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Abstract

A link stream is a sequence of triplets (¢, u,v) meaning that nodes
u and v have interacted at time t. Capturing both the structural and
temporal aspects of interactions is crucial for many real world datasets
like contact between individuals. We tackle the issue of activity pre-
diction in link streams, that is to say predicting the number of links
occurring during a given period of time and we present a protocol that
takes advantage of the temporal and structural information contained
in the link stream. We introduce a way to represent the information
captured using different features and combine them in a prediction
function which is used to evaluate the future activity of links.

1 Introduction

A link stream (see Figure 1) is a sequence of triplets (¢,u,v), each triplet
indicating that an interaction occurred between w and v at time ¢. Many
real world datasets can be modeled and analyzed using link streams, such as
e-mail exchanges, contacts between individuals, phone calls or IP traffic [1].
There have been other attempts to model these systems, like dynamical
networks [2] or time varying graphs [3], which hold the same information
as link streams. Analyzing the dynamical and structural properties of these
link streams is capital to apprehend the behavior of the system, as it allows
to understand the underlying phenomena in the data.

We focus on the activity prediction problem, i.e. predicting the number
of links appearing between each pair of nodes during a given period of time.
While this problem shares properties with the more usual link prediction
problem, it is also quite different in the sense that we aim at predicting not
only who interacts with who, but also when.



To do so, we capture independently some structural and dynamical fea-
tures with metrics measuring the link stream properties. We then combine
these metrics in order to estimate future activity and we compare our pre-
diction to the ground truth in order to assess the relevance of the approach.
The performance of our framework is measured on two datasets of real world
contacts between individuals [4, 5].

Let us emphasize the fact that our goal is to define a general framework
to allow further study of the interplay between structural and dynamical
features for prediction tasks, rather than optimize the prediction perfor-
mance on these specific datasets. We aim to give evidence of the fact that
combining these two kinds of features leads to improvements over the use
of only one kind. Therefore, we make the simplest possible design choices
in order to make our point, even though more elaborate choices would lead
to better predictions. Our work is indeed a proof of concept, that provides
a general scheme to serve as a baseline and motivation for further work in
this direction.

Y

Figure 1: Example of a link stream where nodes 2 and 3 have interacted at
time 0.5, nodes 1 and 3 have interacted at time 1, and so on.

2 Related work

Activity prediction is related to the classic link prediction problem, which
consists in using the data structure by representing it as a graph [6, 7], and
predict new links appearing in this graph. When the temporal evolution is
a key element in the data, a usual approach is to slice the data in several
time windows T;, then aggregate them as a sequence of graphs G; = (V, E;)
corresponding to the time windows such that E; = {(u,v) : 3(t,u,v) €
E}. It allows to use traditional link prediction methods on these graphs.
The information contained in the data is then extracted using graph-based
measurements. In this field, many metrics have been developed to obtain
the most relevant information [8, 9]. They often consist in evaluating the
similarity between two nodes according to various criteria, which produces a
score or a ranking correlated to the apparition probability of a link between
these nodes. For example, the number of common neighbors between two



nodes and several variants [10] are commonly used. Similarity measures
based on the temporal patterns of activities of nodes and links have also been
proposed (e.g. [11]). Several methods exist to combine the metrics computed
for improving the prediction. It is possible to use classification algorithms to
determine the predicted links [8]. Another approach is to rank the pairs of
nodes using the values of different metrics. The predicted links connect the
n first pairs of nodes, with n fixed as a parameter and determined using the
system behavior [12, 13]. However, the use of time windows commands a
time scale and leads to the loss of some temporal information. For example,
the information associated to a link repetition between two nodes within a
time window disappear during the data aggregation. One of the stakes of
our work is to conserve this information by using the link stream formalism,
more suited to the data.

