
HAL Id: hal-01550129
https://hal.science/hal-01550129

Submitted on 29 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cholesky Factorization on SIMD multi-core
architectures

Florian Lemaitre, Benjamin Couturier, Lionel Lacassagne

To cite this version:
Florian Lemaitre, Benjamin Couturier, Lionel Lacassagne. Cholesky Factorization on SIMD multi-core
architectures. Journal of Systems Architecture, 2017, �10.1016/j.sysarc.2017.06.005�. �hal-01550129�

https://hal.science/hal-01550129
https://hal.archives-ouvertes.fr

Cholesky Factorization on SIMD multi-core
architectures

Florian Lemaitre 1,2 Benjamin Couturier 1 Lionel Lacassagne 2

1 CERN on behalf of the LHCb Collaboration, Geneva, Switzerland
2 Sorbonne Universites, UPMC Univ Paris 06, CNRS UMR 7606, LIP6, Paris, France

florian.lemaitre@cern.ch – ben.couturier@cern.ch – lionel.lacassagne@lip6.fr

Abstract—Many linear algebra libraries, such as the Intel
MKL, Magma or Eigen, provide fast Cholesky factorization.
These libraries are suited for big matrices but perform slowly on
small ones. Even though State-of-the-Art studies begin to take an
interest in small matrices, they usually feature a few hundreds
rows. Fields like Computer Vision or High Energy Physics use
tiny matrices. In this paper we show that it is possible to speed
up the Cholesky factorization for tiny matrices by grouping
them in batches and using highly specialized code. We provide
High Level Transformations that accelerate the factorization
for current multi-core and many-core SIMD architectures (SSE,
AVX2, KNC, AVX512, Neon, Altivec). We focus on the fact that,
on some architectures, compilers are unable to vectorize and on
other architectures, vectorizing compilers are not efficient. Thus
hand-made SIMDization is mandatory. We achieve with these
transformations combined with SIMD a speedup from ×14 to
×28 for the whole resolution in single precision compared to the
naive code on a AVX2 machine and a speedup from ×6 to ×14
on double precision, both with a strong scalability.

I. INTRODUCTION

Linear algebra is everywhere, especially in scientific com-
putation. There are a lot of fast linear algebra libraries like
MKL [1], Magma [2] or Eigen [3]. However, these libraries
are optimized for big matrices. Experience shows that these
libraries are not adapted for tiny matrices and perform slow
on them.

Many computer vision applications require real-time pro-
cessing, especially for autonomous robots or associated to sta-
tistical figures, linear and curves fitting, ellipse fitting or even
covariance matching [4]. This is also the case in High Energy
Physics (HEP) where computation should be done on-the-fly.
In these domains, it is usual to manipulate tiny matrices. There
is, therefore, a need for a linear algebra which is different
from classical High Performance Computing. Matrices up to
a few dozen of rows are usual, for example through Kalman
Filter: [5] uses a 5 dimensions Kalman Filter and [6] uses 4
dimensions. More and more people take an interest in smaller
and smaller matrices [7], [8], [9].

The goal of this paper is to present an optimized imple-
mentation of a linear system solver for tiny matrices using
the Cholesky factorization on SIMD multi-core architectures,
for which it exists no efficient implementation unlike on GPUs
[10]. People tend to rely on the compiler to vectorize the scalar

code, but the result is not efficient and can be improved by
manually writing SIMD code.

It consists in a set of portable linear algebra routines and
functions written in C. The chosen way to do it is to solve
systems by batch, and parallelizing along matrices instead
of inside one single factorization. Our approach is similar
to Spiral [11] or ATLAS [12]: we compare many different
implementations of the same algorithm to keep the best one
for each architecture.

We expose first the Cholesky algorithm in section II. Then
we explain the transformations we made to improve the
performance for tiny matrices in section III. We discuss about
the precision and the accuracy of the square root and how use
these considerations to improve our implementation in sec-
tion IV. And finally, we present the result of the benchmarks
in section V.

II. CHOLESKY ALGORITHM

The whole resolution is composed of 3 steps: the Cholesky
factorization (also known as decomposition), the forward
substitution and the backward substitution. The substitution
steps are grouped together.

A. Cholesky Factorization

The Cholesky factorization is a linear algebra algorithm used
to express a symmetric positive-definite matrix as the product
of a triangular matrix with its transposed matrix: A = L · LT

(algorithm 1).

The Cholesky factorization of a n×n matrix has a complex-
ity in terms of floating-point operations of n3/3 that is half of
the LU one (2n3/3), and is numerically more stable [13], [14].
This algorithm is naturally in-place as every input element is
accessed only once and before writing the associated element
of the output: L and A can be the same storage. It requires
n square roots and (n2 + 3n)/2 divisions for n×n matrices
which are slow operations especially on double precision.

B. Substitution

Once we have the factorized form of A, we are able to solve
easily systems like: A · X = R. Indeed, if A = L · LT , the

Algorithm 1: Cholesky Factorization
input : A // n×n symmetric positive-definite matrix
output : L // n×n lower triangular matrix

1 for j = 0 : n− 1 do
2 s← A(j, j)
3 for k = 0 : j − 1 do
4 s← s− L(j, k)2

5 Lj,j ←
√
s

6 for i = j + 1 : n− 1 do
7 s← A(i, j)
8 for k = 0 : j − 1 do
9 s← s− L(i, k) · L(j, k)

10 L(i, j)← s/L(j, j)

equation is equivalent to L · LT ·X = R. Triangular systems
are easy to solve using the substitution algorithm.

The equation can be written like this: L · Y = R with
Y = LT · X . So we need to first solve L · Y = R (forward
substitution) and then to solve LT · X = Y (backward
substitution). Those two steps are group together to entirely
solve a Cholesky factorized system (algorithm 2). Like the
factorization, substitutions are naturally in-place algorithms:
R, Y and X can be the same storage.

Algorithm 2: Substitution
input : L // n×n lower triangular matrix
input : R // vector of size n

output : X // vector of size n, solution of L · LT ·X = R

temp : Y // vector of size n
1 // Forward substitution
2 for i = 0 : n− 1 do
3 s← R(i)
4 for j = 0 : i− 1 do
5 s← s− L(i, j) · Y (j)

6 Y (i)← s/L(i, i)

7 // Backward substitution
8 for i = n− 1 : 0 do
9 s← Y (i)

10 for j = i+ 1 : n− 1 do
11 s← s− L(j, i) ·X(j)

12 X(i)← s/L(i, i)

TABLE I: Number of floating-point operations

(a) Classic: with array access

Algorithm flop load + store AI
factorize 1

6

(
2n3 + 3n2 + 7n

)
1
6

(
2n3 + 16n

)
∼1

substitute 2n2 2n2 + 4n ∼1
substitute1 2n2 2n2 + 4n ∼1

solve 1
6

(
2n3 + 15n2 + 7n

)
1
6

(
2n3 + 12n2 + 40n

)
∼1

(b) Optimized: with scalarization and reuse

Algorithm flop load + store AI
factorize 1

6

(
2n3 + 3n2 + 7n

)
1
2

(
2n2 + 5n

)
∼n/3

substitute 2n2 1
2

(
n2 + 5n

)
∼4

substitute1 2n2 n 2n

solve 1
6

(
2n3 + 15n2 + 7n

)
1
2

(
n2 + 6n

)
∼2n/3

C. Batch

With small matrices, parallelization is not efficient as there is
no long dimension. For instance, a 3-iteration loop cannot be
efficiently vectorized.

The idea is to add one extra and long dimension to compute
the Cholesky factorization of a large set of matrices instead
of one. We can now parallelize along this dimension with
both vectorization and multithreading. The principle is to
have a for-loop iterating over the matrices, and within this
loop, compute the factorization of the matrix. This is also the
approach used in [15].

III. TRANSFORMATIONS

Improving the performance of software requires transforma-
tions of the code, and especially High Level Transforms. For
Cholesky, we made the following transforms:
• High Level Transforms: memory layout [16] and fast

square root (the latter is detailed in section IV),
• loop transforms (loop unwinding [17], loop unrolling and

unroll&jam),
• Architectural transforms: SIMDization.

