E. S. Nasset and J. S. Ju, Mixture of endogenous and exogenous protein in the alimentary tract, J Nutr, vol.74, pp.461-466, 1961.

M. A. Froetschel, Bioactive peptides in digesta that regulate gastrointestinal function and intake, J Anim Sci, vol.74, pp.2500-2508, 1996.

A. Jahan-mihan, B. L. Luhovyy, E. Khoury, D. Anderson, and G. H. , Dietary proteins as determinants of metabolic and physiologic functions of the gastrointestinal tract, Nutrients, vol.3, pp.574-603, 2011.

H. Korhonen and A. Pihlanto, Bioactive peptides: production and functionality, Int Dairy J, vol.16, pp.945-60, 2006.

M. Shimizu, Food-derived peptides and intestinal functions, Biofactors, vol.21, pp.43-50, 2004.

J. Choi, L. Sabikhi, A. Hassan, and S. Anand, Bioactive peptides in dairy products, Int J Dairy Technol, vol.65, pp.1-12, 2012.

C. Ekmekcioglu, A physiological approach for preparing and conducting intestinal bioavailability studies using experimental systems, Food Chem, vol.76, pp.225-255, 2002.

C. Bauchart, M. Morzel, C. Chambon, P. Mirand, P. Reynès et al., Peptides reproducibly released by in vivo digestion of beef meat and trout flesh in pigs, Br J Nutr, vol.98, pp.1187-95, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02659695

H. Meisel and H. Frister, Chemical characterization of bioactive peptides from in vivo digests of casein, J Dairy Res, vol.56, pp.343-352, 1989.

B. Chabance, P. Marteau, J. C. Rambaud, D. Migliore-samour, M. Boynard et al., Casein peptide release and passage to the blood in humans during digestion of milk or yogurt, Biochimie, vol.80, pp.155-65, 1998.

S. Mahé, B. Messing, F. Thuillier, and D. Tomé, Digestion of bovine milk proteins in patients with a high jejunostomy, Am J Clin Nutr, vol.54, pp.534-542, 1991.

R. K. Rao, Biologically active peptides in the gastrointestinal lumen, Life Sci, vol.48, pp.1685-704, 1991.

Y. Taché, Nature and biological actions of gastrointestinal peptides: current status, Clin Biochem, vol.17, pp.77-81, 1984.

M. Lacroix, C. Bos, J. Léonil, G. Airinei, C. Luengo et al., Compared with casein or total milk protein, digestion of milk soluble proteins is too rapid to sustain the anabolic postprandial amino acid requirement, Am J Clin Nutr, vol.84, pp.1070-1079, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01453940

A. Deglaire, C. Fromentin, H. Fouillet, G. Airinei, C. Gaudichon et al., Hydrolyzed dietary casein as compared with the intact protein reduces postprandial peripheral, but not whole-body, uptake of nitrogen in humans, Am J Clin Nutr, vol.90, pp.1011-1033, 2009.

C. Gaudichon, S. Mahe, N. Roos, R. Benamouzig, C. Luengo et al., Exogenous and endogenous nitrogen flow rates and level of protein hydrolysis in the human jejunum after [N-15]milk and [N-15]yogurt ingestion, Br J Nutr, vol.74, pp.251-60, 1995.

S. Mahé, N. Roos, R. Benamouzig, L. Davin, C. Luengo et al., Gastrojejunal kinetics and the digestion of [N-15]beta-lactoglobulin and casein in humans: the influence of the nature and quantity of the protein, Am J Clin Nutr, vol.63, pp.546-52, 1996.

S. Hyden, A turbidimetric method for the determination of higher polyethylene glycols in biological materials, Kgl Lantbruks-Högskol Ann, vol.22, pp.139-184, 1955.

D. A. Clare and H. E. Swaisgoodt, Bioactive milk peptides: a prospectus, J Dairy Sci, vol.83, pp.1187-95, 2000.

M. Gobbetti, P. Ferranti, E. Smacchi, F. Goffredi, and F. Addeo, Production of angiotensin-I-converting-enzyme-inhibitory peptides in fermented milks started by Lactobacillus delbrueckii subsp. bulgaricus SS1 and Lactococcus lactis subsp. cremoris FT4, Appl Environ Microbiol, vol.66, pp.3898-904, 2000.