It is also possible to approach link prediction by focusing on the dynam-
ical aspects of the link apparition between two nodes rather than on the
structural properties. The sequence of links between each pair of nodes is
then considered as a time series and numerous tools have been developed in
this field to predict the future behavior of the system. For example it is pos-
sible to focus on the link apparition frequency in the past to predict future
interactions [14, 15]. This approach focuses on predicting the future occur-
rences of links that have appeared in the past. As such, it is complementary
to link prediction in graphs.

Our work differs from these methods by focusing on both the dynamic
and the structural aspect of the data while avoiding the information loss
induced by the use of time windows. We introduce a protocol that combines
these information sources and allows a fine temporal resolution. We use this
to predict both new and repeated links in the stream.

3 Problem definition

We consider a set of nodes V representing entities in the system — e.g.,
individuals in contact networks or mobile devices in DTN. We observe in-
teractions between these entities for a period of time T' = [A, ()], that we
model as a link stream L = (T, V, E), where E C TxV xV, and (¢t,u,v) € E
means that an interaction occurred between v and v at time ¢. In the follow-
ing, we refer to L and T as the observation stream and observation period,
respectively. Our goal is to predict the number of interactions between nodes
in V' during another period of time 7" = [A’, '] with @ < A" < Q. We
model the interactions during this interval as a link stream L' = (T",V, E’)
with B/ CT' x V x V. L' and T" are then called the prediction stream and
prediction period. We aim to predict the activity of any pair of nodes in the
system, i.e. for each (u,v) € V x V, the value A'(u,v) = |{(¢t,u,v) € E'}|.



Table 1: Graph-based metrics used for prediction.

Proximity of two nodes
Common Neighbors NV (u) NN (v)] based on the number
of common neighbors
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Jaccard % weight of high

degree nodes

Decrease the weight
Adamic Adar [16] 3, cnrwrnv) mgvy  Of nodes with high
degree neighborhood

4 Activity prediction framework

4.1 Prediction features

The information contained in a link stream can be of different kinds, for
instance, it can be the number of past interactions between two nodes or
the density of a node’s neighborhood. While existing methods mostly focus
on one of these aspects, we intend at using metrics adapted to link streams,
which combine dynamical and structural information. The metrics represent
complex characteristics of the system, however expressing them with a scalar
score leads to a loss of a part of the information. For example, a metric
accounting for the burstiness of the interactions between two nodes is poorly
represented by a unique score. Hence, we define functions that capture
different aspects of the information. We want these functions to represent
how likely is a link apparition between each pair of nodes according to each
metric. We then combine them to form the prediction function itself.

4.1.1 Structural measurements

As afirst step, we adapt metrics from link prediction in graphs to the context
of activity prediction in link streams. We use traditional metrics widely
employed in link prediction: the number of common neighbors between
two nodes u and v, and other derived metrics, 7.e. the Jaccard index or
the Adamic-Adar index (see Table 1). Their definitions use the notion of
neighborhood of a node u in L as N (u) = {v : 3(z,u,v) € E}. As these
metrics do not take into account the dynamics of the data, we represent them
as a function independent of ¢. Thus, the function associated to the number
of common neighbors of two nodes u, v is [N (u) NN (v)|. We define similarly
the function associated with the Jaccard index and the Adamic-Adar index.



4.1.2 Temporal measurements

The link stream formalism allows to capture temporal information in the
data, for this purpose we restrict ourselves to relatively simple measure-
ments. As it is usually done in the field of time-series prediction, we first
use as a benchmark a metric based on the extrapolation of the activity
between each pair of nodes, which allows to take into account link repeti-
tions in the stream. We want to keep the benchmark as simple as possible.
Therefore, we choose to represent the benchmark with a time-independent
function. Precisely, the number of interactions A, , between u and v during
T, is defined the function A, ,(t) = |{(z,u,v) € E}|.

Then, we define three other metrics that describe more precisely the
temporal behaviors of the system. The first two are adapted versions of the
pair activity extrapolation that focus on the most recent activity during the
observation period. This choice is made on the ground that the most recent
interactions affect more the dynamics than the old ones do.