With all these transformations, the number of possible
versions is high. More specially, loop unwinding generates
different versions for each matrix size. To facilitate this, the
code is automatically generated for all transformations and all
sizes from 3×3 up to 16×16 with the template engine Jinja2
[18] in Python. It generates C99 code with the restrict
keyword which helps the compiler to vectorize. This could be
replaced by a C++ template metaprogram like in [19].

The use of jinja2 instead of more common meta-
programmation methods allows us to have full access and
control over the generated code. It is really important for some
people like in embedded systems to have access to the source
code before the compilation. They can understand more easily
some bugs which are hard to track on black box systems.

A. Memory Layout Transform

The memory layout transform is the first transform to address
as the other ones rely on it. The most important aspect of the
memory layout is the battle between AoS (Array of Structures)
and SoA (Structure of arrays) [20] (Figure 1).

The AoS memory layout is the natural way to store arrays
of objects in C. It consists in putting full objects one after the
other. The code to access the x member of the ith element
of an array A looks like this: A[i].x. This memory layout
uses only one active pointer and reduces the systematic cache
eviction. The systematic cache eviction appears when multiple
pointers share the same least significant bits and the cache
associativity is not high enough to cache them all. But this
memory layout is difficult to vectorize because the “xs” are
not contiguous in memory.

The SoA memory layout addresses the vectorization prob-
lem. The idea is to have one array per member, and group
them inside a structure. The access is written: A.x[i]. This
memory layout is the default one in Fortran 77. It helps the
vectorization of the code. But it uses as many active pointers
as the number of members of the objects and can increase
the number of systematic cache eviction when the number of
active pointers is higher than the cache associativity.

The AoSoA memory layout (Array of SoA, also known as
Hybrid SoA) tries to combine the advantages of AoS and SoA
for SIMD. The idea is to have a SoA memory layout of fixed
size, and packing these structures into an array. Thus, it gives
the same opportunity to vectorize as with SoA, but it keeps
only one active pointer like in AoS. A typical value for the
size of the SoA part is the SIMD register cardinal (or a small
multiple of it). This access scheme can be simplified when
iterating over such objects. The loop over the elements is split
into two nested loops: one iterating over the AoS part, and one
iterating over the SoA part. It is harder to write, especially to
deal with boundaries.

The SoA memory layout was not used in this paper, and the
term SoA will refer to the hybrid memory layout for the next
part of this paper.

AoS:
x0 y0 z0 x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4 . . .

SoA:
x0 x1 x2 x3 . . . y0 y1 y2 y3 . . . z0 z1 z2 z3 . . .

AoSoA:
x0 x1 x2 y0 y1 y2 z0 z1 z2 x3 x4 x5 y3 y4 y5 . . .

Fig. 1: Memory Layouts

The alignment of the data is also very important. The
hardware has some requirements on the addresses of the
elements. It is easier (if not mandatory) for the CPU to load
a register from memory when the address is a multiple of the
register size. In scalar code, float loads must be aligned with
4 bytes. This is done by the compiler automatically. However,
vector registers are larger. The load address must be a multiple
of the size of the SIMD register: 16 for SSE, 32 for AVX and 64
for AVX512. Aligned memory allocation should be enforced
by specific functions like posix_memalign, _mm_malloc
or aligned_alloc (in C11). One might also want to align
data with the cache size (usually 64 bytes). This may improve
cache hits by avoiding data being split into multiple cache lines
when they fit within one cache line and avoid false sharing
between threads.

The way data are stored and accessed is also important.
The usual way to deal with multidimensional arrays in C is to
linearize the addresses. For example, a N×M 2D array will
be allocated like a 1D array with N M elements. A(i, j) is

accessed with A[i×M+j].

The knowledge of the actual size including the padding is
required to access elements. Iliffe vectors [21] allow to access
multi-dimensional arrays more easily. They consist of a 1D
array plus an array of pointers to the rows. A(i, j) is accessed
through an Iliffe vector with A[i][j] (see Figure 2). It
allows to store arrays of variable length rows like triangular
matrices or padded/shifted arrays and remains completely
transparent to the user at they will always access A(i, j) with
A[i][j] whatever is used internally, as long as A(i, j) is
mathematically correct. It is extensible to higher dimensions.

With this memory layout, it is still possible to get the
address of the data beginning, and use it like a linearized
array. The allocation of an Iliffe vector needs extra space for
the array of pointers. It also requires an initialization of the
pointers before any use. As we work with pre-allocated arrays,
the initialization of the pointers is not part of the benchmarks.

Accessing an Iliffe vector requires to dereference multiple
pointers. It is possible to access the elements of an Iliffe vector
like a linearized array. Keeping the last accessed position
allows to avoid the computation of the new linearized address.
Indeed, the new address can be obtained by moving the pointer
from the previous address.

L 0,0 L0,1 L0,2 L1,0 L1,1 L1,2 L2,0 L2,1 L2,2

L0,0 L0,1 L0,2 L1,0 L1,1 L1,2 L2,0 L2,1 L2,2

0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1

L0,0 L0,1 L0,2 L1,0 L1,1 L1,2 L2,0 L2,1 L2,2
2 2 2 2 2 2 2 2 2

contigous memory

padding for alignment

padding for alignment

padding for alignment

L L L

L L L

1 1 1

2 2 2

0, 1, 2,

0, 1, 2,

L L L0 0 0
0, 1, 2,

L0

L contigous memory

...

... ...

L1

L2

Fig. 2: Iliffe vector example: array of 3×3 matrices aligned
with padding

B. Loop unwinding

Loop unwinding is the special case of loop unrolling where
the loop is entirely unrolled. It is possible to do it here as the
matrices are tiny (see algorithms 3 and 4). This technique has
several advantages:
• it avoids branching,
• it allows to keep all temporary results into registers

(scalarization),
• it helps out-of-order processors to efficiently reschedule

instructions,

This transform is very important as the algorithm is memory
bound. One can see that the arithmetic intensity of the scalar-
ized version is higher, and even higher when the steps are
fused together. When the factorization and the substitution are
merged together and scalarized, even more memory accesses
can be removed: storing L (lines 18–21 of algorithm 3) and
loading L again (lines 2–5 of algorithm 4) are unnecessary as
L registers are still available. This leads to algorithm 5 and
reduces the amount of memory accesses (Table Ib).

The register pressure is higher and the compiler may gen-
erate spill code to temporarily store variables into memory.

To facilitate the unwinding for multiple sizes, the code is
automatically generated for any given sizes by Jinja2.

Algorithm 3: Factorization unwinded for 4×4 matrices
input : A // 4×4 symmetric positive-definite matrix
output : L // 4×4 lower triangular matrix

1 // Load A into registers
2 a00 ← A(0, 0)
3 a10 ← A(1, 0) a11 ← A(1, 1)
4 a20 ← A(2, 0) a21 ← A(2, 1) a22 ← A(2, 2)
5 a30 ← A(3, 0) a31 ← A(3, 1) a32 ← A(3, 2) a33 ← A(3, 3)

6 // Factorize A
7 l00 ←

√
a00

8 l10 ← a10/l00
9 l20 ← a20/l00

10 l30 ← a30/l00

11 l11 ←
√

a11 − l10
2

12 l21 ← (a21 − l20 · l10) /l11
13 l31 ← (a31 − l30 · l10) /l11
14 l22 ←

√
a22 − l20

2 − l21
2

15 l32 ← (a32 − l30 · l20 − l31 · l21) /l22
16 l33 ←

√
a33 − l30

2 − l31
2 − l32

2

17 // Store L into memory
18 L(0, 0)← l00
19 L(1, 0)← l10 L(1, 1)← l11
20 L(2, 0)← l20 L(2, 1)← l21 L(2, 2)← l22
21 L(3, 0)← l30 L(3, 1)← l31 L(3, 2)← l32 L(3, 3)← l33

Algorithm 4: Substitution unwinded for 4×4 matrices
input : L // 4×4 lower triangular matrix
input : R // vector of size 4
output : X // vector of size 4, solution of L · LT ·X = R

1 // Load L into registers
2 l00 ← L(0, 0)
3 l10 ← L(1, 0) l11 ← L(1, 1)
4 l20 ← L(2, 0) l21 ← L(2, 1) l22 ← L(2, 2)
5 l30 ← L(3, 0) l31 ← L(3, 1) l32 ← L(3, 2) l33 ← L(3, 3)

6 // Load R into registers
7 r0 ← R(0) r1 ← R(1) r2 ← R(2) r3 ← R(3)

