.13) 

Since T,(x) is convex with nonempty interior, it is the closure of this interior, and the inequality 
in (3.13) therefore carries over to all y E T’,(x). Thus z E N,(x). 

COROLLARY 3. Let f:R” -+ R u { + CO} be lower semicontinuous, and let x be a point where f 
is finite, aJ(x) is nonempty, and 8f(x) does not contain any entire line (i.e. is a convex set of 
linearity zero [7, p. 651). Then the multifunction 8f is closed at x, in the relative sense that 

Xk + & Zk E mx,), zJ( -+ z, f(XJ +A$ * z E m). (3.14) 

Proof: In view of Corollary 2 and the definition (1.2) of 8f it is enough to show that the cone 
NePif(x,j”(x)) is pointed under these assumptions. Since this cone is by nature always contained 
in the lower half-space ((x, tx)lcr d 0}, it fails to be pointed if and only if for some u # 0 it contains 
both (a, 0) and (- u,O). For an arbitrary element of N,(x) of the form (z, - 1) (or any other form, 
for that matter) this property of u is equivalent to having 

(z, - 1) + t(u, 0) E N,(x) for all t E R. 
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150 R.T. ROCKAFELLAR 

Thus if af(x) contains an element z, the property of u is equivalent to the line {z + tu( t E R) being 
contained in 81(x). 

Counterexample 2. The fact that (3.12) and (3.14) can fail without the assumptions in Corollaries 
2 and 3 is illustrated by the set 

C = {(x,,x,,x,)~R~(~~ = x1x2 or x3 = -x1x2}. 

For all t # 0 the cone IV,@, 0,O) is the x,.x,-plane, and similarly N,(O, t, 0) is the x,x,-plane, yet 
N,(O, 0,O) is just the x,-axis. This is a counterexample to (3.12), and by takingfto be the indicator 

of C, so that aI = N,(x), one obtains a counterexample to (3.14). 

Of course (3.12) and (3.14) do always hold in the convex case [7, Section 24). Furthermore, 
(3.14) always holds when f is Lipschitzian, cf. [2] (this also follows from Corollary 3 and Theorem 

4 below). 

4. LIPSCHITZIAN PROPERTIES 

A set C c R” is epi-Lipschitzian at a point x E C if it can be represented near x as the 
epigraph of a Lipschitzian (Lipschitz continuous) function. This means that for some neighbor- 
hood U of x there is a nonsingular linear transformation A: R” + R"- ’ x R such that C n U = 

C n A-’ (epi $), where 4 is a function on R”-’ that is finite and Lipschitzian around the point 5 
which is the R"- l-component of A(x). The part .of the boundary of C in U is represented corre- 
spondingly by the graph of 4 and is a ‘Lipschitzian surface.’ 

THEOREM 3. A closed set C c R” is epi-Lipschitzian at a point x E C if and only if int T,(x) f @ 
(i.e. N,(x) is pointed). 

The fact that a closed set C is epi-Lipschitzian at x if and only if (3.1) holds, is of course all 
that is needed in deriving Theorem 3 from Theorem 2. This fact is ‘well known’, but an explicit 
statement is hard to find. Recently Caffarelli [20, proof of Theorem 21 used it without supplying 
an argument. A proof for a similar situation, involving boundaries of ‘star-shaped’ regions, has 
been given by Friedman and Kinderlehrer [21, Lemma 4.11. While the fact certainly is elementary 
it is trickier to establish than might be supposed, since the boundary is not already given as a 
‘surface’ but must be shown to be such (locally) under (3.1). This is the crux of the proof of 
Theorem 3 that is furnished below. 

THEOREM 4. A lower semicontinuous function f: R” + (- co, + co] is (finite and) Lipschitzian in 

a neighborhood of a point x E R” if and only if 8f(x) is nonempty and bounded. 

These results, which are closely related, will be derived as consequences of Theorem 2, and it 
is convenient to deal with Theorem 4 first. The necessity of Theorem 4 has already been estab- 
lished by Clarke [l, 21 (in proving that his general definition for aI reduces to his first-stage 
definition in terms of limits in the case where f is Lipschitz continuous). 
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Proof of Theorem 4. Lipschitz continuity off around x means the existence of p B 0 and a 
neighborhood U of x such that f is finite on U and 

If(x”) - f(k)1 gp(x” - x’\ for all x’, x” E U. 