In one case, we only take into account the activity during a fixed pe-
riod of time: for each pair of nodes, we compute the function As , ,)(t) =
H(z,u,v) € E : x € [Q—0,Q]}, which accounts for the number of interac-
tions during the most recent § period.

In the other case, we take into account the activity of each pair of nodes
between Q and the time of occurrence of the k" link between u and v before
Q. The corresponding function is Ay (,.)(t) = k/(€2 — tx) with #; such that
H{(z,u,v) € L,Q > x > t;}| = k. Note that both of these functions are
time-independent in order to be easily comparable with the benchmark.

Finally, we define a temporal metric that aims at taking into account the
variations of activity during the observation period. The observation period
is divided equally in n sub-periods. For each pair of nodes we then fit an
affine function using the activity over each sub-period. The corresponding
function is the extrapolation of the affine function A, (4.4)(t) = auy -t +
by, with a, , and by, the coefficient computed by the fitting algorithm for
each pair u,v. This metric allows to study the behavior of time-dependent
prediction functions.

4.2 Prediction function

To use the information captured by the metrics presented above, we choose
a method to combine the functions. We construct a prediction function f ,,
such that for all u,v € V' x V, and for all t € [A’, Y], fy,(t) represents how
likely is the apparition of a link between u and v at the time ¢. We build it
from the metric functions using a linear combination:

k

fu,v(t) = Z Qg - fﬁ,v(t)

=1



é,v is the function associated to metric ¢ and & is the number of metrics used.
The parameters «; allow to control each metric weight in the prediction
function. Note that the value of f, , does not have an absolute meaning, we
rather use the relative value of f, , to other f,/ .+ as we will see in Section 4.3.
Note also that other combination methods are possible, this choice is made
for the sake of simplicity.

Given such a prediction function, a standard prediction method consists
in learning on a training period the a; values which optimize a given evalua-
tion criterion. Then these weights are used for the actual prediction. In the
following, we explore the influence of the weights on cases where the sum
has two terms, we do not focus on a specific learning method which is left
for future works.

4.3 Prediction protocol

To predict the number of links between each pair of nodes during 77 =
[A", ], we first estimate the number of links N between all pairs of nodes
during this period. We make the strong assumption that the global activity
in L' is the same as in L, and therefore, extrapolate linearly the stream
activity to determine the global number N of links to predict:

- A
O A (1)

N =|E|-

Then, for each pair of nodes, the function f* are computed on the link
stream L. As the prediction function reflects how likely is the occurrence of
a link between two nodes, we use it to allocate the N links between all the
pairs in V' x V. We define the pair apparition score I'y ., as a score of the
link apparition likelihood between u and v during T”:

o
Fuw= fuo(t)dt (2)
A
It is then normalized to the sum of all I';, for all pairs of nodes x,y in
the stream. We allocate the N links estimated previously proportionally to
the normalized pair apparition score to get IV, ,, the number of interactions
predicted for any pair (u,v):

_ Tuw
Zx,yGV Ffﬂvy
As mentioned previously, it is the relative value of I',, which allows to
compute the N, ,, with Z%yev Nyw»=N.

This framework allows to predict the number of links between each pair
of nodes during T”. It is important to note that due to the specificities of our
prediction task and in contrast to what is usually done for link prediction
in graphs, this number is not necessarily an integer.

Nyy=N - (3)



4.4 Evaluation protocol

As our method aims to predict a different object from link prediction meth-
ods in graphs, we have to define another way to evaluate the efficiency of our
protocol. Nevertheless, the evaluation method defined here aims to stay as
close as possible to the tools used in classification tasks, therefore allowing
to compare our method to other prediction algorithms. We adapt the usual
definition of true positives, false positives and false negatives to the context
of activity prediction in link streams. Precisely, for each pair (u,v), we com-
pare N, ,, the number of links predicted, to Nl’w, the number of links that
have actually occurred between A’ and ' (see figure 2). We then define the
number of TP, FP and FN as follows:

TPu’v = min(Nu,va NZ’L,’U)
FPuﬂ, = maX(Nu,v - N’l{b,U’ 0)

FNuvv = maX(N'z/L,v - Nu,v, 0)
The sum of each of these indicators over all pairs of nodes yields the number
of TP, FP and FN for the whole prediction. Note that these definitions
allow to get the usual relationships between the indicators, that is to say,
TP + FP is the number of predictions and T'P + FN is the total number
of interactions actually occurring during 7".