8 // Forward substitution
9 y0 ← r0/l00

10 y1 ← (r1 − l10 · y0) /l11
11 y2 ← (r2 − l20 · y0 − l21 · y1) /l22
12 y3 ← (r3 − l30 · y0 − l31 · y1 − l32 · y1) /l33
13 // Backward substitution
14 x3 ← y3/l33
15 x2 ← (y2 − l32 · x3) /l22
16 x1 ← (y1 − l21 · x2 − l31 · x3) /l11
17 x0 ← (y0 − l10 · x1 − l20 · x2 − l30 · x3) /l00
18 // Store X into memory
19 X(3)← x3 X(2)← x2 X(1)← x1 X(0)← x0

C. Loop Unroll & Jam

The Cholesky factorization of n×n matrices involves n square
roots + n divisions for a total of ∼n3/3 floating-point oper-
ations (see Table I). The time before the execution of two
data independent instructions (also known as throughput) is
smaller than the latency. The latency of pipelined instructions

Algorithm 5: Cholesky factorization + substitution un-
winded and scalarized for 4×4 matrices

input : A // 4×4 symmetric positive-definite matrix
input : R // vector of size 4
output : X // vector of size 4, solution of L · LT ·X = R

1 // Load A into registers
2 a00 ← A(0, 0)
3 a10 ← A(1, 0) a11 ← A(1, 1)
4 a20 ← A(2, 0) a21 ← A(2, 1) a22 ← A(2, 2)
5 a30 ← A(3, 0) a31 ← A(3, 1) a32 ← A(3, 2) a33 ← A(3, 3)

6 // Load R into registers
7 r0 ← R(0) r1 ← R(1) r2 ← R(2) r3 ← R(3)

8 // Factorize A
9 l00 ←

√
a00

10 l10 ← a10/l00
11 l20 ← a20/l00
12 l30 ← a30/l00

13 l11 ←
√

a11 − l10
2

14 l21 ← (a21 − l20 · l10) /l11
15 l31 ← (a31 − l30 · l10) /l11
16 l22 ←

√
a22 − l20

2 − l21
2

17 l32 ← (a32 − l30 · l20 − l31 · l21) /l22
18 l33 ←

√
a33 − l30

2 − l31
2 − l32

2

19 // Forward substitution
20 y0 ← r0/l00
21 y1 ← (r1 − l10 · y0) /l11
22 y2 ← (r2 − l20 · y0 − l21 · y1) /l22
23 y3 ← (r3 − l30 · y0 − l31 · y1 − l32 · y1) /l33
24 // Backward substitution
25 x3 ← y3/l33
26 x2 ← (y2 − l32 · x3) /l22
27 x1 ← (y1 − l21 · x2 − l31 · x3) /l11
28 x0 ← (y0 − l10 · x1 − l20 · x2 − l30 · x3) /l00
29 // Store X into memory
30 X(3)← x3 X(2)← x2 X(1)← x1 X(0)← x0

can be hidden by executing another instruction in the pipeline
without any data-dependence with the previous one. The ipc
(instructions per cycle) is then limited by the throughput1 of
the instruction and not by its latency. If the throughput is less
than 1, several instructions can be launched during the same
cycle.

As current processors are Out-of-Order, they can reschedule
instructions on-the-fly in order to execute in the pipeline data-
independent instructions. The size of the rescheduling window
is limited and the processor may not be able to reorder instruc-
tions efficiently. In order to help the processor to pipeline
instructions, it is possible to unroll loops and to interleave
instructions of data-independent loops (Unroll&Jam). Here,
Unroll&Jam of factor 2, 4 and 8 is applied to the outer loop
over the array of matrices.

This technique increases the register pressure with the order
of unrolling k, the number of unrolled iterations. Unroll&jam
of order k requires k times more local variables. Its efficiency
is limited by the throughput of the unrolled loop instructions.

1 Note that the “throughput” term used in the Intel documentation is the
inverse of classical throughput: it is the number of cycles to wait between the
launch of two consecutive instructions.

TABLE II: SIMD instruction latencies and throughputs for
single and double precision instructions on Haswell [22]

latency/throughput 128-bit (SSE) 256-bit (AVX)
· · ·_cvtps_pd() 2/1 5/ 1
· · ·_add_ps() 3/1 3/ 1
· · ·_mul_ps() 5/0.5 5/ 0.5
· · ·_rcp_ps() 5/1 7/ 2
· · ·_div_ps() 11/7 19/14
· · ·_rsqrt_ps() 5/1 7/ 2
· · ·_sqrt_ps() 11/7 19/14
· · ·_cvtpd_ps() 4/1 5/ 1
· · ·_add_pd() 3/1 3/ 1
· · ·_mul_pd() 5/0.5 5/ 0.5
· · ·_div_pd() 16/8 28/16
· · ·_sqrt_pd() 16/8 28/16

Unroll&jam is also generated by our Jinja2 templates.

IV. PRECISION AND ACCURACY

The Cholesky Algorithm requires n square roots and
(n2 +3n)/2 divisions for a n×n matrix. But these arithmetic
operations are slow, especially for double precision (Table II)
and usually not fully pipelined. For example, divisions and
square root require 7 cycles for single precision in SSE.
The cycle penalty for these operations reaches 16 cycles
for double precision in AVX. During these cycles, no other
instructions can be executed in the same pipeline port, even
with hyperthreading. Thus, square roots and divisions limit the
overall Cholesky throughput.

As explained by Soderquist [23], it is possible in hardware
to compute them faster with less accuracy. That is why
reciprocal functions are available: they are faster but have a
lower accuracy: usually 12 bits for a 23-bit mantissa in single
precision.

The accuracy is measured in ulp (Unit in Last Place). Given
a floating-point number x, ulp(x) is the distance between x
and the floating-point number that come just after x. For all
normal floating-point numbers ulp(x) = ulp(x+ ε) iif x and
x + ε have the same exponent (blog2(x)c = blog2(x+ ε)c,
power of 2 are the corner cases). In this case, one can omit
which number ulp refer to.

A. Memorization of the reciprocal value

In the algorithm, a square root is needed to compute L(i, i).
But L(i, i) is used in the algorithm only with divisions. The
algorithm needs

(
n2 + 3n

)
/2 of these divisions per n×n

matrix.

Instead of computing x/L(i, i), one can compute x ·
L(i, i)−1. It becomes obvious that one can store L(i, i)−1 and
save several divisions. After this transformation, the algorithm
needs only n divisions.

This transformation might affect the accuracy of the result.
Indeed, x/y is rounded once (correct rounding as specified by
IEEE 754). But x ·

(
y−1

)
requires two successive roundings:

one to compute the reciprocal y−1 = 1/y and the other one
to compute the product x ·

(
y−1

)
. Thus, x ·

(
y−1

)
has an error

< 1 ulp instead of < 0.5 ulp when computed directly.

B. Fast square root reciprocal estimation

The algorithm performs a division by a square root and
therefore needs to compute f(x) = 1/

√
x. There are some

ways to compute an estimation of this function depending on
the precision.

TABLE III: Square root reciprocal estimate instructions

ISA intrinsic name error machines
Neon vrsqrteq_f32 < 2−12 A53, A57

Altivec vec_rsqrte < 2−12 P6 → P8

SSE _mm_rsqrt_ps < 2−12 NHM

AVX _mm256_rsqrt_ps < 2−12 SDB → SKL

KNCNI _mm512_rsqrt23_ps < 0.5 ulp KNC

AVX512F _mm512_rsqrt14_ps < 2−14 SKL Xeon

AVX512ER _mm512_rsqrt28_ps < 0.5 ulp KNL

1) Single Precision: Most of current CPUs have a specific
instruction to compute an estimation of the square root re-
ciprocal in single precision. In fact, some ISA (Instruction
Set Architecture) like Neon and Altivec VMX do not have
SIMD instruction for the square root and the division, but do
have an instruction for a square root reciprocal estimation.
On x86, ARM and Power, this instruction is as fast as the
multiplication (Table II) and gives an estimation with 12-bit
accuracy (Table III). Unlike regular square root and division,
this instruction is fully pipelined (throughput = 1) and thus
avoids pipeline stall.

