Perforation of Aluminum Foam Core Sandwich Panels under Impact Loading: A Numerical Study - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2015

Perforation of Aluminum Foam Core Sandwich Panels under Impact Loading: A Numerical Study

Résumé

This paper reports the numerical results of the inversed perforation test instrumented by Split Hopkinson Pressure Bar SHPB with an instrumented pressure bar on the AlSi7Mg 0.5 aluminum foam core sandwich panels with 0.8mm thick 2024 T3 aluminum top and bottom skin. The numerical models are developed, in order, to understand the origin of enhancement at the top skin loads found under impact loading (paper published by (Zhao et al. 2006)). The predicted numerical piercing force vs. the displacement curves are compared to the experimental measurements (tests at impact velocities at 27 and 44 m/s). The simulation catches all processes of the perforation of the sandwich panels (top skin, foam core, and bottom skin). Within this experimental scatter, there is a good agreement between the numerical predictions and the experimental measurements. Virtual tests with different impact velocities up to 200 m/s are presented and showed a significant enhancement of the piercing force under impact loading (top skin peak and foam core plateau loads). The results also demonstrate that the shock front effect is responsible for the enhancement of the piercing force under impact loading.
Fichier non déposé

Dates et versions

hal-01548362 , version 1 (27-06-2017)

Identifiants

Citer

Ibrahim Elnasri, Han Zhao. Perforation of Aluminum Foam Core Sandwich Panels under Impact Loading: A Numerical Study. Design and Modeling of Mechanical Systems - II , Mar 2015, Hammamet, Tunisia. pp.387-396, ⟨10.1007/978-3-319-17527-0_39⟩. ⟨hal-01548362⟩
54 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More