Thus we can compute more sophisticated performance measurements:

the precision (%), the recall (TPJ—L%)' We also use the F-score to

quantify the quality of prediction, which is the harmonic mean of these

indi . 9. precision-recall s ) i
two indicators: 2 recisionTrecall” Other indicators could be defined in this

context, like the ROC curve, but we do not use them in this study.

Nu,v Nlu,v Nu,v NIU,V

Figure 2: Evaluation scores for activity prediction in link streams.



5 Experiments

In this section, we evaluate the performance of our framework using two
datasets which are both real-world contact data between individuals, cap-
tured with sensors. We investigate different metrics combinations as well
as the influence of the observation period duration. We aim to identify
the strengths of our protocol as well as the main challenges to improve the
prediction to guide our future works.

5.1 Data description

The first trace used was collected in a French high school in 2012 (High-
school dataset), see [4] for full details. It is a link stream of 181 nodes and
45047 links, connecting 2220 distinct pairs of nodes over a period of 729,500
seconds (approximately 8 days). Each undirected link (¢, u,v) means that
the sensor carried by individual u or v detected the sensor carried by the
other individual at time ¢, which means in turn that these two individuals
were close enough at time ¢ for the detection to happen. We call this a
contact between individuals v and v.

The second dataset has been collected during the IEEE INFOCOM 2006
in Barcelona (Infocom dataset) — see [5]. The bluetooth devices used in this
experiment recorded connexions with one another. This dataset contains 98
nodes and 283,100 links. During this 3 days long experiment, 4338 pairs of
nodes have interacted.

We can see that the Infocom dataset involves less nodes but contains
more links and more active pairs of nodes. Therefore, comparing between
these two datasets allows to get insights about how the density of intercon-
nections affects the performance of the combination of features used.

5.2 Experimental implementation

Our experimental protocol focuses on the performance gain that can be
achieved by combining link stream metrics. The dataset is divided into sub-
streams according to the description given in Section 3, with T = [A, §)], as
an observation stream to predict L' = (T",V, E’), where T" = [A’, Q] with
Q = A’. Then, to understand the information brought by each metric, we
combine two metrics at a time, the weight of each metric being related to
the parameter «, according to the following equation:

fuo(t) = - Au(t) + (1 = a) - f1,,(t) (4)

where A, , is the function associated to the pair activity extrapolation (see 4.1.2),
which is considered here as a benchmark to compare with the performance
our combination method, f’L/L,’U is a function corresponding to one of the other
metrics presented.



5.3 Combinations of temporal and structural features

We study how the use of different metrics with different weights affects the
prediction on our real world datasets. For this purpose, we first combine one
of the structural functions presented in section 4.1.1 to the function A, ,.

5.3.1 Metrics analysis

Common Neighbors ———
Adamic Adar —*—
Jaccard Index —*—

o
Y
9]
0
v
0.4
0.2
=%
|
0 r
0 0.2 0.4 0.6 0.8 1
o
1
Common Neighbors —+—
Adamic Adar —*—
Jaccard Index —*—
0.8

F-score

Figure 3: F-score of the predictions with different weight ratios between the
pair activity extrapolation and a structural metric for the Highschool (top)
and Infocom (bottom) dataset.

