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As one of Bayesian analysis tools, Hidden Markov Model (HMM) has been used to in extensive applications. Most HMMs are solved by 
Baum-Welch algorithm (BWHMM) to predict the model parameters, which is difficult to find global optimal solutions. This paper 
proposes an optimized Hidden Markov Model with Particle Swarm Optimization (PSO) algorithm and so is called PSOHMM. In order 
to overcome the statistical constraints in HMM, the paper develops re-normalization and re-mapping mechanisms to ensure the 
constraints in HMM. The experiments have shown that PSOHMM can search better solution than BWHMM, and has faster 
convergence speed.  
 

Index Terms—Hidden Markov Model, Particle Swarm Optimization, Non-negative Constraint, Normalization Constraint 
 

 

I. INTRODUCTION 
 

s an efficient statistics tool, Hidden Markov Model 
(HMM) has been tested and proved in a wide range of 
applications. It is a powerful algorithm to estimate the model 
parameters. Therefore, to optimize the model parameter 
exactly is a crucial element in HMM.  
To find optimal model parameters, traditional approach often 
use Baum-Welch (BW) algorithm to optimize model 
parameters based on expectation-maximization (EM) 
algorithm. However, BW algorithm often converge into local 
optimum.[1] re-estimates model parameters with 
reinforcement learning, but still cannot overcome local 
convergence problem. Recently, various intelligent evolution 
algorithms are introduced to optimize HMM and achieve good 
performance. [2] optimizes HMM by tabu search algorithm; [3] 
[4] proposes to training HMM structure with genetic 
algorithm(GA); [5] trains HMM by Particle Swarm 
Optimization(PSO) algorithm; [6, 7] make a comparison 
between PSO and GA for HMM training and demonstrate that 
hybrid algorithm based on PSO and BW is superior to BW 
algorithm and the hybrid algorithm based on GA and BW. 
Because model parameters need to satisfy statistical 
characteristic, the optimization of model parameters in HMM 
is a constraint problem. But these evolution algorithms usually 
combine evolution algorithms with HMM directly and leave 
these parameter constraints in HMM out of consideration. 
In this paper, we employ Particle Swarm Optimization to 
search optimal model parameters of HMM (PSOHMM) to 
avoid local optimum in BW algorithm, solve the parameter 
constraints in HMM with remapping and re-normalization 

mechanism. The simulation experiments demonstrate 
PSOHMM achieves better optimization performance than 
BWHMM. 
The remainder of this paper is organized as follows. In the 
next section, some basic knowledge of HMM is given. 
Section3 introduces Optimized Hidden Markov Model. In 
section4, we discuss the performance of the proposed 
algorithm. Finally, Section 5 concludes this paper and 
proposes future works. 

II. HIDDEN MARKOV MODEL  

Given a set of m observation states 1{ , , }mV v v= " , HMM 
consists of a finite set of n  hidden states 

1{ , , }nS s s= " with an associated probability distribution. It 
means that suppose that HMM regularly undergoes a state-
change along a certain constant period of time according to a 
set of probabilities associated with its current state. So HMM 
is a probabilistic model with a collection of random variables 

1 1{ , , , , , }t to o q q" "  where 1{ , , }tO o o= " is the 

sequence of observation states and io V∈ , [1, ]i t∈ , and 

1{ , , }tQ q q= "  is the sequence of hidden states and 

iq S∈ , [1, ]i t∈ . 
For simplicity, two conditional independence assumptions are 
given to make associated algorithms tractable as following: 
(1).The t  th hidden variable, given the ( 1)t − st hidden 
variable, is independent of previous variables, 
i.e. 1 1 1( | , , ) ( | )t t t tP q q q P q q+ +=" . 
(2).The t th observation depends only on the t th state, i.e. 

1 1( | , , , ) ( | )t t t tP o q q o P o q=" . 
The definition of HMM can be described as following: 
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Definition 1 (Hidden Markov Model) Given a set of m  
observation states V , HMM with a finite set of n  hidden 
states S consist of a triple ( , , )A Bλ π= , 

where 1{ ( )}i iP q sπ π= = = is the prior probabilities of is  

being the first state of Q ; { }ijA a= is the state transition 

probabilities matrix, 1 ,i j n≤ ≤ , 

1{ | }ij t j t ia P q s q s+= = = characterize the transition 

probability from hidden state 1tq +  into tq , and 1ij
j

a =∑ ; 

{ }ijB b=
 
is the emission probabilities 

matrix,1 i m≤ ≤ ,1 j n≤ ≤ , { | }ij t tb P o i q j= = = describ

es the relation between observation to  and hidden state tq  at 

time t, and 1ij
j

b =∑ ; 

