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Abstract 

The problem of sensor placement for early-warning detection system is a topical issue for industry and 

utilities who want to equip their networks with such technology. It consists of finding the best sensor 

locations that optimize a criterion such as detection rate or time to detection. Few methods exist 

concerning the sensor placement that optimizes the result of a source identification method. This paper 

fills the gap by coupling an adjoint source identification method and a Monte-Carlo sensor placement 

algorithm. The first one is treated through the use of a backtracking algorithm. It uses binary responses at 

sensors to calculate the ranked list of potential contamination location nodes and contamination times. A 

criterion is then defined based on the source identification accuracy and specificity. Finally, two 

optimizing methods that maximize this criterion are proposed: a greedy algorithm and a local search 

algorithm which are both coupled with a Monte Carlo method to give the locations of sensors that are the 

best suited for allocating the source of a contamination. These methods are tested on a 2,500 node network 

to evaluate their efficiency. 
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1. Introduction 

 Real-time sensors are quite a new topic. Multiple studies have focused on where to place the 

sensors and how to treat the data they produce. One possible use is the identification of the source of a 

contamination. Taking into account that we have an alarm generator based on non-specific quality sensors, 

the aim is to find the location of the source of the contamination by using the time and location of 

detection as well as the history of the network dynamics. We consider binary sensor responses: positive or 

negative. Both can be used to deduce the location, starting time and duration of a contamination.  

 The problem of source identification has been widely studied, and can be split into three 

categories. The first one is the enumeration type that consists of determining a subgroup of nodes that may 

be a source of contamination. For instance, De Sanctis et al. (2010) use a particle backtracking algorithm 

(PBA) and compute the system in reverse time to find the list of potential sources of contamination. 

Propato et al. (2007) and Propato et al. (2010) simulate all possible scenarios of contamination to create 

the matrix that links any source to any sensors. Any positive coefficient indicates that a contamination at a 

node for a corresponding time implies a sensor response at another time. That matrix can also be used to 

find the list of potential nodes of contamination.  

 The second type is the exploration type, which does the ranking. It uses the previous list and gives 

the probability for each node to be the true source of contamination. Guan et al. (2006) formulate a Least-

Squares optimization problem. Laird et al. (2006) use a mixed-integer formulation to solve the source 

identification problem with concentration measurements at sensors. Liu et al. (2011) solve the same 

problem with the use of a logistic regression model; the work has also been done with binary sensors and 

as expected results are less good. Propato et al. (2007) and Propato et al. (2010) use the matrix of 

contamination they created and apply a minimum relative entropy method (MRE), to compute 
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probabilities and confidence bounds. Also, Preis et al. (2006a) couple Epanet with a genetic algorithm 

method.  

 Finally the last type regroups the methods that take into account the sensor’s error rate and uses 

stochastic methods to calculate contamination source probabilities through the network. For instance, 

Dawsey et al. (2006) propose a Bayesian Belief Network (BBN). Also Perelman et al. (2010) develop a 

stochastic method on directed acyclic graphs (DAG) which creates clusters of nodes upon which the 

probabilities are then calculated. 

 The method developed here does both enumeration and exploration. It uses a backtracking 

algorithm to find the potential sources of contamination while creating the input/output matrix of 

contamination. The created matrix is the same as the one created by Propato et al. (2010) but restricted to 

only positive responses; it is also extended to large networks. Indeed, the previous method is forward in 

time and, therefore, needs to calculate all possible scenarios of contamination that may launch an alarm, 

which is time consuming. The reverse method proposed here uses sensor responses, either positive or 

negative, to tackle the adjoint equations. It takes considerably less time for large networks, which is 

important for a real time solving. That matrix will then be used to give rankings through counting positive 

values on rows and columns. The more a node can explain positive sensor responses, the more likely it has 

the chance to be source of contamination. By crossing information on two or more nodes, it is also 

possible to define a probability for multi-contamination for each group of nodes it may come from. 

 The paper written by Seth et al. (2016) introduces an evaluation method to test the capabilities of 

a source identification method. They define two criteria, the accuracy (Eq. 1) and the specificity (Eq. 2) as 

follows: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 % = 	
𝐿𝑖𝑘𝑒𝑙𝑖𝑛𝑒𝑠𝑠	𝑚𝑒𝑎𝑠𝑢𝑟𝑒	𝑜𝑓	𝑡ℎ𝑒	𝑡𝑟𝑢𝑒	𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛	𝑛𝑜𝑑𝑒

𝐻𝑖𝑔ℎ𝑒𝑠𝑡	𝑙𝑖𝑘𝑒𝑙𝑖𝑛𝑒𝑠𝑠	𝑚𝑒𝑎𝑠𝑢𝑟𝑒	𝑜𝑣𝑒𝑟	𝑎𝑙𝑙	𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒	𝑛𝑜𝑑𝑒𝑠
×100, (1) 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦	 % = 	
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑛𝑜𝑑𝑒𝑠	𝑤𝑖𝑡ℎ	𝑙𝑜𝑤𝑒𝑟	𝑙𝑖𝑘𝑒𝑙𝑖𝑛𝑒𝑠𝑠	𝑡ℎ𝑎𝑛	𝑡𝑟𝑢𝑒	𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛	𝑛𝑜𝑑𝑒

𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒	𝑛𝑜𝑑𝑒𝑠
×100.	 (2) 
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Two close definitions of those criteria are used in this paper. The accuracy taken in this paper is a 

binary value based on whether or not the true source of contamination is in the list of potential 

contamination nodes. It is the characteristic function of the value given by Seth et al. (2016) formula. The 

specificity is then defined in this paper as to only concern scenarios where the source identification is 

accurate. This criterion also includes the number of nodes with lower likeliness than the true injection 

node. However it is here divided by the number of all the nodes of the network instead of the number of 

potential contamination nodes. Those two new definitions are adapted to an evaluation of a large number 

of contamination scenarios. The accuracy percentage indicates the number of scenarios when the source of 

contamination is included in the potential source node list. Therefore a large accuracy limits the number of 

scenarios when the true source of contamination is not found. And the specificity focuses on the capability 

of the source identification method to give a good rank to the true source of contamination among all the 

nodes of the network. 