Each plot in Figure 3 represents the F-score for a different pair of metrics
combination as a function of « for each of the two datasets. Higher values
of a represent a greater weight of the pair activity extrapolation in the
prediction. We combine successively the pair activity extrapolation with the



number of common neighbors, the Adamic-Adar index and the Jaccard index.
Using the Highschool intercontact dataset, we build the observation stream
using the links that appear between 7:30 am to 8:00 am on the first day.
We then predict the link activity between each pair of nodes from 8:00 am
to 1:00 pm and compute the prediction performance. The three plots have
a similar shape: the F-score values steadily increase with « until reaching
a maximum for o € [0.90;0.98], and then decrease until @« = 1. Note that
for o« = 1, the prediction functions come down exactly to the pair activity
extrapolation, therefore all three functions yield the same F-score.

We then apply the same protocol to the Infocom dataset. The observa-
tion stream is built using the link appearing between 1:30pm and 2:30pm
to predict the links between 2:30pm and 6:00pm. We can see that the three
structural metrics tested behave qualitatively in a similar way as in the
Highschool case, however the values for a = 0 are higher, suggesting that
the structural metrics alone perform better on the Inmfocom dataset than
they do on the Highschool one, which is probably due to the higher overall
activity of nodes in the former one. We also observe a maximum for values
of a ~ 0.9 for each plots with F-score values of 0.52.

These observations indicate that in both experiments, combining a tem-
poral metric with a structural metric may lead to an improvement of the
F-score. In these experiments the improvements remain relatively small,
from 4.9% to 8.8%, because of the simplicity of the metrics chosen, but it
shows that our protocol is able to draw benefit from the combination of
temporal and structural information.

5.3.2 Categories analysis

To understand how each type of information affects our prediction, we refine
our analysis, without modifying the prediction protocol, by dividing the set
of pairs of nodes in two categories. On the one hand, some pairs have not
interacted during 7', so that when predicting the occurrence of a link in one
of them we predict a new link in the stream. We call new link any (¢, u,v) in
the prediction stream L’ such that Vo € T, # (z,u,v) € E On the other hand,
other pairs have interacted during T and predicting the corresponding link
occurrence is predicting link repetition. We call recurrent link any (¢, u,v)
in the prediction stream L’ such that there exist a link (z,u,v) € E. The
evaluation method is then applied on the complete set of pairs and on each
of these two subsets. We focus on the combination of the number of common
neighbors with the pair activity extrapolation.

We exhibit in Figure 4 the F-score as a function of « for the three cat-
egories of pairs aforementioned on both datasets. We can see on the High-
school dataset that the F-score corresponding to the recurrent link category
increases to a maximum for o = 0.8, while for the new link category it re-
mains nearly constant until & = 0.78, at which point it grows to a maximum
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Figure 4: F-score of the predictions between the pair activity extrapolation
and the number of common neighbors as a function of « for different cat-
egories of pairs of nodes for the Highschool (top) and Infocom (bottom)
dataset. Green: All links, Orange: New links, Purple: Recurrent inks

reached for a = 0.96.

Considering new links, the pair activity extrapolation alone is not able
to predict this kind of interactions, and thus yields a null F-score. However,
we can see that the F-score associated with the new links is almost constant
for a wide range of o when the influence of the number of common neighbors
is predominant in the prediction. This behavior is due to the low number of
new links appearing during 7": As « grows, less and less links are attributed
to these pairs. However, as the number of new links actually appearing is
much smaller than the total number of predicted links, both the numbers
of true positive and false negative remain almost constant. Therefore, the
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recall is also nearly constant. The precision slightly improves as « grows as
the number of false positives decreases. When the number of true and false
positive are close, it leads to an increase of the F-score corresponding to the
prediction of new links for values of @ ~ 0.9. Similarly, the performance
of the prediction of recurrent links improves as more weight is given to the
extrapolation of previous pair activity. However, as the number of links
appearing between the pairs of nodes of this category is more significant, we
do not see the same effect of stagnation for a wide range of a.

