B. D. , R. R. Subra-i, and L. M. Sutter-b, -Ultrafine particles emitted by flame and electric arc guns for thermal spraying of metals, Ann. Occup. Hyg, vol.54, pp.607-614, 2010.

D. H. Brouwer, G. J. , and L. M. , -Personal Exposure to Ultrafine Particles in the Workplace: Exploring Sampling Techniques and Strategies, Ann. Occup. Hyg, vol.48, issue.4, pp.439-453, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00124259

P. J. , R. P. , M. A. Eberly-l, and . Ramachandran-g, Comparison of two estimation methods for surface area concentration using number concentration and mass concentration of combustion-related ultrafine particles, Atmos. Environ, vol.43, pp.502-509, 2009.

X. Z. , L. X. Guan-c, and . Huang-z, -Effects of injection timing on exhaust particle size and nanostructure on a diesel engine at different loads, Journal of Aerosol Science, vol.76, pp.28-38, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01548830

N. A. Köylü-Ü, -Effect of operating conditions on the size, morphology, and concentration of submicrometer particulates emitted from a diesel engine, Combust. Flame, vol.146, pp.142-154, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00999292

Z. N. Godri, P. K. , J. , W. J. , J. T. et al., Comparison of three nanoparticle sizing instruments: The influence of particle morphology, Atmos. Environ, vol.86, pp.140-147, 2014.

K. A. , H. T. Niemelä-r, and . Tuomi-t, -Impact of particle emissions of new laser printers on modeled office room, Atmos. Environ, vol.44, pp.2140-2146, 2010.

P. J. , M. I. , K. J. Stanam-a, . S. Thorne-p, and . H. Grassian-v, Physicochemical characterization of simulated welding fumes from a spark discharge system, Aerosol Science and Technology, vol.48, pp.768-776, 2014.

J. L. Kondo-a, E. S. Shigeta-m, . Uejima-m, and . Ogura-i, Evaluation of Particles Released from Single-wall Carbon Nanotube/Polymer Composites with or Without Thermal Aging by an Accelerated Abrasion Test, Journal of Occupational and Environmental Hygiene, vol.11, pp.658-664, 2014.

S. K. Pylkkänen-p, N. H. Falck-g, . Lindberg-h, and . Tuomi-t, -Nanotechnologies, engineered nanomaterials and occupational health and safety ? A review, Safety Sci, vol.48, pp.957-963, 2011.

R. P. Ingraham, C. J. , S. J. Olson-b, D. J. , and A. J. , -Assessing potential nanoparticle release during nanocomposite shredding using direct-reading instruments, Journal of Occupational and Environmental Hygiene, vol.9, pp.1-13, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00958754

N. P. Isaxon-c, . Eriksson-a, . Messing-m, and R. J. Ludvigsson-l, Nano-objects emitted during maintenance of common particle generators: direct chemical characterization with aerosol mass spectrometry and implications for risk assessments, J. Nanopart. Res, 2013.

Z. E. , D. S. , L. D. , D. C. , and F. J. Lefranc-e, Results of potential exposure assessments during the maintenance and cleanout of deposition equipment, J. Nanopart. Res, pp.14-1209, 2012.

M. C. Chivas-joly, G. E. , D. S. Saragoza-l, and L. D. , Aerosols emitted by the combustion of polymers containing nanoparticles, J. Nanopart. Res, pp.14-687, 2012.

C. A. , P. M. Lobera, and . Balas-f, -Development of a self-cleaning dispersion and exposure chamber: application to the monitoring of simulated accidents involving the generation of airborne nanoparticles, J. Hazard. Mater, vol.280, pp.226-234, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00866687

K. T. , A. C. Fissan-h, and G. D. , -Nanoparticle exposure at nanotechnology workplaces: A review, Particle and Fiber Toxicology, vol.8, p.22, 2011.

B. C. Kuijpers-e, . H. Brouwer-d, and . Vermeulen-r, Occupational exposure to nano-objects and their agglomerates and aggregates across various life cycle stages; a broad-scale exposure study, Annals of Occupational Hygiene, 2015.

M. A. Aitken-r, . Butz-t, . Colvin-v, . Donaldson-k, and . Oberdörster-g, Safe handling of nanotechnology, Nature, vol.444, pp.267-269, 2006.

P. A. Magrini, -Engineered nanoparticles at the workplace: current knowledge about workers' risk, Occup. Med, vol.64, pp.319-330, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00871770

W. O. , L. Bihan-o, R. M. , D. C. Marchetto-a, and . Zimmermann-e, Préconisations en matière de caractérisation des potentiels d'émission et d'exposition professionnelle aux aérosols lors d'opérations mettant en oeuvre des nanomatériaux, Hygiène et Sécurité au Travail, vol.226, pp.41-55, 2012.