 Another important issue for water network managers is the sensor placement design. Installations 

cost as well as material and data managing are factors that define how operators should buy and set their 

sensors. Optimization design algorithms are necessary to make the best suited choices for each network 

and objectives. Lee et al. (1992) were the first to tackle the problem on water distribution systems for the 

location of quality monitoring station. Then multiple authors proposed their formulation and methods 

which are reviewed in Rathi et al. (2014). At first it was with one single objective, such as the time to 

detection or the coverage, and then multi-objective methods appeared. For the Battle of the Water Sensor 

Networks (Ostfeld et al., 2008), several algorithms have been proposed to solve the sensor placement 

problem. One notable algorithm is based on the resolution of the p-median facility location problem by 

Berry et al. (2006) or Krause et al. (2006). It uses the fact that greedy algorithms based on non-decreasing 

submodular functions give near optimal solution. Propato et al. (2006) treat a close method with a mixed 

integer linear programming (MILP) formulation.  



5 
 

 A few tackled the problem of sensor placement by optimizing the source identification criteria. 

Preis et al. (2006b) perform a clustering of the network and use a genetic algorithm. Propato et al. (2006) 

propose a method that minimizes the set of solutions given by the matrix of contamination, improving the 

source identification. Tryby et al. (2010) carry on that work and propose a method that improves the 

regularization of the matrix. They have reached the conclusion that detection likelihood and source 

identification are correlated. Liu et al. (2014) use a multi-genetic optimization algorithm and draw Pareto 

fronts for those two parameters.  

 This paper proposes new sensor placement methods that favor locations helping the source 

identification process. The backtracking source identification method will be used to do the ranking. A 

Monte Carlo method is associated with a greedy algorithm to calculate the best sensor locations. Even 

though the method is quite costly in time, it can be parallelized. Also, another solution is used based on 

local search methods and graph theory. From an initial guess of the best placement, the solution seeks 

placements that better comply with source identification criteria. The search is done with three distance 

adjacent nodes through multiple iterations. 

 This paper first presents the source identification method used as well as the backtracking 

algorithm. After that, it describes the multi-contamination method and then the criteria used for sensor 

placement. The algorithms based both on the Monte Carlo method, either greedy or local search, are 

given. Finally, results are interpreted concerning source identification and sensor placement on a test 

network. 

2. Source identification  

The source identification problem consists in estimating the location of the sources of 

contamination, their time of injection and duration in case of contamination of the water distribution 

network. The entries being the responses of the sensors located at strategic point inside the network. 
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Algorithm such as PBA can be used on sensor responses to define binary response of contamination of the 

network at the sensor location.  

2.1.  Equations and method 

 The equations (Eq. 3) and (Eq. 4) that are mostly used in water distribution network quality 

models are the one-dimension advection-reaction equation coupled with perfect mixing at all junctions. 

However, the scenario with no reaction term is the one that has the most impact in case of contamination 

of the water distribution network, therefore this will be the one that will be considered in the following. 

 𝜕𝐶
𝜕𝑡

+ 𝑢
𝜕𝐶
𝜕𝑥

= 	0 (3) 

with 𝐶 the concentration, 𝑡 the time, 𝑥 the space and 𝑢 the average velocity of the pipe. 

The following equation for perfect mixing is used: 

 𝐶HIJ =
𝑄L𝐶LL∈NOJPLNQ

𝑄LL∈NOJPLNQ
 (4) 

With 𝑄L is the flow rate of inflow pipe i; and 𝐶HIJ is the concentration at the beginning of the outflow 

pipes calculated from the flow rate balance of the concentration at the end of the inflow pipes. 

 The contaminant goes from a source, travels through the network and may reach an installed 

sensor. The usual transport models used are either Eulerian or Lagrangian. The adjoint equations (Eq. 5) 

associated allow to go back in time from the sensor response to find the possible sources in the network. 

 𝜕𝜓
𝜕𝜏

− 𝑢
𝜕𝜓
𝜕𝜒

= 	0 

                               and 𝜏 = T0 − 𝑡	𝑎𝑛𝑑	𝜒 = X0 − 𝑥. 

(5) 

2.2. Backtracking algorithm 

 The backtracking algorithm is a method based on the adjoint formulation of the transport equation 

on a graph. Similar solution was proposed by De Sanctis et al. (2010) to enumerate the potential sources 

of contamination. PBA is used here to build an input/output matrix as defined in Propato et al. (2010) but 
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beginning at positive sensor responses to accelerate the calculations. The negative responses are also used 

as presented afterwards but not as part of the matrix of contamination. That matrix is a binary matrix, 

where true values link the potential source of contamination to positive sensor responses.  Negative 

responses help identifying times where nodes can’t be source of contamination and therefore limit true 

values in the matrix. 

 The backtracking algorithm used is one of the Lagrangian adjoint forms. It takes advantage of the 

method of characteristics to find the time needed to cover the whole pipe length. The Lagrangian solution 

(Eq. 6) takes the form: 

 C(x + dx, t +
dx
u
) = C(x, t), (6) 

and its adjoint formulation (Eq. 7) is: 

 ψ(X − dx, τ −
dx
u
) = ψ(X, τ). (7) 

 In case of a particle leaving a pipe, if u is constant, and dx = L (length of the pipe), then ab
I

 is the 

time needed to reach the pipe exit from the other end of the pipe. Particularly, hydraulic models often use 

constant velocity in each hydraulic time step. In this case the time of injection is obtained with the formula 

(Eq. 8): 

 u t dt = 0	if	reached	first
L	else

mnop

mq
 (8) 

with Trst given (the time step calculated) and Tu looked for. 

 This may give multiple solutions, the one chosen is the first (smallest) that is not the trivial one 

(Tu = Trst).  