We can observe that the F-score remains relatively low in this type of
predictions. The difficulty of this task is mainly due to the class imbalance
problem [13]. Given the small number of links occurring compared to the
number of pairs of nodes considered, it is a known difficulty in many real
world datasets. As expected, this appears more clearly when predicting new
links due to the larger number of pairs involved compared to the recurring
links.

Note also that the positions of the peaks seem to be closely related to
the number of links predicted, it suggests that a possible way to improve
the performance of the prediction could be to refine the hypothesis that the
activity in L’ is the same as the activity in L.

The plot corresponding to the Infocom dataset show quite a different
kind of behavior, which is surprising as Figure 3 seemed to show similar
qualitative behaviors between both datasets. We can see that the F-score
accounting for new links prediction starts from 0.25 for « = 0 and slowly
decreases until a = 0.8 at which point it sharply decreases to 0. Regarding
the recurrent links prediction the F-score starts from 0.49 and reaches a
maximum of 0.57 for & = 0.9 and then decreases to 0.56.

This observation may be related to the fact that the Infocom dataset is
strongly interconnected, with numerous links and active pairs. Therefore,
the common neighbors of a given pair of node have often already engaged
in repeated interactions, allowing the common neighbors metric to perform
well in predicting these links. Concerning the new links prediction we can
see that as a grows the increase in precision almost counterbalance the
decrease in recall, leading to a slow F-score decay until « = 0.8. As the
recall value gets closer to 0, the F-score rapidly decreases too. The cause
of this behavior is unclear. This may be linked to the fact that the number
of common neighbors allows to predict both the new and recurrent links.
Therefore we do not see a clear change in the balance between predicting
new links and recurrent links as in the Highschool dataset.

These experiments highlight the fact that the metric combination does
not have the same impact depending on the dataset considered. While
each metric tends to predict preferentially a specific type of activity on
the Highschool dataset, this is not the case in the Infocom dataset, where
our structural metric is able to predict both new and recurrent links. It
also points out the fact that, by choosing specific metrics combination, the

12



prediction can be focused on different kinds of activity, involving different
kinds of links.

5.4 Time intervals variations

We investigate here how the variation of the observation duration affects the
performance of the protocol. Figure 5 shows the F-score when using different
observation periods on the two datasets. We use the same experimental pro-
tocol, combining the pair activity extrapolation with the number of common
neighbors. Concerning the Highschool dataset the prediction period starts
at 10:30am and ends at 3:30pm. We then apply our method for different
observation periods. The observation period duration is successively 30, 60,
90 and 150 minutes ending at 10:30am.

When « is close to 1, the prediction yields higher F-score for longer

periods of observation times than for shorter ones. As the pair activity ex-
trapolation is the main contributor to the prediction function, longer periods
lead to a better averaging of the activity between each nodes. However, con-
sidering observation periods from 30 to 90 minutes, the F-score presents a
maximum for a < 1, while the one associated with observation duration of
150 minutes is maximum for o = 1.
It is interesting to note that the maximum associated with an observation
period of 90 minutes is really close to the maximum score obtained for 150
minutes, meaning that combining different information allowed us to make
prediction of similar efficiency using a shorter observation period.

We then applied the same protocol on the Infocom dataset, the predic-
tion going from 2:30pm to 6:00pm. We used the same observation period
duration as before. We can see that the plots are qualitatively similar to the
ones that be obtained on the Highschool dataset, except for the fact that
the plot associated to the longest observation period displays a small peak
at a = 0.98. It also appears that when « is small our protocol performs
better for shorter observation periods, while longer observation periods lead
to better score, when « is close to 1.

In these experiments, we observe that mixing structural and temporal
information improves the prediction on short observation periods but not
necessarily on long ones. The boundary between what can be considered
as a short or a long observation period is of course a disputable matter,
and largely depends on the dataset under study. This is due to the fact
that when the observation period is longer, links that have not appeared
in the past are less likely to appear in the dataset and recurrent links are
therefore predominant. Thus, extrapolating the previous stream activity is
more relevant than using structural information to predict the future activity
of a pair of nodes. We think that in datasets which exhibit a growing activity
rate, the structural information would be able to help predict new links even
when using long observation periods.