According to Definition 1, the triple λ  in HMM should 
satisfy the prior probabilities, the state transition probabilities 
matrix A  and the emission probabilities matrix B should be 
non-negative and normalized, which also called non-negative 
and normalization constraint respectively. 
Given an observation sequence 1{ , , }tO o o= " , it can solve 
the following three basic problems[8]: 
(1) Given O  and λ , how to compute the probability of 
observing sequence, i.e. ( | )P O λ .The problem is called the 
evaluation problem. 
(2) Given O  and λ , how to find a corresponding hidden 
states sequence that most probably generated an observed 
sequence. The problem is called the decoding problem. 
(3) Given O , how to adjust the model parameter λ  to 
maximize ( | )P O λ . The problem is called the learning 
problem. 
According to the second and third problems, before the hidden 
states sequence that most probably generated observed 
sequence is found, it’s necessary to compute optimal model 
parameters λ to maximize the following objective function: 

max ( | )P O λ                          (1) 

Given model parameter λ , the above probability of O  is 
obtained according to sum joint probability over all possible 
state sequence Q  as following: 

( | ) ( , | ) ( | )
Q

P O P O Q P Qλ λ λ=∑ (2) 

According to Bayesian theory, we can get: 
( , | ) ( | , ) ( | )P O Q P O Q P Qλ λ λ= ⋅ (3) 

Give a hidden state sequence, the likelihood of an observation 
sequence is equal to the product of the emission probabilities 
computed along the specific path: 

1 1 2 2, , ,
1

( | , ) ( | , )
T T

T

t t q o q o q o
t

P O Q P o q b b bλ λ
=

= = ⋅ ⋅∏ " (4) 

Give model parameterλ , the probability of a state sequence  

1{ , , }TQ q q= " can be computed by the product of the 
transition probabilities from one state to another state: 

1 1 1 1 2 2 3 1

1

, , , ,
1

( | )
t t T T

T

q q q q q q q q q q
t

P Q a a a aλ π π
+ −

−

=

= ⋅ = ⋅ ⋅ ⋅ ⋅∏ " (5) 

Let Eq. and (5) substitute into (3), then we can get: 

1 1 2 1 1 1
1

, , , ,
, ,

( , | )
T TT T

T

q q q q o q q q o
q q

P O Q a b a bλ π
−

= ⋅ ⋅ ⋅ ⋅∑
"

" (6) 

Therefore, the objective function in Eq. becomes: 

1 1 2 1 1 1
1

, , , ,
, ,

( ) max
T TT T

T

q q q q o q q q o
q q

f a b a bλ π
−

= ⋅ ⋅ ⋅ ⋅∑
"

" (7) 

Traditional method to solve Eq. is to use Baum-Welch 
algorithm, which also is called forward and backward 
algorithm. However, BW algorithm finds maximum-likelihood 
with iterative expectation-maximization (EM) algorithm and is 
sensitive to initial model parameters which are easy to trap 
into the local optimum. 
 

III.  OPTIMIZED HIDDEN MARKOV MODEL BASED ON 
CONSTRAINED PARTICLE SWARM OPTIMIZATION 

Particle Swarm Optimization(PSO) algorithm is one kind of 
evolutionary method proposed by Kennedy and Eberhart [9]. 
It imitates social behavior of birds and fish to find global 
optimum for optimization problems and has been applied into 
various scientific fields [10, 11, 12, 13, 14]. 
For n particles in PSO, a particle is a solution, which 
represents the position of a particle, the group solutions 
consist of a swarm. In order to find the best position of the 
particle, i.e. the optimal solution, PSO constantly updates the 
positions of all particles with a velocity vector in the swarm in 
iterative manner until the termination condition met. For 
example, each particle i is represented by a D  dimensional 
position vector ( )ix t and has a corresponding velocity vector 

( )iv t . During each iteration t , the best position of a particle 

and the swarm pbest , gbest  that result in the best value of 
fitness function are recorded, which are called the particles’ 
personal experience and the social knowledge respectively, 
then the velocity vector is updated using the following rule: 

1 1

2 2

( ) ( 1) ( ( 1))
( ( 1))

i i i

i

v t v t c p b est x t
c gbest x t

ω ξ
ξ

= − + − −
+ − −

(8) 

The parameter ω  is called inertia weight to scale the previous 
time step velocity; 1c and 2c are scalar factor to control the 
influence of the personal experience and social 
knowledge; 1ξ and 2ξ represent the random number that satisfy 

a uniform distribution and 1 2, [0,1]ξ ξ ∈ .The new position of 
the particle is updated: 

( ) ( 1) ( )i i ix t x t v t= − +     (9) 

If the best position of the swarm gbest is searched from the 
positions of all particles, then the PSO algorithm is called 
global best PSO; if gbest  is searched only from the 
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neighborhood ( )iN t  of the particle ix ,i.e. | ( ) |iN t n< , then 
the PSO algorithm is called local best PSO. 
The fitness functions ( )f x  derived from Eq. to find optimal 
model parameters λ  to maximize the probability of 
observation sequence O : 

( ) ( | )f P Oλ λ=     (10) 
Since all model parameters λ represent the probability, so 