 Actually, hydraulic models often use constant velocity in each hydraulic time step. In this case, an 

algorithm has been developed considering such a time step ∆𝑡w. For each pipe, it computes the time that 
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has been needed, for a particle to go through the whole pipe considering the velocity values in previous 

time steps used to compute this displacement. To consider the fact that velocity direction may change, a 

condition is added to stop the algorithm if the particle reaches its initial position: 

 i = 0;  tu = 	 trst 

While l < L AND l >0: //with l the position of the particle 

l = l + 𝑢(𝑡)∆𝑡w //with 𝑢(𝑡) constant for 𝑡𝜖[(𝑖 − 1)∆𝑡w, 𝑖∆𝑡w] and i an integer representing     

current time step. 

  tu = 	 tu − 	∆𝑡w  

  i = i -1 

 End 

 If l < 0: tu = 	 tu + 	 l /𝑢(𝑡)  

 If l > L: tu = 	 tu + l − L /𝑢(𝑡) 

An example network is given in Fig. 1, with an injection at node 3. Constant velocities (no 

direction change) have been set for the water flows inside the pipes. The network is the one used in 

Neupauer et al. (2010) and its matrix of contamination is given in Fig. 2. The contaminant is injected at 

node 3 (black square). There are 3 sensors, at nodes 7, 35 and 43 (triangles). 

 To get the whole solution around the network, a recursive algorithm is used for the example in 

Fig. 1. The sensors 7 and 35 have detected a contamination as contrary to the sensor 43. The dark grey 

circle nodes (and node 3) are potential sources of contamination that can explain positive responses at 

sensors 7 and 35. The light grey circle nodes are either safe (nodes 1, 15 and 29 that are monitored by 

sensor 43) or not watched by the sensor set. 

 The computation is performed for each sensor positive response defining a location (sensor node) 

and a time. We calculate for every inflow pipe the node and the time from when the contamination could 
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have originated and repeat the algorithm for each new node reached. This method can go back far in time 

and induce a high computational cost. Indeed, the algorithm traces back the possible hydraulic way the 

contamination could have gone through and therefore could go back to the sources and the backtracked 

time can be several days. Therefore, the backtracking time (BT) is defined from when it is assumed that 

the contamination cannot have lasted that much time. This time needs to be calibrated from the maximum 

residence time inside the network or the average time to detection. Also, as will be shown in the results 

part, the efficiency of the source identification method depends on both BT and the average time to 

detection.  

 This algorithm allows from a sensor node and a response time to calculate every node location 

and time that can explain where this detection is coming from. Now, it can also be used in another way; if 

no contamination has been detected by the sensor, the algorithm can tell which node at which time cannot 

be a source of contamination. The negative responses are also backtracked and fill a preprocessing matrix 

that is used during the creation of the matrix of contamination. Indeed, for any backtracking, either for a 

positive or a negative answer, a test is done for every intersecting node of the network. If that node is 

marked as negative, from the preprocessing matrix, it will not generate another backtracking from that 

node.  

 Finally, both ways can be used simultaneously and for a large range of sensor times by launching 

all simulations and crossing the information. This allows the creation of the input/output matrix of 

contamination. It is the matrix that can illustrate which node at which time can explain which positive 

sensor at which time. Henceforth, it gives the list of potential sources of contamination.  

2.3. The matrix of contamination 

 In Fig. 2, each row represents a positive sensor response at a time and the column a potential node 

at a time. The black points mean that the node at a time corresponding to a column can explain the 

positive sensor response at a time on a row. Each sub-diagonal matrix, such as the area delimited by 
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sensor 7 and potential node 9, represents the contamination duration. Indeed, in case of a velocity that 

does not vary a lot, subsequent contamination time steps can explain subsequent sensor responses. 

 Now, by using the input/output matrix of contamination, it is possible to find which node may be 

more likely to be the real source of contamination. Indeed, the node that best explains the sensor response 

is the one with the most non zero values in every row, all times taken together. 

 Table 1 shows the results for simplification (aggregation) in time of the matrix in Fig. 2, on the 

rows and the columns. Firstly, columns of the same node are combined in one column that takes the value 

1 on each row having at least one non-zero value. Then all columns are averaged on the number of rows to 

give a score. Table 1 gives the average score for each sensor. In fact, all sensors are weighted with their 

number of rows, or positive responses, but in this example both sensors have the same weight. The 

averaging on the rows gives an efficient weighting for ranking nodes to be the likely source of 

contamination. In this example, node 3 is the one that is most likely be the true source of contamination. It 

can explain 98% of the positive responses at sensors. However the mean taken is calculated on all 

responses, no matter the sensor it belongs to, and therefore the method favors the information given by the 

sensors with more responses.  

 The averaging method used is algebraic; instead, a product may have been used to define 

probabilities. Indeed, in case of one contamination only, node 7 in Table 1 has a zero probability to be the 

source of contamination if the product of the scores in the rows of sensor 7 and 35 score is done.  The 

method used here is more robust, all positive sensor responses have the same weight and, therefore, the 

results are less affected by sensor failures. Also it can be used in case of multi-contamination as contrary 

of the product probabilities, as explained in the next part. 

 Two variables of the backtracking algorithm are defined: the backtracking time (BT) and the 

observation time (OT) from first time to detection. These two variables define two real aspects of source 

identification. The first one is the time the algorithm goes back in time to find the source of 

contamination. The second one is the period of observation used after the first observation. The ability of a 
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sensor placement to do the source identification will depend on these two parameters. A large BT will 

allow finding contamination that happened far in the past, and a large OT means more information to 

solve the inverse problem. A good sensor placement tries to minimize these two parameters while keeping 

the same results. A small BT induces a good early warning as the contamination is detected fast. A small 

OT proves a good performance; the amount of observation time needed to accurately identify the 

contamination is small. 

Note that this article will only focus on one source contamination but multi source contamination 

can also be treated with operations on the contamination matrix increasing considerably the computational 

time. 

