Hamilton-Jacobi equations for optimal control on networks with entry or exit costs

Abstract : We consider an optimal control on networks in the spirit of the works of Achdou et al. (2013) and Imbert et al. (2013). The main new feature is that there are entry (or exit) costs at the edges of the network leading to a possible discontinuous value function. We characterize the value function as the unique viscosity solution of a new Hamilton-Jacobi system. The uniqueness is a consequence of a comparison principle for which we give two different proofs, one with arguments from the theory of optimal control inspired by Achdou et al. (2014) and one based on partial differential equations techniques inspired by a recent work of Lions and Souganidis (2016).
Type de document :
Article dans une revue
ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, In press
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01548133
Contributeur : Dao Khang <>
Soumis le : lundi 29 janvier 2018 - 09:18:52
Dernière modification le : jeudi 21 juin 2018 - 01:21:51
Document(s) archivé(s) le : vendredi 25 mai 2018 - 10:21:24

Fichiers

Dao_switching_costs.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01548133, version 2
  • ARXIV : 1706.08748

Citation

Manh-Khang Dao. Hamilton-Jacobi equations for optimal control on networks with entry or exit costs. ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, In press. 〈hal-01548133v2〉

Partager

Métriques

Consultations de la notice

278

Téléchargements de fichiers

58