M. Gobbetti, F. Minervini, and C. Grizzello, Angiotensin I-convetingenzyme-inhibitory and antimicrobial bioactive peptides, Int J Dairy Technol, vol.57, pp.173-88, 2004.

B. Hernández-ledesma, L. Amigo, M. Ramos, and I. Recio, Angiotensin converting enzyme inhibitory activity in commercial fermented products. Formation of peptides under simutated gastrointestinal digestion, J Agric Food Chem, vol.52, pp.1504-1514, 2004.

P. Jollès, S. Lévy-toledano, A. M. Fiat, C. Soria, D. Gillessen et al., Analogy between fibrinogen and casein, Eur J Biochem, vol.158, pp.379-82, 1986.

H. Kayser and H. Meisel, Stimulation of human peripheral blood lymphocytes by bioactive peptides derived from bovine milk proteins, FEBS Lett, vol.383, pp.18-20, 1996.

M. Maeno, N. Yamamoto, and T. Takano, Identification of an antihypertensive peptide from casein hydrolysate produced by a proteinase from Lactobacillus helveticus CP790, J Dairy Sci, vol.79, pp.1316-1337, 1996.

S. Maruyama, H. Mitachi, J. Awaya, M. Kurono, N. Tomizuka et al., Angiotensin I-converting enzyme inhibitory activity of the C-terminal hexapeptide of alpha-s1-casein, Agric Biol Chem, vol.51, pp.2557-61, 1987.

H. Meisel, H. Frister, and E. Schlimme, Biologically active peptides in milk proteins, Z Ernahrungswiss, vol.28, pp.267-78, 1989.

H. Meisel, Biochemical properties of regulatory peptides derived from milk proteins, Biopolymers, vol.43, pp.119-147, 1997.

D. Migliore-samour, F. Floc'h, and P. Jolles, Biologically active casein peptides implicated in immunomodulation, J Dairy Res, vol.56, pp.357-62, 1989.

Y. Nakamura, N. Yamamoto, K. Sakai, A. Okubo, S. Yamazaki et al., Purification and characterization of angiotensin I-converting enzyme inhibitors from sour milk, J Dairy Sci, vol.78, pp.777-83, 1995.

A. Pihlanto-leppälä, T. Rokka, and H. Korhonen, Angiotensin I converting enzyme inhibitory peptides derived from bovine milk proteins, Int Dairy J, vol.8, pp.325-356, 1998.

A. Pihlanto-leppälä, Bioative peptides derived from bovine whey proteins: opioid and ace-inhibitory peptides, Trends Food Sci Technol, vol.11, pp.347-56, 2001.

A. Quirós, M. D. Contreras, M. Ramos, L. Amigo, and I. Recio, Stability to gastrointestinal enzymes and structure-activity relationship of b-caseinpeptides with antihypertensive properties, Peptides, vol.30, pp.1848-531, 2009.

S. Roufik, S. F. Gauthier, and S. L. Turgeon, In vitro digestibility of bioactive peptides derived from bovine [beta]-lactoglobulin, Int Dairy J, vol.16, pp.294-302, 2006.

R. Sieber, U. Butikofer, C. Egger, R. Portmann, B. Walther et al., ACE-inhibitory activity and ACE-inhibiting peptides in different cheese varieties, Dairy Sci Technol, vol.90, pp.47-73, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00895741

E. Smacchi and M. Gobbetti, Bioactive peptides in dairy products: synthesis and interaction with proteolytic enzymes, Food Microbiol, vol.17, pp.129-170, 2000.

Y. Boirie, M. Dangin, P. Gachon, M. P. Vasson, J. L. Maubois et al., Slow and fast dietary proteins differently modulate postprandial protein accretion, Proc Natl Acad Sci, vol.94, pp.14930-14935, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02690828

S. M. Hodgkinson, P. J. Moughan, G. W. Reynolds, and K. A. James, The effect of dietary peptide concentration on endogenous ileal amino acid loss in the growing pig, Br J Nutr, vol.83, pp.421-451, 2000.