3. Sensor placement 

 Piller et al. (2015) perform several mono-objective optimizations solving on conflicting criteria 

such as minimization of time to detection, maximization of the detection likelihood and minimization of 

the fraction of population exposed. The method uses a greedy algorithm which is easy to compute. 

However, in some cases, it may not give the optimal solution. The aim of the optimization is to place the 

sensor so as to respect as much as possible the criterion chosen. A criterion defined as a weighted sum of 

the simple criteria can also be used instead. 

 In this paper, it is proposed to complete this approach with a new parameter being the best ranking 

for source identification, or Contribution. The aim is to look for the best placement of sensors in a water 

distribution network to monitor and detect contaminations. The method uses a coupling between the 

backtracking method presented before and a Monte Carlo method associated with a greedy algorithm. 

Then a local search on graph method to accelerate the algorithm is also given. 

3.1. Sensor placement criterion 

 The usual criteria (Rathi et al. (2014)) for sensor placement are: average time to detection, 

detection likelihood, volume of water consumed, population exposed and extent of contamination. Some 
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other criteria may be used such as detection redundancy but few in the literature take into account the 

performance of a method of source identification linked with a specific set of sensor locations. 

 The criterion for ranking the potential sources of being the true source of contamination explained 

in part 2.3 (see Table 1) is modified and used in the following method to perform the sensor placement. 

The objective, which is named Contribution (Eq. 9), is defined as a real number between 0 and 1. It is 

defined as a non-dimensional ranking of the potential source over the total number of nodes. Considering 

a certain sensor placement and a certain contamination scenario, it estimates the capacity of that sensor 

placement to rank best the true source of contamination, as a potential node, among the node list. 

 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 = 	1 −
𝑟𝑎𝑛𝑘 − 1
𝑁OHaNQ − 1

 (9) 

with 𝑁OHaNQ the number of nodes and the last rank; and 1 the best rank. 

 If the rank is 1 then there is no node higher in the ranking, if  is 0 then the node is the least likely 

to be the source of contamination. Also, it has been chosen that when a node is not a potential source of 

contamination, it is given the Contribution equals to 0. 

 Table 2 gives the example (injection at node 3) associated with the results of Table 1 and the 

matrix of contamination of Fig. 2. The node 3 is the first in the list, therefore it has a Contribution equals 

to 1 associated with it. The others have an intermediate value between 0 and 1. In case of same criteria 

values, the smallest ranking is chosen, therefore nodes « 7 », « 9 », « 31 », « 33 » and « 35 » have equal 

rankings of 8. Then they are associated the value 0.63 equal to 1 − |}~
��}~

 , 20 being the number of nodes in 

the network. The true source of contamination being the node 3, the criterion for the sensor placement is 1. 

If this would have been node 9 and the same values would have been found, the criterion would have been 

0.63. 
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 Therefore, from a sensor placement, and a given contamination, the method finds the Contribution 

of any potential source of contamination. The one corresponding to the true source of contamination can 

then be used to test the source identification method performance. 

 This criterion can also be used to perform the sensor placement method that is explained in the 

next section. The larger the Contribution, the higher is the source contamination potential node probability 

of being the true source of contamination. Depending on the contamination scenario, the sensor placement 

and the parameters BT and OT, three cases exist. The first one concerns the scenarios where the 

contamination is not detected, their Contribution is fixed at 0. The same applies for the scenarios where 

contamination source nodes are not inside the potential contamination node list. It can happen due to 

imprecision on either sensor response, water velocities or algorithm uncertainties. The accuracy (Eq. 10) 

of the source identification algorithm is then defined: the algorithm is accurate only if the source node is 

among the list of potential nodes of contamination,  

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 % = 100× 0	𝑖𝑓	𝑡𝑟𝑢𝑒	𝑠𝑜𝑢𝑟𝑐𝑒	𝑜𝑓	𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛	𝑖𝑠	𝑛𝑜𝑡	𝑖𝑛	𝑡ℎ𝑒	𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙	𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛	𝑙𝑖𝑠𝑡
1	𝑒𝑙𝑠𝑒.

 (10) 

Lastly, the remaining contamination scenarios are left. For each scenario we have computed the 

estimated rank of the real source of contamination as a potential contamination node. The specificity (Eq. 

11) of the source identification algorithm is then defined as follows: 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦	(%) = 	 1 −
𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑟𝑎𝑛𝑘𝑖𝑛𝑔 − 1

𝑁OHaNQ − 1
×100 (11) 

with 𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑟𝑎𝑛𝑘𝑖𝑛𝑔 computed by considering the computed rank of the real source of contamination in all 

the remaining contamination scenarios. The specificity represents the percentage of nodes that are ranked worse 

than the source of contamination. A 100% specificity indicates that the source node is ranked first. 

 The scenarios of contamination belong either to the not detected scenarios, the not accurate or the 

ranked scenarios (Eq. 12): 

N��rs����� = Ns��	tr�r��rt + 	Ns��	�������r + 	N��s�rt (12) 
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The average Contribution (Eq. 13) can be calculated with the following formula: 

𝐶𝑜𝑛𝑡𝑟𝚤𝑏𝑢𝑡𝚤𝑜𝑛 = 	
(1 − 𝑟𝑎𝑛𝑘 𝑖 − 1

𝑁OHaNQ − 1
����������
L�~ )

𝑁Q�NO�PLHQ
. (13) 

with 𝑟𝑎𝑛𝑘 𝑖  the computed rank of the true source of contamination for the scenario i. 