M. M. Hodson-l, -Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials ? part A, Journal of Occupational and Environmental Hygiene, vol.7, pp.127-132, 2010.

R. G. Ostraatb-m, M. E. Evans-d, . O-'shaughnessy-p, and . J. D-'arcy, -A strategy for assessing workplace exposures to nanomaterials, Journal of Occupational and Environmental Hygiene, vol.8, pp.673-685, 2011.

B. D. Van-duuren-stuurman, J. E. Berges-m, and B. D. , -From workplace air measurement results towards estimates of exposure? Development of a strategy to assess exposure to manufactured nano-objects, J. Nanopart. Res, vol.11, pp.1867-1881, 2009.

O. M. Thornburg-j and . G. Malloy-q, -Measurement strategies of airborne nanomaterials, Environ. Eng. Sci, vol.30, pp.126-132, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00900950

B. S. Witschger-o, . Galland-b, and . Martin-p, -Métrologie en temps réel de substances chimiques au poste de travail: intérêts et limites, Hygiène et Sécurité au Travail, vol.239, pp.6-10, 2015.

P. T. , H. W. Evans-d, and M. J. Slavin-t, -The mapping of fine and ultrafine particle concentrations in an engine machining and assembly facility, Annals of Occupational Hygiene, vol.50, pp.249-257, 2006.
URL : https://hal.archives-ouvertes.fr/in2p3-00400337

P. T. , E. S. , J. R. , P. H. Grassian-v, and . Maher-t, Airborne monitoring to distinguish engineered nanomaterials from incidental particles for environmental health and safety, Journal of Occupational and Environmental Hygiene, vol.6, pp.73-81, 2009.

I. D. Weingartner-e, D. A. Vogt-u, and R. E. Scheer-v, Vertical distribution of aerosol particles and NO x close to a motorway, Atmos. Environ, vol.39, pp.5710-5721, 2005.

M. M. Lehmann-u, Comparison of Mass-Based and Non-Mass- Based Particle Measurement Systems for Ultra-Low Emissions from Automotive Sources, Environ. Sci. Technol, vol.39, pp.2229-2238, 2005.

G. P. and S. X. Bémer-d, -Workplace aerosol mass concentration measurement using optical particle counters, J. Environ. Monit, vol.14, pp.420-428, 2012.

B. J. and M. J. Kasper-g, -Calibration of an optical particle counter to provide PM 2.5 mass for well-defined particle materials, Journal of Aerosol Science, vol.38, pp.325-332, 2007.
URL : https://hal.archives-ouvertes.fr/in2p3-00311553

P. T. Ott-d and . T. O-'shaughnessy-p, Comparison of the Grimm 1.108 and 1.109 portable aerosol spectrometer to the TSI 3321 aerodynamic particle sizer for dry particles, Annals of Occupational Hygiene, vol.50, pp.843-850, 2006.

W. J. , A. C. Fissan-h, K. T. Hülser-t, and . Thompson-d, How can nanobiotechnology oversight science and industry: examples from environmental, health, and safety studies of nanoparticles (nano-EHS), J. Nanopart. Res, vol.13, pp.1373-1387, 2011.

S. M. Brenner-s, An occupational exposure assessment for engineered nanoparticles used in semiconductor fabrication, Ann. Occup. Hyg, vol.58, pp.251-265, 2013.

G. S. , B. J. , C. J. Elder-a, G. T. , and G. G. , Workshop report: Strategies for setting occupational exposure limits for engineered nanomaterials. Regul, Toxicol. Pharm, vol.68, pp.305-311, 2014.

T. B. Boulaud-d, -L'étalonnage en nombre des compteurs de particules dans l'air. Salles propres et Maîtrise de la contamination, pp.46-50, 2000.

L. B. Pui-d, -A submicron aerosol standard and the primary, absolute calibration of the condensation nuclei counter, Journal of Colloid and Interface Science, vol.47, pp.155-171, 1974.

. Iso-27891, Aerosol particle number concentration -Calibration of condensation particle counters, 2015.

L. A. Friedlander-s, -On-line measurement of ultrafine aggregate surface area and volume distributions by electrical mobility analysis: I. Theoretical analysis, Journal of Aerosol Science, vol.37, pp.260-271, 2006.

F. R. Mulholland-g, K. R. Winchester-m, and K. D. , -Calibration of a condensation particle counter using a NIST traceable method, Aerosol Science and Technology, vol.43, pp.425-441, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00713745

J. J. Zontek-t, . R. Ogle-b, and . Hollenbeck-s, -Direct reading particle counters: calibration verification and multiple instrument agreement via bump testing, Journal of Occupational and Environmental Hygiene, vol.12, pp.116-122, 2015.