This property can be expressed equivalently, although somewhat oddly, as follows: there exist 
6 > 0, E E (0,l) and A > 0 such that 

f(x’ + ty’) d f(x’) + t(s-i - 1) for all t E [0, 11 when 

x’ E (x’ E/X + bB), f(x’) d f(x) + 6, y’ E EB. (4.1) 

(Here E corresponds to (1 + p)- ’ ; note that the condition applies in particular when x’ = x, so 
f must be finite on a neighborhood of x.) The virtue of (4.1) is that it can be restated in epigraph 
terms as (1’ finite at x and) 

(x’, c() + t(y’, fl) E epi f for all t E [0, A] when 

(x’, Co E @pi f) n [(x, f(x)) + 6(B x [ - 1, l])], (4.2) 

(~‘3 B) E [to, 1) + (B x [ - 1, I],]. 

But this is just the condition in Theorem 2 in the case of the set C = epi f, the point (x, f(x)) in 
C, and the vector (0, 1). (If course C is closed, since ,f is l.s.cJ. 

It follows that f is (finite and) Lipschitzian in a neighborhood of x if and only iffis finite at 

x and (0, 1) E int Tc(x, f(x)). When this is true T&x, f(x)) cannot be the whole of R”+i (for then 
Corollary 1 of Theorem 2 would yield the impossible conclusion that (x, f(x)) E int C). Now for 
a convex cone K in R”, 0 E K # R”, the condition a E int K is dual to a property of the polar cone 
K”, namely that the cross-section M = {u E K”l(u, a) = - l} is nonempty and compact [18, 
Corollary 7F]. Applying this to a = (0, 1) and the cone Tc(x, f(x)), whose polar is the normal cone 
N,(x,f(x)), one sees that f is (finite and) Lipschitzian in a neighborhood of x if and only if f 
is finite at x and the set {z E R”I(z, - 1) E N,(x, f(x))} is nonempty and bounded. But this is just 

af(x) by Definition (1.1) whenf(x) < co. (When f(x) = co, @‘(x) = 121.) 

Proof of Theorem 3. Necessity. The proof of Theorem 4 shows that the epigraph of a Lipschitzian 
function has tangent cones with nonempty interior. Hence if C can be represented in a neigh- 
borhood of x as the epigraph of such a function, in the sense defined, it must be true that 

int T,(x) # 0. 

Sztfficiency. If x E int C, the conclusion that C is epi-Lipschitzian near x is trivial. Suppose there- 
fore that x is a boundary point of C. Then T,(x) is not all of R” (cf. Corollary 1 to Theorem 2). Let 
y E int T,(x), y # 0, and let H be the hyperplane through the origin orthogonal to y. Each 
x’ E R” can be expressed uniquely in the form 5’ + a’y, where 5’ E H, u’ E R; the mapping 
,4:x’ + (t’, cr’) is a nonsingular linear transformation from R” onto H x R. Let (<, a) = A(x). 
Since y E int T,(x), the property in Theorem 2 holds, and in this the ball B can be replaced equally 
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well by the product of its intersection B’ with H and the interval {tyl - 1 < t < 11. In terms of 
A(C), the property is that for some E > 0, 6 > 0, A > 0, one has 

(5: a’) + t(q, j?) E A(C) for all t E [0, 21 when 

(5’3 4 E A(C) n [(5, N) + @B x [ - 1, I])], (4.3) 

For all 5’ E H define 

hP)E [co, 1) + E(B) x [-1, l])]. 

$(t’) = inf{a’Icr’ 2 c1 - 6, (<‘, a’) E A(C)) 3 ~1 - 6. (4.4) 

(where the convention inf @ = + co is implicit). Since C is closed, 4 is a lower semicontinuous 
function with values in (- co, + co]. Taking (5’ a’) = (5, a) in (4.3), one sees that 

(p([ + tn) d M + t(1 - E) when n E EB’, t E [0, A]. 

Hence there exists 6’ d 6 such that for all 5’ E (5 + 6’B) one has &t’) d c( + 6 and (consequently) 

(t’> 6(O) E A(C) n [K E) + 6(B’ + [ - 1, I])]. 