It can also be calculated by combining Eq. 10, Eq. 11, Eq. 12 and Eq. 13 as a function of the 

specificity percentage, the accurate percentage and the detection likelihood with the following formula 

(Eq. 14): 

𝐶𝑜𝑛𝑡𝑟𝚤𝑏𝑢𝑡𝚤𝑜𝑛 = 	
𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦	(%)

100
×
𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒	(%)

100
×𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛	𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑. (14) 

3.2. Greedy algorithm 

 In this section, a new optimization criterion which allows to select the best sensor location for 

source identification, is proposed. It is defined as the placement that gives the best ranking to the real 

source of contamination-associated candidates. It uses the criterion defined Eq. 13, based on the ranking 

among all nodes of the network, that is the Contribution of a sensor placement for the localization of the 

source of contamination. Firstly, several contamination scenarios are defined as well as an empty list of 

sensors. All node locations are added to this list separately as temporary sensors and all contamination 

scenarios are tested giving the average Contribution for that temporary sensor. The node with the highest 

Contribution is then added permanently to the list of sensors. That list of sensors grows with one sensor at 

each iteration and is used as initialization for the next iteration. Each new sensor chosen will cover a new 

area of the network, indeed, a sensor placed next to a sensor already on the list won’t improve the 

Contribution by much. The greedy algorithm can be used again, until the number of sensors corresponds 

to the value wanted. 

 An example of the result is given in Table 3 which correspond to the network of Fig. 1 (but not 

the same contamination). Only the first 10 nodes and 11 (among 20) contamination scenarios are shown. 
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Each cell gives the value of the Contribution of the potential sensor associated to the contamination 

scenarios. Here, node 47 is, on average, the one which gives the best results. Then after several uses of the 

algorithm, node 35, and then 49 are chosen. These are in the same order in Table 3 but it may not be the 

same for other examples. 

 It is an effective method; however it is quite time-consuming. The method has only been used for 

single contamination cases. For multi-contaminations, more computation time is needed and the algorithm 

has to be modified. 

3.3. Local search on graph algorithm 

 The previous algorithm looks at each iteration for the node that best suits the criteria of source 

identification. As the search is done on the whole node list, this method is quite costly as shown in the 

next part. To accelerate the algorithm, an optimization based on local search on graphs method is used 

(example of local search on graph for coloring in Galinier et al. (2005)). It begins with an initial set of 

guessed best locations, which can be a list given by another method such as the average time to detection 

optimal placement given by Piller et al. (2015). Then the optimal solution is found by testing the 

Contribution source identification criteria on adjacent nodes. If the criterion has increased on adjacent 

nodes compared to the actual node then it is taken as the new sensor location in the next iteration. It is 

proven later that it may not give the optimal solution but local minima. To improve the method, adjacent 

to already-used adjacent nodes can be explored or a genetic algorithm be used. In this paper we have taken 

a three adjacent nodes distance. 

3.4. Parallelization 

 Parallelization of the code has been necessary because of the large number of contamination 

scenarios that have been taking too much computational time in the next part (large network). Both 

precedent algorithms have been parallelized and launched on a cluster for computation. For the first 

algorithm, for each potential sensor node 2,000 contamination scenarios are tested on a test network case. 

Firstly, these 2,000 cases are divided into 20 groups of 100 because of the memory limit of the processors 
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needed for large networks. The contamination scenario groups are then divided by groups of processors 

depending on their number. Each processor is given a certain amount of scenarios to process. These 

scenarios are taken from the 100 scenarios assigned to that processor. To accelerate the algorithm an 

optimization process has been performed on the work list of each processor. To each scenario, a certain 

amount of time is associated that depends mostly on the scenario and on the sensor placement; therefore, a 

shuffle on the scenario list has been applied, and the same scenario might not be done by the same 

processor for another potential sensor. This allows us to average the calculation time charge for all 

processors, decreasing the total time of calculation. Indeed, for each iteration, all processors need to 

synchronize to decide on the sensor to add to the list, therefore the total time of calculation is based on the 

processor that takes the most time to calculate, and that mostly depends on the contamination scenario it 

needs to perform. 

 In the next parts the results are presented for both source identification method and sensor 

placement optimization. 

4. Source identification results 

 A sufficiently large number of simulations of random one-contamination have been performed for 

the test network which has around 2,500 nodes. Each simulation lasts for 72 hours, and the contaminations 

are simulated between 24h and 48h for durations of 1h to 6h. During the first 24h no contamination is 

simulated not to affect the backtracking resolution accuracy; indeed 0h is, by construction, an indication 

that no contamination exists before that time. Simulations with a fixed concentration of 1mg/L of 

conservative contaminant have been taken to simulate sensor responses. The sensors are considered 

respecting the following hypothesis: any contamination value that is higher than 0.001 mg/L in the 

simulation is taken as a positive response, otherwise it is negative. The time of backtracking BT is taken 

as 24h and the Contribution criterion will be plotted as a function of the time of observation OT for both 

average time to detection and detection likelihood optimal placement given by Piller et al. (2015).  
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4.1. Ranking for 10 sensors 

 In Fig. 3 the Contribution for both average time to detection (ATDOP) and detection likelihood 

(DLOP) optimal placement with 10 sensors has been plotted as a function of OT. For both, the 

Contribution increases with OT, proving the efficiency of exploiting new information by the source 

identification algorithm. The DLOP sensor placement is doing better than ATDOP, indeed it has a higher 

probability of detection and therefore is less impacted by the constraints (the Contribution equals to 0 if 

not detected). 

 When looking at the accuracy and the specificity, ATDOP is doing slightly better. In Fig. 4, the 

accuracy is increasing from 95 or 96% to 99% with OT increasing. Most contamination scenarios where 

the real source of contamination is not found by backtracking, and therefore not accurate, are probably 

because that the contamination happened before the backtracked time. This explains why ATDOP, which 

is the average time to detection optimal placement, performs better than the DLOP when observation time 

is low. Table 4 shows, as expected, that ATOP has an average time to detection lower than DLOP but also 

has a lower detection likelihood. In Fig. 4, the specificity is going from near 93% to at most 96%, which is 

correct; indeed, this implies that the source node is on average ranked among the first 7% nodes which is 

equal to at most 175 nodes. 