13
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Figure 5: F-score of the predictions combining the pair activity extrapolation
and the number of common neighbors, as a function of « for different obser-
vation durations, for the Highschool (top) and Infocom (bottom) datasets.

5.5 Temporal features combination

We now investigate how our protocol performs when using more advanced
temporal metrics. In this series of experiments, we combine the pair activity
extrapolation with one of the temporal metrics presented in 4.1.2 with the
same protocol. We used Aj with £ = 5, meaning that we compute the
activity from the last 5 links before 2, Ay with § = 500 seconds (the activity
is computed from the last 500 seconds before €2), and A, (t) with n = 10
(the activity is computed from a linear extrapolation over 10 points of the
observation period. We applied these metrics to both datasets and increased
the duration of the observation period to study our metrics behavior when
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the dynamics of the system change over time.
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Figure 6: F-score values for the Highschool (top) and Infocom (bottom)
dataset. KEach plot represents the F-score of a prediction using the pair
activity extrapolation and other temporal metrics.

Concerning the Highschool dataset the observation period is set from
6:30am to 8:00am and the prediction period from 8:00am to 8:30am. We
can see in Figure 6 (top) that the F-score when using Aj_5 starts from 0.48,
then grows to 0.51 for @ = 0.5 and then decreases to 0.45 for « = 1. The
F-score related to As—500 has a similar shape with a maximum of 0.56 for
a = 0.26 When using A,—10(t), we observe a linear decrease as « grows,
from a 0.53 F-score to 0.45.

For the Infocom dataset we set the observation from 6:00am to 2:00pm
and the prediction from 2:00pm to 4:00pm. In Figure 6 (bottom), we can
see that our metrics perform in a similar way as what we saw with the
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Highschool dataset.

In both cases, we observe that the two partial activity extrapolation
metrics (As and Ay) provide information complementary to the benchmark,
as they perform better when combined with it. This can be interpreted as
a better balance between the short and long term dynamics. On the other
hand, the activity fit seems to be systematically an improvement to our
benchmark but the prediction does not benefit from the combination. This
tells us that combining different temporal metrics can improve our prediction
performance. It also shows that combining a variety of temporal metrics
focusing on specific dynamical properties allows to control the weight of
each of these properties in the prediction.

6 Conclusion

In this work, we proposed an activity prediction protocol adapted to the
link stream formalism, making it possible to advantageously use the rich
information contained in this modeling. It is built around a flexible way to
combine the information from metrics which capture features of the stream.
We also proposed an evaluation protocol adapted to our problem. Our ex-
periments show that combining structural and temporal features leads to
performance improvements. We also showed that the length of the observa-
tion period have complex consequences on the prediction, that demands to
be studied in depth. This work is a first step towards activity prediction in
link streams. Our protocol is designed in a modular way, such that each part
is independent from the others and can be replaced or improved, depending
on the application we are interested in.

Therefore, different improvements are considered for future works. The
metrics presented in this work are classical metrics used for link prediction
in graphs or basic ways to capture the temporal information of the stream.
As our protocol is ready to combine new metrics, we intend to design refined
measurements that are able to detect more subtle dynamical features of the
stream, e.g. we expect that giving weight to recent links would enhance
the prediction. We also consider implementing pattern mining techniques
to identify typical motifs of the short term dynamics. For example, we could
consider that if three nodes u, v, w occasionally interact with each other by
short bursts of activity, the occurrence of links between the pairs u,v and
u, w suggest a link apparition between v and w shortly after. Finally, we
made the assumption that the activity remains constant from the observa-
tion period to the prediction period. However, this hypothesis is not always
satisfied and greatly depends on the data under consideration. Models devel-
oped in the context of time series prediction, like the ARIMA model which
extrapolates precisely the past activity [15], would certainly allow to better
evaluate the number of links predicted.
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