[0,1]λ∈ . However, it’s easy to find that the position update 
rule in Eq.(8) cannot only guarantee model parameters are 
within [0,1] , but it also cannot satisfy the normalization 
constraint of model parameters. The reason is that PSO was 
originally proposed to handle unconstrained optimization. So 
it’s necessary to modify PSO algorithm to cope with 
constrained optimization.  
To cope with the constraints in HMM, this paper employs two 
different methods to guarantee the interval and normalization 
constraints respectively. 
Concerning the problem that model parameters exceed number 
interval, we employ re-mapping method to adjust these 
parameters. Let 1bU =  denotes upper bound, 0bL =  
denotes lower bound, ψ denotes these model parameters 
exceeded number interval. The re-mapping method repairs ψ  
considering the following four cases: 

( )
( )

b b b

b b b

U U if U
L L if L

ξ ψ ψ
ψ

ξ ψ ψ
− − >­

= ® + − <¯
                (11) 

Meanwhile， velocity vector ( )iv t  is also updated: 

( ) ( ) ( 1)i i iv t x t x t= − −              (12) 
Furthermore, in order to ensure that transition matrix and 
emission matrix satisfy the normalization constraints, the 
following re-normalization method is employed: 

1

i
i N

i
i

ππ
π

=

=

∑
(13) 

1

ij
ij N

ij
j

ρ
ρ

ρ
=

=

∑
(14) 

Where ijρ  denotes ija and ijb . 
IV. SIMULATION EXPERIMENTS 

In this section, two simulation experiments are conducted to 
validate the performance of the algorithm proposed in this 
paper. Firstly, we demonstrate that optimized HMM based on 
PSO( called PSOHMM) can search better solution than HMM 
solved BW algorithm(called BWHMM) and analyze the 
reason.  
In the first experiments, two group datasets are generated 
randomly. To improve the efficiency of computation, we 
select a small number as the number of observation states and 
let it equal 5. In some e-commerce environments, the feedback 
often contains multi-dimensional rate scores, such as the rate 
to the quality of products, the quality of service and the 

delivery time. In order to imitate the rating score, we generate 
five different 1-dimension observation sequences with the 
length of 100 in the first group and generate five different 2-
dimension observation sequences with the length of 100.  
For each dataset, the model parameters of HMMs are trained 
using these observation sequences respectively and the 
number of hidden state is 2. At last, we can get five different 
HMMs. As shown in Section 2, the optimal model parameter 
should maximize the probability of observation sequence. So 
the log likelihoods of these observation sequences with these 
optimized HMMs are computed, i.e. log ( | )P O λ to compare 
the optimization ability between PSOHMM and BWHMM as 
shown in Fig. 1 and Fig. 2.For PSOHMM, the number of 
particle is 25 and the iteration number is 10. For BWHMM, 
the iteration number is 50. 
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Fig.1 The log likelihoods of 1-dimensional data 
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Fig. 2 The log likelihoods of 2-dimensional data 

From Fig.1 and Fig.2, we can find easily that PSOHMM 
always achieves larger log likelihoods of observation 
sequences than BWHMM for both two data sets with one 
dimension and two dimension data. It means BWHMM is easy 
to trap into local optimum, but PSOHMM has the capability to 
find global optimal solution and can be applied into any 
dimension observation sequence. Actually, in PSOHMM, the 
current best position of a particle pbest  represents a local 
optimum, gbest  represents the best solution of all local 
optimum found in current iteration, as shown in Fig.3. In each 
iteration, the position is update with velocity vector, which 
means to search a better solution than previous local optimum 
within the neighborhood of previous position and make 
gbest  move toward to global optimal solution continuously. 
Moreover, PSOHMM employs some particles to search 
optimal solution simultaneously and have larger probability to 
find global optimal solution, So PSOHMM is superior to 
BWHMM to search model parameters. 



> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) < 
 

4 

 
 
Fig.3 The global and local solution in Rastrigin's Function 

 
Fig.4 The convergence of pbest  and gbest  with iterative 

number 
Fig.4 exactly verifies the above analysis. It shows that the best 
position of every particle pbest  always converges to gbest  
with the increase of iteration number.  
In order to demonstrate the convergence of PSOHMM, Fig.5 
compares the convergence performance of PSOHMM and 
BWHMM with different iteration number. We can find that 
PSOHMM converge gradually after one iteration, but 
BWHMM begin to converge after 10 iterations. So PSOHMM 
has better convergence performance than BWHMM and more 
stable than BWHMM. 
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Fig.5 The convergence of log likelihoods with different 

iterative number 
V. CONCLUSION 

This paper proposes optimization HMM based on Particle 
Swarm Optimization. The proposed algorithm takes full use of 
the global searching capability of PSO and avoids BW 
algorithm trap into the local optimum. In addition, this paper 
employs re-mapping and re-normalized methods to guarantee 
the interval and normalized constraints in HMM. The 
simulation experiments have demonstrated that PSOHMM is 
superior to BW algorithm to search optimal model parameters 
and more stable than BW algorithm. 
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