Algorithm 6: Double Precision RSQRT estimate (through
single precision) 12-bit accurate

input : x0,F64, x1,F64

output: r̂0,F64, r̂1,F64 // estimation of 1/
√
x

1 low(xF32)← convert f64 to f32(x0,F64)

2 high(xF32)← convert f64 to f32(x1,F64)

3 r̂F32 ← rsqrte(xF32) // single precision 12-bit estimate

4 r̂0,F64 ← convert f32 to f64(low(r̂F32))

5 r̂1,F64 ← convert f32 to f64(high(r̂F32))

2) Double Precision: On most CPUs, there is no such instruc-
tion for double precision (only AVX512F has such). Therefore,
we need another way to get an estimate. A possibility is to
convert two SIMD double precision registers into a single
single precision register and execute the single precision
instruction to get a 12-bit accurate estimation and convert the

Algorithm 7: Double Precision RSQRT estimate (bit trick)
input : xF64

output: r̂F64 // estimation of 1/
√
x

1 xI64 ← cast f64 to i64(xF64)

2 r̂I64 ← 0x5fe6eb50c7b537a9− (xI64 >> 1)

3 r̂F64 ← cast i64 to f64(r̂I64)

register back into two double precision registers (algorithm 6).
This technique has a constraint: it can be used only if the
input is within the range of single precision floating-point[
2−126, 2127

]
(
[
∼10−38,∼1038

]
). Cholesky algorithm needs

to compute the square root of a difference, so if this difference
is very close to 0, catastrophic cancellation may occur, and the
value may not be in the range of single precision float. This
issue is not handled by this approach.

3) Bit Trick for Double Precision: The square root reciprocal
can be estimated directly in double precision taking benefits
from the IEEE 754 floating-point format (algorithm 7). This is
mathematically explained by Lomont in [24]. It was initially
attributed to John Carmack in the Quake III Arena source
code. A quick explanation could be like this: the right bit
shift allows to divide by 2 the exponent (effect of the square
root) and the subtraction allows to take the opposite of the
exponent (effect of the reciprocal). The rest of the magic
constant 0x5fe6eb50c7b537a9 is set up to minimize the
error of the result as explained by Lomont. This technique is
really fast (especially when integer and floating-point opera-
tions can be executed in parallel by the CPU) but inaccurate
(ε∼ 0.0342128∼ 1

29).

C. Accuracy recovering

Depending on the application, the previous techniques might
not be accurate enough (especially the bit trick in double
precision subsubsection IV-B3). It is possible to recover the ac-
curacy with the Newton-Rahpson method or the Householder’s
method (a higher order generalization). It is worth noting that
if one does not require full accuracy, they can reduce the
number of iterations done in order to be faster.

Algorithm 8: Newton Raphson for 1/
√
x

input : x
input : r̂ // estimation of 1/

√
x

output: r // corrected estimation
1 α← r̂ · r̂ · x
2 r ← 0.5 · r̂ · (3− α) // corrected approximation

1) Newton-Raphson: The Newton-Raphson method is an
iterative algorithm to find roots of a function f(x). Given an

Algorithm 9: Relative error of rsqrt(x) in ulp
input : xF32

output: ε32
1 // compute 12-bit estimate + 1 Newton-Raphson iteration (F32)

2 r̂F32 ← rsqrt(x)

3 xF64 ← convert f32 to f64(x)

4 r̂F64 ← 1/
√
xF64 // F64 computation

5 r̂I64 ← cast f64 to i64(r̂F64)

6 r̂F32→F64 ← convert f32 to f64(r̂F32)

7 r̂F32→I64 ← castf64 to i64(r̂F32→F64)

8 ε64 ← |r̂I64 − r̂F32→I64| // F64 ulp

9 ε32 ← ε64/2
53−24 // F32 ulp

Algorithm 10: Newton Raphson for 1/
√
x with Neon

input : x
input : r̂ // estimation of 1/

√
x

output: r // corrected estimation
1 α← vrsqrtsq_f32(r̂ · x, r̂)
2 r ← r̂ · α // corrected approximation

estimation xn of a root of f , one can find a more accurate
estimation xn+1 with the following formula:

xn+1 = xn −
f(xn)

f ′(xn)
(1)

This method can be used to refine an estimation of a square
root reciprocal. To compute the square root reciprocal of a,
one can find the root of f(x) = 1

x2 − a. Applying (1) to this
function gives the following equation:

xn+1 =
1

2
xn
(
3− xn2 a

)
(2)

With the equation (2), the iteration needs 4 multiplications
(algorithm 8). But one can see that the multiplication by 1/2
can be moved inside the brackets and the product 1/2 · a
computed once before any iteration. After this, it requires a
multiplication at initialization plus 3 multiplications and one
subtraction per iteration. The subtraction can be fused into a
Fused Multiply Add (FMA) if supported by the architecture.

The Newton-Raphson method has a quadratic convergence.
This means that the number of correct bits doubles at each
iteration (ε becomes ε2). With the single precision estimate,
one iteration is needed and allows to recover almost full
accuracy with a mean error < 0.5 ulp and a max error
< 4.7 ulp (∼2.5 bits). The maximum and mean relative error
are computed by computing relative error with algorithm 9
exhaustively on all normal single precision floats. For double
precision, results are reported in Table IV.

The Neon ISA supports an instruction to help Newton-
Raphson method for f(x) = 1

x2 − a (algorithm 10). The
instruction vrsqrtsq_f32 is as fast as a multiplication and

TABLE IV: Newton-Raphson error recovery

source prec target prec #iter #FMA #mul #add

1/29 (bit trick) 2−24 (F32) 3 3 7 -
2−12 2−24 (F32) 1 1 3 -
2−14 2−24 (F32) 1 1 3 -

1/29 (bit trick) 2−53 (F64) 4 4 9 -
2−12 2−53 (F64) 3 3 7 -
2−14 2−53 (F64) 2 2 5 -
2−23 2−53 (F64) 2 2 5 -
2−28 2−53 (F64) 1 1 3 -

initialization step - 1 -
single iteration 1 2 -

TABLE V: Householder’s method orders for full accuracy
recovering

source prec target order #iter #FMA #mul #op
1/29 (bit trick) F32 4 1 4 3 7

2−12 F32 1 1 1 3 4
2−14 F32 1 1 1 3 4

1/29 (bit trick) F64 3 2 6 6 12
2−12 F64 4 1 4 3 7
2−14 F64 3 1 3 3 6
2−23 F64 2 1 2 3 5
2−28 F64 1 1 1 3 4

All additions are fused

saves 2 multiplications and 1 subtraction (or 1 FMA and 1
multiplication). It is interesting not only because it requires
fewer instructions, but also because it saves the need for two
constants (0.5 and 3).

Algorithm 11: Householder for 1/
√
x

input : x
input : r̂ // estimation of 1/

√
x

output: r // corrected estimation
1 α← r̂ · r̂ · x
2 r ← r̂ · (3516 − α · (

35
16 − α · (

21
16 −

5
16 · α)))

3 // These fractions can exactly be represented as floating-point
numbers and do not introduce any error

2) Householder: The Householder’s method is a higher order
generalization of the Newton-Raphson method. The speed
of convergence can be chosen by choosing the order of the
Householder’s method:

• order 1: Newton-Raphson method: quadratic convergence
• order 2: Halley’s method: cubic convergence
• order 3: quartic convergence
• · · ·

Sebah [25] explains how to find the iteration for a function

f :

xn+1 = xn −
fn
f ′n

1 + fnf
′′
n

2! f ′n
2 +

fn
2
(
3 f ′′n

2 − f ′nf
(3)
n

)
3! f ′n

4 + · · ·


(3)

where f (i)n = f (i)(xn)

As for Newton-Raphson, we need to find the zero of f(x) =
1
x2 − a. Stopping at order 3 gives the following iteration:

xn+1 = xn

(
35

16
− 35

16
xn

2 a+
21

16
xn

4 a2 − 5

16
xn

6 a3
)
(4)

We can notice that in (4), in brackets is a polynomial of
xn

2 a. This leads to:

αn = xn
2 a

xn+1 = xn

(
35

16
− 35

16
αn +

21

16
αn

2 − 5

16
αn

3

)
(5)

Horner scheme allows to compute a scalar polynomial with
the least number of multiplication [26]. With Horner scheme,
evaluating a n degree polynomial requires n multiplications
and n additions. Moreover, these operations can be fused
together. Thus, on CPUs with FMA, it can be computed with
FMAs only. On current CPUs, FMA instructions are as fast
as a single multiplication. This allows to write algorithm 11
which is the order 3 Householder’s method for the square root
reciprocal efficiently using only 3 multiplications and 3 FMAs.
It is one multiplication less than using the Newton-Raphson
method.

