Quantitative image based analysis of endocrine disruptor effects on mitochondria morphology-function in prostate cancer cells.

Aurélie Charazac, Célia Decondé Le Butor, Mamadou Gueye, Jérôme Gilleron, Kévin Giuletti, Maeva Gesson, Patrick Fénichel, Xavier Descombes, Frédéric Bost, Stéphan Clavel, et al.

To cite this version:
Aurélie Charazac, Célia Decondé Le Butor, Mamadou Gueye, Jérôme Gilleron, Kévin Giuletti, et al.. Quantitative image based analysis of endocrine disruptor effects on mitochondria morphology-function in prostate cancer cells.. Signalife, May 2017, Nice, France. pp.1. hal-01548770
Quantitative image based analysis of endocrine disruptor effects on mitochondria morphology-function in prostate cancer cells.

Endocrine disruptors

According to the World Health Organization, an endocrine disruptor may be described as an exogenous substance or mixture that alters function(s) of the endocrine system and consequently causes adverse health effects in an intact organism or its progeny, or (sub)populations. They are found in many everyday products like food packaging, food preservatives or additives, pesticides residues, everyday plastic objects, etc. Widely distributed throughout the environment and bioaccumulable in living organisms, persistent Organic Pollutants are a specific class of EDC that accumulate in fat deposit. Some of them have been recognized as causing adverse effects on wildlife and also human’s health such as diabetes and cancer.

Working hypothesis

Cancer cells undergo of genetic modifications that lead to a phenotype characterized by a high metabolic flexibility allowing them to grow in various cellular environments and favoring their proliferative and invasive capacities as well as death resistance. Mitochondria are complex organelles possessing a central role in metabolism, apoptosis, signaling, etc.

AIM

Develop screening procedures to analyze the effects of various endocrine disruptors at different concentrations and in combination on:

- Mitochondrial morpho-function
- Metabolism
- Migration/Invasion/Proliferation
- Signaling pathways

Workflow for microscopy based screening

1. Optimal cell culture protocol
2. Optimal staining protocol
3. Optimal imaging protocol and microscopy tasks automatization
4. Image processing
5. Feature extraction
6. Descriptor values
7. Data analysis
8. Cluster analysis
9. Machine learning

Microscopy based analysis of mitochondria functional parameters

Mitochondrial membrane potential

- Image of a 96 wells plate (20X, Nikon A1R, automatization process)
- Magnification 20X

Superoxide anion production

- Image of a 96 wells plate (20X, Nikon A1R, automatization process)
- Magnification 20X

Mitochondrial topology analysis and classification

The developed method using Python will classify all image’s region according to the highest gain leading to no loose of information or noisy image. After detection, this method will automatically partitioning regions using K-means methods leading to the clusters classifications thanks to following criteria : form, compactness, size, elongation, fragmentation.

When combined, morphological and functional parameters allow us to discriminate subtle perturbations of the mitochondrial structure-function induced by endocrine disruptors in prostate cancer cells. We are confident that this multiparameter analysis strategy could represent a new perspective in identification and characterization of endocrine disruptors based on their effects on cell metabolism in order to estimate their potential risk on human health. In the future, this can lead to a high-throughput screening method useful to industrial and regulatory agencies.

Don’t hesitate to contact us for collaboration!

Don't hesitate to contact us for collaboration! aurelie.charazac@unice.fr

Charazac Aurélie 1, Decondé‐Butor Célia 1, Gueye Mamadou 1, Gillieron Jérôme 1, Giuletti Kevin 1, Gasson Maza 1, Feinichel Patrick 1, Descombes Xavier 1, Bost Frédéric 1, Clavel Stéphan 1 & Chevalier Nicolas 1.

1) Institut National de la Santé et de la Recherche Médicale (INSERM) UNIV U1365/UMR, Centre Méditerranéen de Médecine Moléculaire (C3M), 06202 Nice cedex 3, France
2) Centre Hospitalier Universitaire de Nice, Hôpital de l’Archet 2, Service d’Endocrinologie, Diabétologie et Médecine de la Reproduction, 151 route de Saint‐Antoine de Ginestière, CS 23079, 06202, Nice Cedex 3, France
3) INRIA CRI‐SAM, 2004 route des Lucioles, 06902, Sophia Antipolis Cedex, France

Reference