H. Zhang, C. Li, X. Gu, L. Fang, Y. Ma et al., Effect of weaning ages on pancreatic and intestinal chymotrypsin activity in piglet, Agric Sci China, vol.1, pp.338-379, 2002.

P. J. Moughan, M. Pedraza, W. C. Smith, M. Williams, and M. N. Wilson, An evaluation with piglets of bovine-milk, hydrolyzed bovine-milk, and isolated soybean proteins included in infant milk formulas. 1. Effect on organ development, digestive enzyme-activities, and amino-acid digestibility, J Pediatr Gastroenterol Nutr, vol.10, pp.385-94, 1990.

. Grønborgm, J. Bunkenborg, T. Z. Kristiansen, J. Onr, C. J. Yeo et al., Comprehensive proteomic analysis of human pancreatic juice, J Proteome Res, vol.3, pp.1042-55, 2004.

J. A. Paulo, L. S. Lee, B. Wu, K. Repas, P. A. Banks et al., Proteomic analysis of endoscopically (endoscopic pancreatic function test) collected gastroduodenal fluid using in-gel tryptic digestion followed by LC-MS/MS, Proteomics Clin Appl, vol.4, pp.715-740, 2010.

J. F. Woodley, Enzymatic barriers for GI peptide and protein delivery, Crit Rev Ther Drug Carrier Syst, vol.11, pp.61-95, 1994.

J. M. Bluard-deconinck, R. W. Evans, J. Van-snick, P. A. Osinski, and P. L. Masson, Iron-binding fragments from the N-terminal and C-terminal regions of human lactoferrin, Biochem J, vol.171, pp.321-328, 1978.

F. J. Troost, J. Steijns, W. Saris, and R. J. Brummer, Gastric digestion of bovine lactoferrin in vivo in adults, J Nutr, vol.131, pp.2101-2105, 2001.

G. Vanhoof, F. Goossens, D. Meester, I. Hendriks, D. Scharpe et al., Proline motifs in peptides and their biological processing, FASEB J, vol.9, pp.736-780, 1995.

R. A. Agudelo, S. F. Gauthier, Y. Pouliot, J. Marin, and L. Savoie, Kinetics of peptide fraction release during in vitro digestion of casein, J Sci Food Agric, vol.84, pp.325-357, 2004.

N. Ili-c, N. , M. Guida, F. Xhindoli, D. Benincasa et al., Selective antimicrobial activity and mode of action of adepantins, glycine-rich peptide antibiotics based on anuran antimicrobial peptide sequences, Biochim Biophys Acta, vol.1828, pp.1004-1012, 2013.

J. Svedberg, J. De-haas, G. Leimenstoll, F. Paul, and H. Teschemacher, Demonstration of beta-casomorphin immunoreactive materials in in vitro digests of bovine milk and in small intestine contents after bovine milk ingestion in adult humans, Peptides, vol.6, pp.825-855, 1985.

M. Yoshikawa, H. Suganuma, M. Takahashi, S. Fukudome, and H. Chiba, Enzymatic release of pro-b-casomorphin-9 and b-casomorphin-9 from bovine b-casein, Casomorphins and related peptides: recent developments, pp.38-42, 1994.

M. Foltz, E. E. Meynen, V. Bianco, C. Van-platerink, T. M. Koning et al., Angiotensin converting enzyme inhibitory peptides from a lactotripeptideenriched milk beverage are absorbed intact into the circulation, J Nutr, vol.137, pp.953-961, 2007.

M. Shimizu, Modulation of intestinal functions by food substances, Nahrung, vol.43, pp.154-162, 1999.

D. Regazzo, D. Mollé, G. Gabai, D. Tomé, D. Dupont et al., The (193-209) 17-residues peptide of bovine b-casein is transported through Caco-2 monolayer, Mol Nutr Food Res, vol.54, pp.1428-1463, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01173380