One can do the same calculations for other orders. It is then
possible to see, for a given source accuracy and a given target
precision, which order allows to compute full accuracy with
a minimum number of operations. We computed the orders
up to 5, and see which order requires the lowest number of
operations. Results are reported in Table V.

V. BENCHMARKS

A. Benchmark protocol

In order to evaluate the impact of the transforms, we used
exhaustive benchmarks.

The algorithms were benchmarked on eight machines whose
specifications are provided in Table VI.

The tested functions are the following:

• factorize: Cholesky factorization: A→ L · LT

• substitute: Solve the 2 triangular systems: L·LT ·X = R
• substitute1: same as substitute, but with the same L for

every Rs
• solve: Solve the unfactorized system (factorize + substi-

tute): A ·X = B

TABLE VI: Benchmarked machines and Stream TRIAD bandwidth

CPU full name cores/threads
cache (KB) memory bandwidth (GB/s)per core per CPU

L1 L2 L3 1 core 1 CPU 2 CPUs
HSW-i7 i7-4790 4/8 32 256 8192 7.9 7.9 –
SKL-i7 i7-6700K 4/8 32 256 8192 21 21 –

HSW Xeon E5-2683 v3 2× 14/28 32 256 35840 11 39 77
KNC 7120P 61/244 32 512 – 5.3 300 –
KNL 7210 64/256 32 512 – 8.5 310 –

Power 8 8335-GCA Power 8 2× 8/64 64 512 65536 33 66 133
Rasp3 BCM2837 A53 4/4 32 512 – 2.0 2.2 –
TX1 jetson TX1 A57 4/4 32 512 – 7.1 9.5 –

MKL eigen scalar scalar soa SSE AVX

100 1000 10000 100000 1e+06
Batch size

0
5

10
15
20
25
30
35

G
flo

ps

(a) factorize F32

100 1000 10000 100000 1e+06
Batch size

0
5

10
15
20
25
30
35
40
45

G
flo

ps

(b) substitute F32

100 1000 10000 100000 1e+06
Batch size

0

10

20

30

40

50

G
flo

ps

(c) solve F32

100 1000 10000 100000 1e+06
Batch size

0
5

10
15
20
25
30
35

G
flo

ps

(d) factorize F64

100 1000 10000 100000 1e+06
Batch size

0
5

10
15
20
25
30
35
40
45

G
flo

ps

(e) substitute F64

100 1000 10000 100000 1e+06
Batch size

0

10

20

30

40

50

G
flo

ps

(f) solve F64

Fig. 3: Impact of batch size on performance for 3×3 systems on HSW-i7, mono-core version

The function substitute1 has been tested as it is the only
one to be available in the MKL in batch mode.

The time is measured with _rdtsc() which provides
reliable time measures in cycles. Indeed, on current CPUs,
the timestamp counter is normalized around the nominal fre-
quency of the processor and is independent from any frequency
changes.

In order to have reliable measures, we run several times
each function and take the minimum execution time measured.
Then, we divide the time by the number of matrices to have
a time per matrix.

The code has been compiled for Intel architectures with Intel

icc v17.0 with the following options: -std=c99 -O3 -vec
-ansi-alias and for other architectures with gcc 6.2 with
the following options: -std=c99 -O3 -ffast-math
-ftree-vectorize -fstrict-aliasing.

The plots use the following conventions:
• Series labeled scalar are scalar written code. The SoA

versions are vectorized by the compiler though.
• Series labeled eigen are eigen versions.
• Series labeled SSE are SSE code executed on the ma-

chine, even if it is an AVX machine.
• Series labeled AVX are AVX code executed on the ma-

chine.
• “unwinded” tag stands for inner loops

scalar
scalar unwinded

scalar soa
scalar soa unwinded

SSE
AVX

eigen
MKL

factorize substitute substitute1 solve
0

10

20

30

40

50

G
flo

ps

(a) 3×3 single precision

factorize substitute substitute1 solve
0

5

10

15

20

25

30

35

40

45

G
flo

ps
(b) 8×8 single precision

factorize substitute substitute1 solve
0

10

20

30

40

50

G
flo

ps

(c) 16×16 single precision

factorize substitute substitute1 solve
0

5

10

15

20

25

G
flo

ps

(d) 3×3 double precision

factorize substitute substitute1 solve
0

5

10

15

20

25

30

35

G
flo

ps

(e) 8×8 double precision

factorize substitute substitute1 solve
0

5

10

15

20

25

30

35

40

G
flo

ps

(f) 16×16 double precision

Fig. 4: Code performance of factorize, substitute, substitute1 and solve in Gflops on HSW-i7, mono-core version

unwinded+scalarized (ie: fully unrolled).
• “legacy” tag stands for the version without the recip-

rocal storing (base version).
• “fast” tag stands for the use of fast square root recip-

rocal.
• “fastest” tag stands for the use of fast square root

reciprocal estimation without any accuracy recovering.
• “×k” tags stand for the order of unrolling of the outer

loop (unroll&jam)

B. Results

We focus our explanations on solve and the HSW-i7 machine.
All the machines have similar behaviors unless explicitly
specified otherwise. ARM code has not been compiled for
ARM 64 bits (aarch64) and thus the double precision version
is not present.

We first present the impact on performance of the batch
size. We consider the performance of all the functions. After,
we show the differences between single and double precision.
Then we detail what transformations improve the performance
and how. We exhibit with more details the impact of unrolling.
And we show the scalability of our solution. Finally, we show

summary results on all machines.

1) Batch size performance: Figure 3 shows important results
for the understanding of our function performance. It shows
the performance of factorize, substitute and solve on HSW-i7
for 3×3 matrices. If we look at these charts, we can notice
similar behaviors for the 3 functions: the performance drops of
a factor 2-3 for every version. It happens when data do not fit
anymore in caches: this is a cache overflow. On the factorize
chart (Figure 3a), one can notice 3 intervals of batch size for
3×3 matrices on HSW-i7:

• [400, 1000]: this is the L1 cache overflow. As the L1 cache
is 32 KB, we cannot store data for more than 546 systems.

• [3000, 8000]: this is the L2 cache overflow. As the L2
cache is 256 KB, we cannot store data for more than
4,369 systems.

• [105, 6·105]: this is the L3 cache overflow. As the L3
cache is 8 MB, we cannot store data for more than
139,810 systems. After that, the data has to be fetched
from the main memory.

As we repeat several times the same function and take the
minimum time, data are as much as possible within caches. If

SIMD F32 SIMD fast F32 SIMD fastest F32 SIMD F64 SIMD fast F64 SIMD fastest F64

2 4 6 8 10 12 14 16
matrix size

0

10

20

30

40

50

G
flo

ps

(a) HSW-i7

2 4 6 8 10 12 14 16
matrix size

0

10

20

30

40

50

60

70

80

G
flo

ps
(b) SKL-i7

2 4 6 8 10 12 14 16
matrix size

0

5

10

15

20

25

30

35

40

G
flo

ps

(c) HSW Xeon

2 4 6 8 10 12 14 16
matrix size

0

2

4

6

8

10

12

G
flo

ps

(d) KNC

2 4 6 8 10 12 14 16
matrix size

0

5

10

15

20

25

30

G
flo

ps

(e) KNL

2 4 6 8 10 12 14 16
matrix size

0

5

10

15

20

25

G
flo

ps
(f) Power 8

Fig. 5: Code performance in Gflops for single and double precision of the solve mono-core version

data fit within a cache, they may not be within it at the first
execution: the cache is cold. But at the next execution, data
will be in the cache: the cache warms up. But if data size is
larger than the cache, the cache will be constantly overflowed
by new data. At the next execution, the needed data will not
be within the cache as they have been overridden by the extra
data of the previous execution. If data are only a bit larger
than the cache, then a part can remain within the cache and
be reused the next time.