4.2. Ranking for 10, 20 and 50 sensors 

 It is also interesting to see the influence of the number of sensors on the ranking. In Fig. 5 the 

Contribution for both ATDOP and DLOP have been plotted as a function of the number of sensors. The 

Contribution increases with the number of sensors for both sensor placements. This increase is not linear, 

the gain from 10 sensors to 20 sensors is not the same as between 20 and 50 and the asymptotic value 

seems lower for ATDOP than for DLOP.  

 In Fig. 6 the Contribution is also given but this time as a function of the observation time for 

10/20/50 sensors. For average time to detection optimal placement, the more sensors, the less it is 

impacted by the observation time. A similar behavior can be seen with the detection likelihood optimal 
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placement but with less sensitivity. Finally, average time to detection optimal placements are doing better 

than respective detection likelihood optimal placements for both accuracy and specificity as seen in Fig. 7. 

The sensor number impacts greatly on the source identification results but with less impact for each new 

sensor added, and the decision to choose the number of sensors to place depends on the four desired 

criteria: the type of optimization, the Contribution, the average time to detection and the detection 

likelihood, as given in Table 5. 

5. Sensor placement results 

 The Contribution criterion studied in the previous section is now used as an objective for the 

optimal sensor placement problem. The greedy and local search on graph methods have been used on the 

test network with the same scenarios of contamination. Two cases have been taken, BT = 4h, OT = 2h and 

BT = 24h, OT = 2h with 10 sensors. The results are presented hereafter. 

5.1. Greedy algorithm 

 The test network has been tested for the greedy algorithm. Two cases have been performed BT = 

4h, OT = 2h (GOP4) and BT = 24h, OT = 2h (GOP24) with 10 sensors. It consists of testing every 

potential sensor location and determining, for all generated contamination scenarios, which location is best 

for the placement of the next sensor. Concerning the Contribution (see Fig. 8), both DLOP and GOP24 are 

performing best compared to GOP4 in third and ATDOP in last place. Table 6 gives the average time to 

detection and the detection likelihood of the two sensor placements. The detection likelihood is in the 

following ascending order ATDOP, GOP4, GOP24 and DLOP. Concerning the accuracy and specificity 

(see Fig. 9), GOP4 performs better and equal respectively with GOP24. Depending on the chosen 

performance criteria, either of the following algorithms is optimal: GOP4 for average time to detection 

and accuracy; DLOP for detection likelihood; and GOP24 for specificity. 

 Fig. 10. shows the time it takes, at each iteration, to find a new sensor location with 120 

processors, which is not the cumulated time. The first iteration takes less than half an hour, then the 
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execution time increases, until it reaches an asymptotic slope, adding less than 10 minutes for each new 

sensor from the last execution time. The time of execution increases with the number of sensors set 

because the complexity increases. As sensor placement is not done in real time conditions, the execution 

times are yet not a problem on a sufficient cluster. However, it is believed that for bigger networks it 

might be problematic because the problem is NP-hard. Another algorithm, based on local search on graph 

is developed to decrease the execution time.	

5.2. Local search algorithm 

 A local search algorithm with 3 adjacent node distance has been used for 10 sensors. At each 

iteration, a local search around the 10 potential sensors location is performed concerning the source 

identification criteria. Each potential sensor is replaced with the local neighbor that performed the best. 

Firstly the evolution of the criteria is given, defined in the first section, as a function of the iteration. Then 

the last sensor placement performance is tested for source identification for both initialization with 

average time to detection and detection likelihood optimal placement.  

 Four cases have been performed BT = 4h, OT = 2h (LSATDOP4, resp. LSDLOP4) and BT = 24h, 

OT = 2h (LSATDOP24, resp. LSDLOP24) with ATDOP (resp. DLOP) initialization and 10 sensors. 

 In Fig. 11 and Fig. 12 the evolution of the Contribution is shown, defined in the Sensor Placement 

criterion section, as a function of the iterations. It does not converge to one solution, but oscillate around 

one, because all potential sensors are changed at the same time for each iteration to accelerate the 

algorithm. A convergence criterion can be defined to stop the algorithm and returns the best placement 

found. In such case, it can be seen that the algorithm has converged in all cases in fewer than 10 iterations. 

The Contribution values are slightly better when the initialization is taken as detection likelihood optimal 

sensor placement. The time for each iteration is constant around 700 seconds for 60 processors and 

therefore the algorithm converges in around one hour, which is much faster than the previous algorithm. 

 The Contribution scores (Fig. 13) in ascending order are ATDOP, LSATDOP4, LSATDOP24, 

LSDLOP4, LSDLOP24 and DLOP. The Contribution values are between ATDOP and DLOP 
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Contribution. The same applies for average time to detection and detection likelihood as shown in Table 

7. Finally, as seen in Fig. 14, LSATDOP24 and LSATDOP4 perform best concerning accuracy and 

specificity. As discussed before, the Contribution criteria is not enough to decide which sensor placement 

to choose, detection likelihood, average time to detection, accuracy and specificity are also decision 

factors. If average time to detection is favored, LSATDOP4 may be chosen because it has better results 

than ATDOP and almost the same average time to detection. In case of favouring detection likelihood, 

LSATDOP24  and LSDLOP24 may be choosen because they have better accuracy and specificity than 

DLOP. LSDLOP4 is good on average for average time to detection and detection likelihood. In conclusion 

this method is giving better solutions overall than initial ones and which parameters and initialization to 

use depend on the results we want to favor. 

5.3. Evaluation 

 We have seen that different objectives can influence the choice for a source identification optimal 

sensor placement: the average time to detection, the detection likelihood, the accuracy, the specificity and 

finally the Contribution which is a combination of the last three. The rankings for all these parameters 

have been written in Table 8 and the mean over all parameters is given with BT = 24h and OT = 2h. 

Overall, the greedy algorithm solutions are the best followed by the local search algorithm solution 

LSATDOP4, LSATDOP24 and LSDLOP24. This ranking should however be used cautiously and 

different weights can be used depending on which is considered more important for the decision maker. 