Then (4.3) implies (with /I = 1) 

(t’ + tq, q5(5’) + t) E A(C) when t E [0,2], q E EB’. (4.5) 

Therefore, for all 5’ E (5 + 6’B) one has 

@(5’ + tq) < 4(5’) + t when t E [0, A], r] E EB’, 

so that 4 is Lipschitzian on a neighborhood of 5. Furthermore 

(t’, 4(5’) + t) E A(C) for all t E [0, A] 

by (4.3). For t < 0, of course, one has (t’, &t’) + t) $ A(C) by the definition of 4. Thus there is a 
neighborhood of (5, ~1) = (g, 4(c)) m which A(C) coincides with the epigraph of 4. This proves 
that C is epi-Lipschitzian at x. 

Remark. Hiriart-Urruty [4, Chapter VII] has introduced the symmetrized tangent cone to C at 
a boundary point x as the intersection of T,(x) and -T,(x), where C’ is the complement of 
int C. Substituting this for T,(x) in the definitions of N,(x) and af(x), he has defined the sym- 
metrized normal cone and symmetrized generalized gradient sets. He has noted that the sym- 
metrized tangent and normal cones reduce to T,(x) and N,(x) if C is either convex or epi-lipschit- 
zian at x. It follows now from Theorem 3 that the symmetrized cones can differ from Clarke’s cones 
only in rather “degenerate” cases, where in particular int T,(x) = @ and N (x) is not pointed (and 
hence contains some entire line through the origin). As for the symmetrized generalized gradient 
set, this likewise has to reduce to af(x) except perhaps in certain cases where as(x) is empty or 
is unbounded and contains some entire line. (As seen in the proof of Corollary 3 in Section 3, this 
condition is implied by the ‘nonpointedness’ of Nepi f(x, f(x)).) 
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5. AN INCLUSION FOR TANGENT AND NORMAL CONES 

A rule for estimating tangent and normal cones will now be derived from Theorem 2. This rule 

can be used in the computation of necessary conditions for optimality in problems where the 
feasible set is the intersection of other sets corresponding to various constraints. 

THEOREM 5. Let u E E = D n F-‘(C), where C c R” and D c RP are closed sets and F:RP + R” 
is continuously differentiable. Let J be the Jacobian of F at u, and suppose that 

T,(u) n J- ’ int T,(F(u)) # a. (5.1) 

Then 

T,(u) = T,(u) n J - l T,(W)), (5.2) 

NE(u) c N,(u) + J*N,(l;(u)) (closed). (5.3) 

Two cases of Theorem 5 are of particular note. The first is where E = D n C (thus RP = R”, F 
is the identity transformation, I = J = J-’ = J*). The second is where E = F-‘(C) (thus 
D = RP = T,(u), N,(u) = (0)). 

Proof. Since the tangent cones are closed convex sets, condition (5.1) implies that 

cl[T,(u) n J-l int T’(F(u))] = T,(u) n J-‘T&F(u)) 

(cf. [7, Theorems 6.3, 6.3, 6.71). To establish (5.2), therefore, it will be enough to show that T,(u) 
includes the set in (5.1). Then (5.3) will follow immediately by passing to the polar cones (cf. [7, 
Corollaries 16.3.2, 16.4.21). 

Let v be an element of the intersection in (5.1), and let y = Jv, x = F(u); then v E T’(u), 
y E int T,(x). Suppose t, 1 0, uk E E, uk + u. In particular uk ED, and since v E T,(u) there must 
exist vk + v with uk + t,v, E D. Also uk E F-‘(C), so that points xk = F(u,) belong to C and 
xk -+ x. For 

Y, = [F(u, + t,v,) - 0,)1/t, 

one also has y, -+ Jv = y, because F is continuously differentiable. Note that F(u, + t,v,) = 

xk + t,y,; the property in Theorem 2 implies therefore that F(u, + t,v,) E C for all k sufficiently 
large, i.e. uk + t,v, E F-‘(C). Thus uk + t,v, E E for all k sufficiently large, and it follows that 
v E T,(u). 

Remark. The dual form of condition (5.1) is that, for some v E RP, one has 

(v, w) d 0 for all w E N,(u), 

(Jv, 2) < 0 for all nonzero z E N&F(u)). 

The proof of the theorem does not really require F to be continuously differentiable on R”, 
just strongly (strictly) differentiable at u in the sense that 

[F(u’ + tv’) - F(u’)]/t -+ J(u)v when u’ + u, v’ + v, t 10. 

For applications of Theorem 5 to the computation of generalized gradients, see [ 191. 
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