Basically, one can interpret the performance plot like this:
if all the matrices fit within the L1 cache, the performance
per matrix will be the performance on the plot before the L1
cache overflow. The performance at the right end is actually
the performance when none of the matrices are in any caches,
ie: they are in main memory only. The performance drops after
the cache overflow because lower level caches are faster.

After the L3 cache overflow, the best versions have almost
the same performances: they are limited by the memory
bandwidth. In this case, the bandwidth of the factorize function
after the last cache overflow is about 7.9 GB/s, which is the
bandwidth of the machine external memory.

On every plot of Figure 3, for the fast and fastest versions,

the performance starts by increasing on the left. This is mainly
due to the amortization of the overheads mainly due to SIMD.

2) Function performances: Figure 4 shows the performance
of all 4 functions factorize, substitute, substitute1 and solve
in single and double precision for 3×3 and 16×16 matrices.
When we look at Figure 4a and 4d, we can see that, for 3×3
matrices, the scalar SoA unwinded version performs very well
on substitute and substitute1 in both single and double preci-
sion, but is slower on other functions. The function substitute1
provides the higher Gflops: the number of load/store is the
lowest as L is kept in registers. In average, AVX version is
twice faster than SSE version. Double precision has a similar
shape than single precision.

The MKL is very slow. The reason is that it performs a lot
of verification on input data, has many functions calls and has
huge overheads. These overheads are required for speeding up
the execution, but are not efficient for large matrices. However,
for large matrices, these issues disappear and the MKL is
extremely fast. Eigen has similar issues but is a bit faster on
3×3 matrices.

With 16×16 matrices, we can notice that all “slow” versions

unwinding SIMD fast SQRT unroll&jam

3 4 5 6 7 8 9 10111213141516
size

1

10

1.5
2

2.5
3
4
5
6
8

15
20
25
30

sp
ee

du
p

(a) mono-thread single precision

3 4 5 6 7 8 9 10111213141516
size

1

10

1.5
2

2.5
3
4
5
6
8

15
20
25
30

sp
ee

du
p

(b) OPENMP single precision

3 4 5 6 7 8 9 10111213141516
size

1

10

1.5

2
2.5

3

4
5
6

8

15

20

sp
ee

du
p

(c) mono-thread double precision

3 4 5 6 7 8 9 10111213141516
size

1

10

1.5

2
2.5

3

4
5
6

8

15

20

sp
ee

du
p

(d) OPENMP double precision

Fig. 6: Speedups of the transformations for solve on HSW-i7
in single and double precision mono-core and multi-core

are a faster. We can also see that the MKL is much better on
substitute1: it is able to deal with batches, and overhead is
reduced. However, the scalar SoA unwinded version is much
slower: at this point, the compiler does not vectorize this code
anymore.

3) float vs double: When we compare 32-bit single
precision (float) performance with 64-bit double precision
(double) performance in Figure 3 (3a, 3b, 3c vs 3d, 3e,
3f), we can see that the plots are similar. There is two main
differences. First, the double version is slower than the
float version. It can be easily explained by SIMD cardinal: a
float SIMD instruction is able to compute twice more data
as the double one in the same time or less. Quantitative
comparison will be addressed later in the paper. The second
difference is about cache overflow. On the double version,
cache overflows happen twice earlier: the size of double is
twice the size of float, but the cache remains the same size,
so the number of double that can be in the cache is half.

On plots of Figure 5, we can see that the speedup of float
over double is higher than ×2: between ×3 and ×4 for
both “non-fast” and “fast” on HSW-i7 (5a), SKL-i7 (5b), HSW
Xeon (5c) and KNC (5d). A factor of 2 is explained by the
cardinal of SIMD registers. The extra speedup depends on

unwinding SIMD fast SQRT unroll&jam

3 4 5 6 7 8 9 10111213141516
size

1

10

1.5
2

2.5
3
4
5
6
8

15
20
25
30

sp
ee

du
p

(a) mono-thread single precision

3 4 5 6 7 8 9 10111213141516
size

1

10

1.5
2

2.5
3
4
5
6
8

15
20
25
30

sp
ee

du
p

(b) OPENMP single precision

3 4 5 6 7 8 9 10111213141516
size

1

10

1.5

2
2.5

3

4
5
6

8

15

20

sp
ee

du
p

(c) mono-thread double precision

3 4 5 6 7 8 9 10111213141516
size

1

10

1.5

2
2.5

3

4
5
6

8

15

20

sp
ee

du
p

(d) OPENMP double precision

Fig. 7: Speedups of the transformations for solve on HSW
Xeon in single and double precision mono-core and multi-
core

which version is considered. For “non-fast” versions, IEEE
754 divisions and square roots are used. These instructions are
slower for doubles than for floats (Table II) and compute
half the number of elements. The time to compute a square
root or a division per element is then more than twice the time
in float.

For fast versions, no square root nor division instruction
is used. However, a fast square root reciprocal estimate
is computed, and then the accuracy is recovered with the
Newton-Rahpson method or the Householder’s method. These
methods require more iterations in double than in float
because there is more precision to recover. So there is more
computation to do in double precision. This also explains why
the speedup “fast” over “non-fast” is higher in single precision
than in double precision.

On KNC and KNL in single precision (Figure 5d and 5e),
“fast” and “fastest” versions are completely identical (same
code). These architectures have a square root reciprocal in-
struction that give full accuracy in single precision (Table III),
so there is no need for a Newton-Raphson iteration.

 unroll&jam x1
avx
avx unrolled

 unroll&jam x2
avx fast
avx unrolled fast

 unroll&jam x4
avx fastest
avx unrolled fastest

 unroll&jam x8
avx legacy
avx unrolled legacy

unroll&jam x1
AVX
AVX unwinded

unroll&jam x2
AVX fast
AVX unwinded fast

unroll&jam x4
AVX fastest
AVX unwinded fastest

unroll&jam x8
AVX legacy
AVX unwinded legacy

solve
0

10

20

30

40

50

G
fl
o
p
s

solve
0

10

20

30

40

50

G
flo

ps

(a) 3×3 single precision

solve
0

5

10

15

20

25

30

35

40

45

G
fl
o
p
s

solve
0

5

10

15

20

25

30

35

40

45

G
flo

ps
(b) 8×8 single precision

solve
0

5

10

15

20

25

30

35

40

45

G
fl
o
p
s

solve
0

5

10

15

20

25

30

35

40

45

G
flo

ps

(c) 16×16 single precision

solve
0

5

10

15

20

25

30

G
fl
o
p
s

solve
0

5

10

15

20

25

30

G
flo

ps

(d) 3×3 double precision

solve
0

5

10

15

20

25
G

fl
o
p
s

solve
0

5

10

15

20

25
G

flo
ps

(e) 8×8 double precision

solve
0

5

10

15

20

25

G
fl
o
p
s

solve
0

5

10

15

20

25

G
flo

ps

(f) 16×16 double precision

Fig. 8: Performance of loop transforms and square root transforms for the AVX version of solve on HSW-i7 in Gflops

2 4 6 8 10 12 14 16
Size of the matrix

0%

20%

40%

60%

80%

100%

120%

ef
fic

ie
nc

y

(a) HSW-i7

2 4 6 8 10 12 14 16
Size of the matrix

0%

20%

40%

60%

80%

100%

120%

ef
fic

ie
nc

y

(b) SKL-i7

2 4 6 8 10 12 14 16
Size of the matrix

0%

20%

40%

60%

80%

100%

120%

ef
fic

ie
nc

y

(c) HSW Xeon

2 4 6 8 10 12 14 16
Size of the matrix

0%

20%

40%

60%

80%

100%

120%

ef
fic

ie
nc

y

(d) Rasp3

2 4 6 8 10 12 14 16
Size of the matrix

0%

20%

40%

60%

80%

100%

120%

ef
fic

ie
nc

y

(e) KNC

2 4 6 8 10 12 14 16
Size of the matrix

0%

20%

40%

60%

80%

100%

120%

ef
fic

ie
nc

y

(f) KNL

2 4 6 8 10 12 14 16
Size of the matrix

0%

20%

40%

60%

80%

100%

120%

ef
fic

ie
nc

y

(g) Power 8

2 4 6 8 10 12 14 16
Size of the matrix

0%

20%

40%

60%

80%

100%

120%

ef
fic

ie
nc

y

(h) TX1

Fig. 9: multithreading efficiency of SIMD solve: single precision in red and double precision in blue

4) Incremental speedup: Figure 6 gives the speedup of
each transformation in the following order: unwinding, SoA
+ SIMD, fast square root, unroll&jam. The speedup of a
transformation is dependent of the transformations already
applied: the order is important.

