H. Abbas, A. Rodionova, E. Bartocci, S. A. Smolka, and R. Grosu, Regular expressions for irregular rhythms. arXiv preprint, 2016.

R. Alur and D. L. Dill, A theory of timed automata, Theoretical Computer Science, vol.126, issue.2, pp.183-235, 1994.
DOI : 10.1016/0304-3975(94)90010-8

R. Alur, T. Feder, and T. A. Henzinger, The benefits of relaxing punctuality, Journal of the ACM, vol.43, issue.1, pp.116-146, 1996.
DOI : 10.1145/227595.227602

R. Alur, D. Fisman, and M. Raghothaman, Regular Programming for Quantitative Properties of Data Streams, European Symposium on Programming Languages and Systems, pp.15-40
DOI : 10.1145/2728606.2728648

E. Asarin, P. Caspi, and O. Maler, Timed regular expressions, Journal of the ACM, vol.49, issue.2, pp.172-206, 2002.
DOI : 10.1145/506147.506151

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

E. Asarin, P. Caspi, and O. Maler, A Kleene theorem for timed automata, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science, pp.160-171, 1997.
DOI : 10.1109/LICS.1997.614944

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. Bagnara, P. M. Hill, and E. Zaffanella, The Parma Polyhedra Library: Toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems, Science of Computer Programming, vol.72, issue.1-2, pp.3-21, 2008.
DOI : 10.1016/j.scico.2007.08.001

R. Bagnara, P. M. Hill, and E. Zaffanella, Not necessarily closed convex polyhedra and the double description method. Formal Asp, Comput, vol.17, issue.2, pp.222-257, 2005.
DOI : 10.1007/s00165-005-0061-1

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Basin, F. Klaedtke, S. Müller, and E. , Monitoring Metric First-Order Temporal Properties, Journal of the ACM, vol.62, issue.2, p.15, 2015.
DOI : 10.1145/1108906.1108908

URL : http://doi.org/10.1145/2699444

D. 'antoni, L. Veanes, and M. , Minimization of symbolic automata, pp.541-554, 2014.

J. V. Deshmukh, R. Majumdar, and V. S. Prabhu, Quantifying conformance using the skorokhod metric, International Conference on Computer Aided Verification, pp.234-250, 2015.
DOI : 10.1007/s10703-016-0261-8

D. L. Dill, Timing assumptions and verification of finite-state concurrent systems Automatic Verification Methods for Finite State Systems, LNCS, vol.407, pp.197-212, 1989.

A. Donzé, Breach, A Toolbox for Verification and Parameter Synthesis of Hybrid Systems, pp.167-170, 2010.
DOI : 10.1007/978-3-642-14295-6_17

A. Donzé and O. Maler, Robust Satisfaction of Temporal Logic over Real-Valued Signals, FORMATS 2010, pp.92-106, 2010.
DOI : 10.1007/978-3-642-15297-9_9

A. Donzé, T. Ferrère, and O. Maler, Efficient Robust Monitoring for STL, Computer Aided Verification (CAV), pp.264-279, 2013.
DOI : 10.1007/978-3-642-39799-8_19

G. E. Fainekos and G. J. Pappas, Robustness of Temporal Logic Specifications, Proceedings of FATES/RV, pp.178-192, 2006.
DOI : 10.1007/11940197_12

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. A. Henzinger, Quantitative reactive modeling and verification, Computer Science - Research and Development, vol.21, issue.4, pp.331-344, 2013.
DOI : 10.1007/978-3-642-02658-4_27

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4811300

T. A. Henzinger and J. Otop, From Model Checking to Model Measuring, Conference on Concurrency Theory (CONCUR), pp.273-287, 2013.
DOI : 10.1007/978-3-642-40184-8_20

URL : https://repository.ist.ac.at/129/1/concur.pdf

S. Jak?i´cjak?i´c, E. Bartocci, R. Grosu, and D. Ni?kovi´ni?kovi´c, Quantitative monitoring of STL with edit distance, International Conference on Runtime Verification, pp.201-218, 2016.

X. Jin, A. Donzé, J. V. Deshmukh, and S. A. Seshia, Mining Requirements From Closed-Loop Control Models, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.34, issue.11, pp.1704-1717, 2015.
DOI : 10.1109/TCAD.2015.2421907

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. Koymans, Specifying real-time properties with metric temporal logic. Real-Time Syst, pp.255-299, 1990.
DOI : 10.1007/bf01995674

O. Maler and D. Nickovic, Monitoring Temporal Properties of Continuous Signals, pp.152-166, 2004.
DOI : 10.1007/978-3-540-30206-3_12

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

O. Maler, D. Nickovic, and A. Pnueli, Checking Temporal Properties of Discrete, Timed and Continuous Behaviors, pp.475-505, 2008.
DOI : 10.1007/978-3-540-78127-1_26

I. E. Mens and O. Maler, Learning Regular Languages over Large Ordered Alphabets, Logical Methods in Computer Science, vol.11, issue.3
DOI : 10.2168/LMCS-11(3:13)2015

URL : http://arxiv.org/abs/1506.00482

D. Nickovic and O. Maler, AMT: A Property-Based Monitoring Tool for Analog Systems, In: FORMATS. pp, pp.304-319, 2007.
DOI : 10.1007/978-3-540-75454-1_22

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Pnueli, The temporal logic of programs, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977), pp.46-57, 1977.
DOI : 10.1109/SFCS.1977.32

A. Rizk, G. Batt, F. Fages, and S. Soliman, On a Continuous Degree of Satisfaction of Temporal Logic Formulae with Applications to Systems Biology, pp.251-268, 2008.
DOI : 10.1007/978-3-540-88562-7_19

URL : https://hal.archives-ouvertes.fr/inria-00419781

B. A. Trakhtenbrot, Origins and metamorphoses of the Trinity: logic, nets, automata, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science, pp.506-507, 1995.
DOI : 10.1109/LICS.1995.523284

B. A. Trakhtenbrot, Understanding basic automata theory in the continuous time setting, Fundam. Inform, vol.62, issue.1, pp.69-121, 2004.

D. Ulus, Montre: A tool for monitoring timed regular expressions, p.5963, 2016.

D. Ulus, T. Ferrère, E. Asarin, and O. Maler, Timed Pattern Matching, pp.222-236, 2014.
DOI : 10.1007/978-3-319-10512-3_16

M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and N. Björner, Symbolic finite state transducers: algorithms and applications, pp.137-150, 2012.
DOI : 10.1145/2103621.2103674