A. C. , K. T. Kaminski-h, . Stahlmecke-b, . Plitzko-s, and . Götz-u, Procedure of particle measurements with the Condensation Particle Counter Handheld (TSI model 3007), in NANOGEM "Standard Operation Procedures for assessing exposure to nanomaterials, following a tiered approach, p.2012

K. W. and L. H. Pohlmann-g, -A reference aerosol generator based on Brownian coagulation in a continuously fed well stirred tank reactor, Journal of Aerosol Science, vol.49, pp.1-8, 2012.

K. W. Pohlmann-g and . Schwarz-k, -A reference number concentration generator for ultrafine aerosols based on Brownian coagulation, Journal of Aerosol Science, vol.39, pp.150-155, 2008.

M. G. Manninen-h, . Petäjä-t, . P. Aalto-p, and . Hämeri-k, On operation of the ultrafine water-based CPC TSI 3786 and comparison with other TSI models (TSI 3776, TSI 3772, Aerosol Science and Technology, vol.42, pp.152-158, 2008.

K. A. Bischof-o, . Tritscher-t, . Beeston-m, . Krinke-t, and . E. Wagner-p, Laboratory characterization of a new nano-water-based CPC 3788 and performance comparison to an ultrafine butanol-based CPC 3776, Aerosol Science and Technology, vol.47, pp.183-191, 2013.

H. J. Manninen-h and . Petäjä-t, -Counting efficiency of a TSI environmental particle counter monitor model 3783, Aerosol Science and Technology, vol.47, pp.482-487, 2013.

A. A. Baklanov-a, C. M. Enderle-k, G. J. , and J. Y. , Intercomparison of number concentration measurements by various aerosol particle counters, Atmos. Res, vol.62, pp.177-207, 2002.

H. K. Koponen-i and . P. Aalto-p, -The particle detection efficiency of the TSI-3007 condensation particle counter, Journal of Aerosol Science, vol.33, pp.1463-1469, 2002.

W. A. Orsini-d, C. S. Covert-d, . Cantrell-w, and . Havlicek-m, Intercomparison study of the size-dependent counting efficiency of 26 condensation particle counters, Aerosol Science and Technology, vol.27, pp.224-242, 1997.

G. B. Bergmann, -Validation of 14 used, re-calibrated and new TSI 3790 condensation particle counters according to the UN-ECE regulation 83, Journal of Aerosol Science, vol.42, pp.195-203, 2011.
URL : https://hal.archives-ouvertes.fr/jpa-00250739

L. B. , P. D. , M. R. , A. J. , and J. R. Pohl-f, Intercomparison of different "absolute" instruments for measurement of aerosol number concentration, Journal of Aerosol Science, vol.13, pp.429-450, 1982.

M. U. Ekberg-l, -Measurement of ultrafine particles: a comparison of two handheld condensation particle counters, Aerosol Science and Technology, vol.38, pp.487-495, 2004.

Z. Y. , Y. N. Kuhn-t, and . C. Hinds-w, -Field comparison of P-Trak and condensation particle counters, Aerosol Science and Technology, vol.40, pp.422-430, 2006.
URL : https://hal.archives-ouvertes.fr/in2p3-00025670

O. M. Mulholland-g and G. W. , -Condensation particle counter proportionality calibration from 1 particle.cm -3 to 10 4 particles.cm -3, Aerosol Science and Technology, vol.46, pp.444-450, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00713745

Y. J. Sakurai-h, M. J. Iida-k, and . Ehara-k, Comparison of three particle number condensation calibration standards through calibration of a single CPC in a wide particle size range, Aerosol Science and Technology, vol.46, pp.1163-1173, 2012.

M. A. Giechaskiel-b, -Experimental and theoretical investigations of the effect of the calibration aerosol material on the counting efficiencies of TSI 3790 condensation particle counters, Aerosol Science and Technology, vol.47, pp.11-21, 2013.

B. S. and T. A. Payet-r, -Intercomparison of Condensation Particle Counters challenged by steady-state airborne DEHS particles produced in a " calibration tool " setup, European Aerosol Conference, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-00188862

C. F. Njiki-menga-g, -Exploratory study on a statistical method to analyse time resolved data obtained during nanomaterial exposure measurements, Journal of Physics: Conference Series, pp.429-012003, 2013.

K. Entink, R. H. Fransman-w, and . H. Brouwer-d, How to statistically analyze nano exposure measurement results: using an ARIMA time series approach, Journal of Nanoparticle Research, vol.38, issue.5, pp.6991-7004, 2011.
DOI : 10.1093/annhyg/38.4.361

M. P. Morawska-l, . D. Knibbs-l, and . Morris-h, -Excursion guidance criteria to guide control of peak emission and exposure to airborne engineered particles, Journal of Occupational and Environmental Hygiene, vol.10, pp.640-651, 2013.

P. J. Ramachandran-g, R. P. Eberly-e, and . Olson-g, Comparing exposure zones by different exposure metrics using statistical parameters: contrast and precision, Annals of Occupational Hygiene, vol.55, pp.1-14, 2010.