If we look at the speedups on HSW-i7 mono-thread single

precision (Figure 6a), we can see that unwinding the inner
loops improves the performance well: from ×2 to ×3. The
impact of unwinding decreases when the size of the matrix
increases: the register pressure is higher. Looking at the
assembly, we can actually see that the compiler generates spill
code for large matrices. Spill code consists in moving values
from register to memory to free a register, and moving back

F32 SIMD
F64 SIMD

F32 scalar soa
F64 scalar soa

F32 scalar
F64 scalar

F32 eigen
F64 eigen

F32 MKL
F64 MKL

2 4 6 8 10 12 14 16
matrix size

0

5

10

15

20

25

30

35

40

45

G
flo

ps

(a) HSW-i7

2 4 6 8 10 12 14 16
matrix size

0

10

20

30

40

50

60

G
flo

ps

(b) SKL-i7

2 4 6 8 10 12 14 16
matrix size

0

5

10

15

20

25

30

35

G
flo

ps

(c) HSW Xeon

2 4 6 8 10 12 14 16
matrix size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

G
flo

ps

(d) Rasp3

2 4 6 8 10 12 14 16
matrix size

0

2

4

6

8

10

12

G
flo

ps

(e) KNC

2 4 6 8 10 12 14 16
matrix size

0

5

10

15

20

25

30

G
flo

ps

(f) KNL

2 4 6 8 10 12 14 16
matrix size

0

2

4

6

8

10

12

14

16

18

G
flo

ps

(g) Power 8

2 4 6 8 10 12 14 16
matrix size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

G
flo

ps

(h) TX1

Fig. 10: Mono-core performance of solve in Gflops on tested machines

when the value is needed again.

SIMD gives a sub-linear speedup: from ×3.2 to ×6. In fact,
SIMD instructions cannot be fully efficient on this function
without fast square root (see subsection IV-B). With further
analysis, we can see that the speedup of SIMD + fast square
root is almost constant around ×6. The impact of the fast
square root decreases as their number become negligible
compared to the other floating-point operations. SIMD has
more place to be efficient. For small matrices, unroll&jam
allows to get the last part of the expected SIMD speedup.
SIMD + fast square root + unroll&jam: from ×6.5 to ×9.
Unroll&jam loses its efficiency for larger matrices: the register
pressure is higher.

If we look at the multithreaded version (Figure 6b), results
are similar. We can notice that the speedup of fast SQRT +
unroll&jam is similar on both single thread and multithread
charts, but the fast square root gives more speedup. This
is especially visible on the double precision version. This
is due to the hyperthreading that has an effect similar to
unroll&jam allowing to use free functional units of a core for
another thread by interleaving instructions within the processor
pipeline.

The doube precision versions are not exactly the same
(Figure 6c). The speedup of the unwinding/scalarization trans-
formation does not decrease with the size of the matrix. In
double precision, the required bandwidth is higher, so saving
memory loads and stores has more impact. One can expect

this speedup to decrease with even larger matrices. Another
difference is the impact of the fast square root + unroll&jam.
On HSW-i7, this set of transformations gives a higher speedup
on double precision than in single precision. This is due to
the latency of the square root and division instructions, and
the throughput of the fast square root reciprocal. On this
machine, square root and division instructions have a high
latency and without unroll&jam, the performance of this very
code is limited by the instruction latencies. With unroll&jam,
the performance is limited by the instruction throughputs and
fast square root reciprocal computation is highly pipelined.
The double precision square root and division instructions have
a much higher latency on this machine, while the fast square
root reciprocal throughput in double precision is still good.
On SKL-i7, this effect is not visible as the square root and
division instructions have a lower latency than on HSW-i7.

If we look at HSW Xeon (Figure 7) we see similar results.

5) Impact of unrolling: Figure 8 shows the performance of
solve for different AVX versions.

Without any unrolling, all versions except “legacy” have
similar performance: performance seems to be limited by the
latency between data-dependent instructions. Unwinding can
help Out-of-Order engine and thus reduce data-dependency.

For 3×3 matrices (Figure 8a and 8d), the performance of
the “non-fast” and “legacy” versions are limited by the square

F32 SIMD
F64 SIMD

F32 scalar soa
F64 scalar soa

F32 scalar
F64 scalar

F32 eigen
F64 eigen

F32 MKL
F64 MKL

2 4 6 8 10 12 14 16
matrix size

0

20

40

60

80

100

120

140

160

180

G
flo

ps

(a) HSW-i7

2 4 6 8 10 12 14 16
matrix size

0

50

100

150

200

250

300

G
flo

ps

(b) SKL-i7

2 4 6 8 10 12 14 16
matrix size

0

100

200

300

400

500

600

700

800

900

G
flo

ps

(c) HSW Xeon

2 4 6 8 10 12 14 16
matrix size

0

1

2

3

4

5

6

7

G
flo

ps

(d) Rasp3

2 4 6 8 10 12 14 16
matrix size

0

100

200

300

400

500

600

700

G
flo

ps

(e) KNC

2 4 6 8 10 12 14 16
matrix size

0

200

400

600

800

1000

1200

1400

G
flo

ps

(f) KNL

2 4 6 8 10 12 14 16
matrix size

0

50

100

150

200

250

300

350

400

G
flo

ps

(g) Power 8

2 4 6 8 10 12 14 16
matrix size

0

2

4

6

8

10

12

14

16

G
flo

ps

(h) TX1

Fig. 11: Multi-core performance of solve in Gflops on tested machines

root and division instruction throughput. The performance has
reached a limit and cannot be improved further this limitation,
even with unrolling: both unwinding and unroll&jam are
inefficient in this case. The “legacy” version is more limited
because it requires more divisions. These versions are even
more limited in double precision as square root and division
instructions are even slower.

For “fast” versions, both unrolling are efficient. Unroll&jam
achieves a ×3 speedup on regular code and ×1.5 speedup
on unwinded code. This transformation reduces pipeline stalls
between data-dependent instructions (subsection III-C). We
can see that unroll&jam is less efficient when the code
is already unwinded but keeps improving the performance.
Register pressure is higher when unrolling (unwinding or
unroll&jam).

The unwinded “fastest” versions give an important benefit
especially in double precision. By removing the accuracy
recovering instructions, we save a lot of instructions (IV-C,
Accuracy recovering). As the number of instructions to recover
double precision is higher compared to single precision, the
speedup of “fastest” over “fast” is higher in double precision.

For 16×16 matrices (Figure 8c and 8f), the performance of
all versions are leveled. The transformations we have done are
good for small matrices, but become less efficient for bigger
matrices.

• unwinding: register pressure becomes higher (for a n×n

matrix, the code needs O
(
n3
)

registers).
• unroll&jam: it allows to hide latencies, but with larger

matrices, computations are more independent from each
other.

• fast square root: the proportion of square roots and
divisions decreases with the size of the matrix: these
operations are diluted among the others.

For such large matrices, unroll&jam slows down the code
when it is already unwinded because of the register pressure.

6) multithread scaling: Figure 9 shows the efficiency of
the multithreading for the best SIMD version of solve. The
efficiency is defined as the speedup of the multi-core code over
the single core (hyperthreaded) code divided by the number
of cores.

The scaling is strong (between 80% and 100%) for all
multi-core machines: HSW-i7, SKL-i7, HSW Xeon, TX1 and
Power 8. On manycore machines (KNC and KNL), the scaling
is lower. On KNC, the scaling is strong for small matrices and
gets lower for larger matrices, especially in double precision.
On KNL, the scaling is lower: ∼60% for all sizes. A memory
bottleneck is suspected for both manycore architectures.