 To conclude this section, we have described two methods: a greedy algorithm and a local search 

on graph to maximize the Contribution criterion. Both were better for source identification (accuracy and 

specificity) than optimization based on average time to detection and detection likelihood. However, these 

methods are time-consuming. The greedy algorithm execution time is between 30 minutes to 3 hours on 

120 processors with each new sensor added. The local search on graph showed best results with both 

average time to detection initialization, BT = 4h, BT = 24h, OT = 2h criteria and detection likelihood 

initialization, BT = 24h, OT = 2h criteria. The algorithm converges in approximately one hour in total on 
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60 processors. The local search solutions are not as good as the greedy ones but can be chosen as their 

results are not too far and the time of execution is much faster. 

 

 

Conclusions and perspectives 

 The objective of this paper is to determine optimal sensor placement methods that give the highest 

Contribution for the source identification. One key step is to have a method that allows the measurement 

of that Contribution for a given sensor placement. For that, a new algorithm of source identification has 

been developed that uses binary sensor responses and works for large networks.  

 To take into consideration detection likelihood, accuracy and specificity criteria in the sensor 

placement for source identification, one criterion is defined that is called Contribution. This is a 

dimensionless variable between 0 and 1 that depends on the ranking. The lowest ranked nodes are given 

the value 0 and the most likely to be the source of contamination is given the value 1. This criterion is 

averaged over several contamination scenarios. The not-detected scenarios as well as the not-backtracked 

scenarios are given the value 0. The Contribution is then computed as the average of the results given by 

all the contamination scenarios simulated.  

 The novel method of source identification uses a backtracking algorithm to construct the 

input/output contamination matrix in real time. The backtracking is based on the adjoint of the transport 

equations. It computes those in reverse time, beginning at sensors, to enumerate potential nodes of 

contamination. The use of the backtracking methods allows handling large-size networks that would 

require huge calculation time if it was performed with a forward scheme. Indeed, the time needed to run 

every possible contamination is exponential with the size of the network. The matrix obtained is then 

analyzed (with simple manipulation such as aggregation) to evaluate the number of positive sensor 

responses that each potential source of contamination can explain. This score allows the creation of a 
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ranking list among the potential source of contamination. The method uses positive answers to find 

potential nodes but also processes negative answers to eliminate candidates. It can also be extended to 

multi-contamination but is quite costly in time; extended covering methods may be developed to 

overcome this drawback. 

 The methods have been tested on a real French network with around 2,500 pipes. The influence of 

the backtracking time (BT) as well as the initial sensor placement for the local search method has been 

carried out. Eight parameter/method combinations have been defined: Two come from the application of 

the Piller et al. (2015) method each based on average time to detection (ATDOP) and detection likelihood 

(DLOP) maximization through a greedy algorithm. Six method/parameter scenarios have been added to 

ATDOP and DLOP. The following two come from a greedy algorithm but with objective being the 

maximization of the Contribution criteria in the two parameter cases BT being long, 24h, or short, 4h, and 

observation time (OT) being short set at 2h. The fourth last sensor placements assessed are results of a 

local search algorithm in the same configuration than for the greedy algorithm but with two different 

initializations. The first two begin with ATDOP, the other two launched from DLOP. 

 It was found that the criteria are conflicting. When comparing ATDOP and DLOP, the first one is 

performing better with average time to detection, accuracy and specificity, however it performs worse 

concerning detection likelihood than the second one. It can be concluded that ATDOP performs better the 

source identification but on less coverage of the network. Also, adding new sensors to ATDOP and DLOP 

improves the results for the criteria, however each new added sensor brings fewer result improvements 

each time. Particularly ATDOP gets less detection likelihood improvement than the other placement, 

impacting the overall score for the source identification performance.  

 Concerning the backtracking time BT parameter, a small value (e.g. 4h) induces a small average 

time to detection score. This parameter is important, because the results show that a small average time to 

detection is performing better but on a smaller scale than with a big detection likelihood. For the 
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observation time OT, 2h period seems to be enough to have an ability to identify the contamination, still a 

longer observation time improves the results. 

 The placements based on the first method presented in this paper, greedy algorithm with 

Contribution objective, perform the best overall, however they are the longest with an increasing iteration 

execution time going from half an hour to three hours on 120 processors. The solutions given by the local 

search are second and the method is much faster than the previous one taking three hours overall on 60 

processors. Finally ATDOP and DLOP are less suited for source identification than the two previous 

methods but are fast to compute.  

 The choice of the sensor placement method for source identification will depend on the objectives 

and the network properties as well as the number of sensors available. More research work should focus 

on evaluating the impact of hydraulic and transport model error in the final optimal designs. In the first 

case the velocity may not be accurate or not the same as in the simulations used to place the sensors. In the 

second case, transport model, reaction coefficients and sensor thresholds need careful attention. Results 

from the SMaRT-OnlineWDN project have shown that imperfect mixing at cross and double T-junction may 

have an impact on the contamination spreading, the same applies when adding the dispersion effect to the 

transport model. The two modifications can influence the simulation of the contamination scenarios, 

therefore also change the sensor responses, and finally influence the sensor placement optimization. 
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Tables: 
Table 1. Simplified input/output contamination matrix. 