7) Summary: Figure 10 and Figure 11 show the performance
of our best SIMD version against scalar versions and library
versions (Eigen and MKL) for all architecture in both mono-
core and OPENMP. The MKL is not present on the multi-core

TABLE VII: Speedups of the best SIMD version of solve over
the scalar AoS version on all machines

Machine mono-core multi-core
F32 F64 F32 F64

HSW-i7 ×16 – ×30 ×6.6 – ×15 ×13 – ×29 ×6.2 – ×12
SKL-i7 ×16 – ×39 ×7.6 – ×15 ×15 – ×33 ×7.8 – ×12

HSW Xeon ×14 – ×28 ×6.1 – ×14 ×12 – ×30 ×6.6 – ×13
KNC ×51 – ×350 ×24 – ×130 ×27 – ×120 ×11 – ×60
KNL ×73 – ×420 ×35 – ×170 ×33 – ×150 ×15 – ×68

Power 8 ×12 – ×38 ×5.9 – ×16 ×3.8 – ×27 ×2.1 – ×10
Rasp3 ×3.6 – ×15 N/A ×3.5 – ×14 N/A
TX1 ×5.4 – ×12 N/A ×4.8 – ×13 N/A

results as its heuristic limits multithreading for tiny problems.
So this is not possible to compare our implementation with
the MKL on multithreaded code. Both Eigen and the MKL
are slower than our scalar AoS code.

We can see that for Intel architecture, scalar SoA is good for
small matrices, but becomes slow after 9×9 matrices in mono-
core. This is due to the compiler icc: it is able to vectorize the
unwinded code up to 9×9. For larger matrices, it stops vec-
torizing. The threshold is after for the multithreaded versions,
probably due to a change in the compiler heuristic. On other
machines, gcc was used: gcc is unable to vectorize our scalar
code, and there is no way to enforce it to vectorize, unlike icc.
Writing SIMD code is mandatory to achieve efficient code as
compilers are not always able to vectorize scalar code, even
while enforcing them.

The speedup of the best version compared to the scalar AoS
version for all tested architectures is in Table VII.

We achieve a high overall speedup for 3×3 up to 16×16
matrices compared to the basic scalar version. On HSW Xeon,
we reach a ×28 speedup on single precision and a ×14
speedup on double precision. On Rasp3, we reach a ×15
speedup on single precision. And on Power 8, we reach a
×38 speedup on single precision and a ×16 speedup on double
precision. The code scales also very well with a mutlithread
efficiency above 80% on most of the machines.

CONCLUSION

In this paper, we have presented an efficient SIMD im-
plementation for tiny matrices (6 16×16) of the Cholesky
algorithm, because in some fields they are very used and
because State-of-the-Art libraries are inefficient for such tiny
matrices.

Moreover, on some architectures like ARM Cortex or IBM
Power, the existing optimizing compilers are unable to vector-
ize this kind of code. On other architectures like x86, some
compilers are able to vectorize but not efficiently and not for
all sizes. Hand-written SIMD code is thus mandatory to fully
benefit from architecture.

To reach a high level of performance, the proposed im-
plementation combines low level transformations (loop un-
rolling and loop unwinding), hardware optimizations (SIMD
and multi-core) and High Level Transforms (fast square root

and memory layout). We achieve a high overall speedup
outperforming existing codes for SIMD CPU architectures on
tiny matrices on both single precision and double precision: a
speedup of ×30 on a high-end Intel Xeon workstation, ×15
on a ARM Cortex embedded processor and ×38 on a IBM
Power 8 HPC cluster node.

REFERENCES

[1] MKL, “Intel(R) math kernel library.” https://software.intel.com/en-us/
intel-mkl.

[2] S. Tomov, R. Nath, P. Du, and J. Dongarra, “Magma, matrix algebra on
gpu and multicore architectures.” http://icl.cs.utk.edu/magma/.

[3] G. Guennebaud, B. Jacob, et al., “Eigen v3.” http://eigen.tuxfamily.org/,
2016.

[4] A. R. M. y Terán, L. Lacassagne, A. H. Zahraee, and M. Gouiffes,
“Real-time covariance tracking algorithm for embedded systems,” in
Design and Architectures for Signal and Image Processing (DASIP),
2013 Conference on, pp. 104–111, IEEE, 2013.

[5] R. Frühwirth, “Application of Kalman filtering to track and vertex
fitting,” Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment,
vol. 262, no. 2, pp. 444–450, 1987.

[6] D. Beymer, P. McLauchlan, B. Coifman, and J. Malik, “A real-time
computer vision system for measuring traffic parameters,” in Computer
Vision and Pattern Recognition, 1997. Proceedings., 1997 IEEE Com-
puter Society Conference on, pp. 495–501, IEEE, 1997.

[7] J. Shin, M. W. Hall, J. Chame, C. Chen, and P. D. Hovland, “Autotuning
and specialization: Speeding up matrix multiply for small matrices
with compiler technology,” in Software Automatic Tuning, pp. 353–370,
Springer, 2011.

[8] X. Tian, H. Saito, S. V. Preis, E. N. Garcia, S. S. Kozhukhov, M. Masten,
A. G. Cherkasov, and N. Panchenko, “Effective SIMD vectorization for
Intel Xeon Phi coprocessors,” Scientific Programming, vol. 2015, pp. 1–
14, Jan. 2015.

[9] I. Masliah, A. Abdelfattah, A. Haidar, S. Tomov, M. Baboulin, J. Falcou,
and J. Dongarra, “High-performance matrix-matrix multiplications of
very small matrices,” in European Conference on Parallel Processing,
pp. 659–671, Springer International Publishing, 2016.

[10] T. Dong, A. Haidar, S. Tomov, and J. Dongarra, “A fast batched cholesky
factorization on a GPU,” in Parallel Processing (ICPP), 2014 43rd
International Conference on, pp. 432–440, IEEE, 2014.

[11] SPIRAL, “Spiral: Sotfware/hardware generation for dsp algorithms.”
http://www.spiral.net.

[12] ATLAS, “Automatically tuned linear algebra software.” http://math-atlas.
sourceforge.net.

[13] N. J. Higham, Accuracy and stability of numerical algorithms. SIAM,
2002.

[14] N. J. Higham, “Cholesky factorization,” Wiley Interdisciplinary Reviews:
Computational Statistics, vol. 1, no. 2, pp. 251–254, 2009.

[15] T. Dong, A. Haidar, P. Luszczek, J. A. Harris, S. Tomov, and J. Dongarra,
“LU factorization of small matrices: accelerating batched DGETRF on
the GPU,” in High Performance Computing and Communications, 2014
IEEE 6th Intl Symp on Cyberspace Safety and Security, 2014 IEEE 11th
Intl Conf on Embedded Software and Syst (HPCC, CSS, ICESS), 2014
IEEE Intl Conf on, pp. 157–160, IEEE, 2014.

[16] R. Allen and K. Kennedy, eds., Optimizing compilers for modern archi-
tectures: a dependence-based approach, ch. 8,9,11. Morgan Kaufmann,
2002.

[17] L. Lacassagne, D. Etiemble, A. Hassan-Zahraee, A. Dominguez, and
P. Vezolle, “High level transforms for SIMD and low-level computer
vision algorithms,” in ACM Workshop on Programming Models for
SIMD/Vector Processing (PPoPP), pp. 49–56, 2014.

[18] JINJA2, “Python template engine.” http://jinja.pocoo.org/.
[19] I. Masliah, M. Baboulin, and J. Falcou, “Metaprogramming dense linear

algebra solvers applications to multi and many-core architectures,” in
Trustcom/BigDataSE/ISPA, 2015 IEEE, vol. 3, pp. 69–76, IEEE, 2015.

[20] J. Abel, K. Balasubramanian, M. Bargeron, T. Craver, and M. Phlipot,
“Applications tuning for streaming SIMD extensions,” Intel Technology
Journal, vol. 2, 1999.

[21] J. Iliffe, “The use of the genie system in numerical calculation,” Annual
Review in Automatic Programming, vol. 2, pp. 1–28, 1961.

[22] A. Fog, Instruction tables: Lists of instruction latencies, throughputs
and micro-operation breakdowns for Intel, AMD and VIA CPUs, 2016.
accessed version: 2016-01-09.

[23] P. Soderquist and M. Leeser, “Area and performance tradeoffs in
floating-point divide and square-root implementations,” ACM Comput.
Surv., vol. 28, pp. 518–564, Sept. 1996.

[24] C. Lomont, “Fast inverse square root,” tech. rep., 2003.
[25] P. Sebah and X. Gourdon, “Newton’s method and high order iterations,”

tech. rep., 2001.
[26] V. Y. Pan, “Methods of computing values of polynomials,” Russian

Mathematical Surveys, vol. 21, no. 1, pp. 105–136, 1966.