Parameters	 NODE	ID	

3	 5	 7	 9	 17	 19	 21	 23	 31	 33	 35	

sensor	7	 0.98	 0.69	 1.00	 1.00	 0.56	 0.64	 0.64	 0.64	 0.00	 0.00	 0.00	

sensor	35	 0.98	 0.30	 0.00	 0.00	 0.98	 0.89	 0.33	 0.00	 1.00	 1.00	 1.00	

mean	 0.98	 0.49	 0.50	 0.50	 0.77	 0.76	 0.48	 0.32	 0.50	 0.50	 0.50	

rank	 1	 9	 8	 8	 2	 3	 10	 11	 8	 8	 8	

 

Table 2. Contribution for a source identification with source of contamination being at node 3. 

node	Id	 3	 5	 7	 9	 17	 19	 21	 23	 31	 33	 35	

Contribution	 1.00	 0.58	 0.63	 0.63	 0.95	 0.89	 0.53	 0.47	 0.63	 0.63	 0.63	

 

Table 3. Average Contribution calculations for 20 scenarios. 

	 node	Id	 47	 35	 49	 33	 45	 31	 23	 19	 7	 21	

scenario	 contamination	

node	

Contribution	

1	 19	 0.53	 0.53	 0.42	 0.58	 0	 0	 0.63	 0.74	 0.63	 0.68	

2	 23	 0	 0	 0	 0	 0	 0	 0.74	 0	 0	 0	

3	 51	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

4	 47	 0.95	 0	 0.83	 0	 0	 0	 0	 0	 0	 0	

5	 23	 0	 0	 0	 0	 0	 0	 0.63	 0	 0	 0	

6	 3	 0	 0	 0	 0	 0.63	 0.74	 0	 0.74	 0.58	 0.68	

7	 19	 0.84	 0.79	 0.67	 0.84	 0	 0	 0.89	 0.95	 0.74	 0.89	

8	 9	 0	 0	 0	 0	 0	 0	 0	 0	 0.58	 0	

…	 …	 …	 …	 …	 …	 …	 …	 …	 …	 …	 …	

18	 51	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

19	 31	 0.53	 0.53	 0.42	 0.58	 0.63	 0.73	 0	 0	 0	 0	

20	 31	 0.53	 0.53	 0.42	 0.58	 0.63	 0.73	 0	 0	 0	 0	

	 mean	 0.28	 0.27	 0.27	 0.25	 0.23	 0.22	 0.22	 0.20	 0.19	 0.19	
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Table 4. Average time to detection and detection likelihood for ATDOP and DLOP. 

criteria ATDOP DLOP 

average time to detection 3.8h 6h 

detection likelihood 75% 82% 

 

Table 5. Average time to detection and detection likelihood for ATDOP 10/20/50, DLOP 10/20/50 

criteria ATDOP 10 ATDOP  20 ATDOP  50 DLOP 10 DLOP 20 DLOP 50 

average time 
to detection 

3.8h 2.7h 1.8h 6h 4.4h 3.4h 

detection 
likelihood 

74% 80% 84% 82% 91% 95% 

 

Table 6. Average time to detection and detection likelihood for ATDOP, DLOP, DOP4 and GOP24. 

criteria ATDOP DLOP GOP4 GOP24 

average time to 
detection 

3.8h 6h 3.5h 5.1h 

detection likelihood 74% 82% 76% 80% 

 

Table 7. Average time to detection and detection likelihood for ATDOP, DLOP, LSATDOP4, 
LSATDOP24, LSDLOP4 and LSDLOP24. 

criteria ATDOP DLOP LSATDOP4 LSATDOP24 LSDLOP4 LSDLOP24 

average time 
to detection 

3.8h 6h 3.9h 5.4h 4.3h 5.2h 

detection 
likelihood 

74% 82% 77% 79% 80% 81% 
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Table 8. Evaluation for all parameters. 

algorithm	
cases	

average	
time	to	
detection	

rank	

detection	
likelihood	

rank	

accuracy	

rank	

specificity	

rank	

contribution	

rank	

mean	

rank	

range	

GOP24	 5	 3	 3	 2	 2	 3	 3-5	

GOP4	 1	 7	 1	 4	 6	 3.8	 1-7	

LSATDOP24	 7	 5	 2	 3	 5	 4.4	 2-7	

LSATDOP4	 3	 6	 5	 1	 7	 4.4	 1-7	

LSDLOP24	 6	 2	 7	 6	 1	 4.4	 1-7	

LSDLOP4	 4	 4	 4	 8	 4	 4.8	 4-8	

DLOP	 8	 1	 8	 7	 3	 5.4	 1-8	

ATDOP	 2	 8	 6	 5	 8	 5.8	 2-8	
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Figures: 

 
Fig. 1. Small network; solid square: contamination node; triangle: sensor; dark-gray circle: 

potential contamination node; light gray: ordinary node (adapted from Neupauer et al. 2010). 
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Fig. 2. Input/output matrix of contamination; solid points are non-zero values. 

 
Fig. 3. Contribution for average time to detection and detection likelihood optimal sensor 

placement with 10 sensors. 

 
Fig. 4. Accuracy and specificity for average time to detection and detection likelihood optimal 

sensor placement with 10 sensors. 
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Fig. 5. Contribution for average time to detection and detection likelihood optimal sensor 

placement with 10, 20, and 50 sensors. 

 
Fig. 6. Contribution for average time to detection and detection likelihood optimal sensor placement with 

10, 20, and 50 sensors as a function of observation time. 
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Fig. 7. Accuracy and specificity for average time to detection and detection likelihood optimal 

sensor placement with 10, 20, and 50 sensors. 

 
Fig. 8. Contribution for average time to detection, detection likelihood, and greedy algorithm 

optimal sensor placement with 10 sensors. 
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Fig. 9. Accuracy and specificity for average time to detection, detection likelihood, and greedy 

algorithm optimal sensor placement with 10 sensors. 

 
Fig. 10. Execution time per iteration for the greedy algorithm with BT = 24 h and OT =  2 h 

with 120 processors for 23 sensors. 
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Fig. 11. Contribution evolution as a function of iteration for local search with ATDOP 

initialization and BT = 4 or 24 h and OT = 2 h for 10 sensors. 

 
Fig. 12. Contribution evolution as a function of iteration for local search with DLOP initialization 

and BT 1= 4 or 24 h and OT 1= 2 h for 10 sensors. 

 
Fig. 13. Contribution for average time to detection, detection likelihood, and local search 

algorithm optimal sensor placement with 10 sensors. 
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Fig. 14. Accuracy and specificity for average time to detection, detection likelihood, and local 

search algorithm optimal sensor placement with 10 sensors. 
 

 


