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Abstract

Existence results for adapted solutions of in�nite horizon doubly re�ected backward

stochastic di�erential equations with jumps are established. These results are applied to

get the existence of an optimal impulse control strategy for an in�nite horizon impulse con-

trol problem. The properties of the Snell envelope reduce the problem to the existence of a

pair of right continuous left limited processes. Finally, some numerical results are provided.
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The main motivation of this paper is to prove the existence of an optimal strategy which
maximizes the expected pro�t of a �rm in an in�nite horizon problem with jumps.
More precisely, let a Brownian motion (Wt)t≥0 and an independent Poisson measure µ(dt, de)
de�ned on a probability space (Ω,A,P) and let F be the right continuous complete �ltration
generated by the pair (W,µ). Assume that a �rm decides at stopping times to change its
technology to determine its maximum pro�t. Let {1, 2} be the possible technologies set.
A right continuous left limited stochastic process X models the �rm log value and a process
(ξt, t ≥ 0) taking its values in {1, 2} models the state of the chosen technology. The �rm net
pro�t is represented by a function f , the switching technology costs are represented by c1,2 and
c2,1, β > 0 is a discount coe�cient. Then, the problem is to �nd an increasing sequence of
stopping times α̂ := (τ̂n)n≥−1, where τ̂−1 = 0, optimal for the following impulse control problem

K(α̂, i, x) := ess sup
α∈A

Ei,x

∫ +∞

0

e−βsf(ξs, Xs)ds−
∑
n≥0

{
e−βτ2nc1,2 + e−βτ2n+1c2,1

} ,
where A denotes the set of admissible strategies. The Snell envelope tools show that the
problem reduces to the existence of a pair of right continuous left limited processes (Y 1, Y 2).
This idea originates from Hamadène and Jeanblanc [19]. Their results are extended to in�nite
horizon case and mixed processes (namely jump-di�usion with a Brownian motion and a Poisson
measure). In [19] the authors considered a power station which has two modes: operating and
closed. This is an impulse control problem with switching technology without jump of the state
variable. They solved the starting and stopping problem when the dynamics of the system are
the ones of general adapted stochastic processes.

The existence of (Y 1, Y 2) is established via the notion of doubly re�ected backward stochastic
di�erential equation. In this context, another interest of our work is to extend to the in�nite
horizon case the results of doubly re�ected backward stochastic di�erential equations with jumps.
Speci�cally, a solution for the doubly re�ected backward stochastic di�erential equation associ-
ated to a stochastic coe�cient g, a null terminal value and a lower (resp. an upper) barrier (Lt)t≥0

(resp. (Ut)t≥0 ) is a quintuplet of F-progressively measurable processes (Yt, Zt, Vt,K
+
t ,K

−
t )t≥0

which satis�es
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(1)


Yt =

∫ +∞
t

e−βsg(s)ds+
∫ +∞
t

dK+
s −

∫ +∞
t

dK−s −
∫ +∞
t

ZsdWs −
∫∞
t

∫
E
Vs(e)µ̃(ds, de),

Lt ≤ Yt ≤ Ut, ∀t ≥ 0∫ t
0
(Ys − Ls)dK+

s =
∫ t
0
(Ys − Us)dK−s = 0, P-a.s.

where µ̃ is the compensated measure of µ.
Another speci�city of this paper is to promote a constructive method of the solution of a

BSDEs with two barriers. Speci�cally, we do not assume the so called Mokobodski's hypothesis.
Indeed this one is not so easy to check (see e.g. [21] in �nite horizon and continuous case). Our
assumptions are more natural and easy to check on the barriers in practical cases.

The notion of backward stochastic di�erential equation (BSDE) was studied by Pardoux and
Peng [27] (meaning in such a case L = −∞, U = +∞ and K± = 0). To our knowledge, they
were the �rst to prove the existence and uniqueness of adapted solutions, under suitable square-
integrability and Lipschitz-type condition assumptions on the coe�cients and on the terminal
condition. Several authors have been attracted by this area that they applied in many �elds
such as Finance [6, 12, 13, 19], stochastic games and optimal control [16, 17, 18, 20], and partial
di�erential equations [28].

The existence and the uniqueness of BSDE solutions with two re�ecting barriers and without
jumps have been �rst studied by Cvitanic and Karatzas [6] (generalization of El Karoui et al.
[12]) applied in Finance area by El Karoui et al. [13]. There is a lot of contributions on
this subject since then, consisting essentially in weakening the assumptions, adding jumps, and
considering an in�nite horizon.

The extension to the case of BSDEs with one re�ecting barrier and jumps has been studied
by Hamadène and Ouknine [17] considering a �nite horizon T = 1. The authors show the exis-
tence and uniqueness of the solution using the penalization scheme and the Snell envelope tools.
They stress the connection between such re�ected BSDEs and integro-di�erential mixed stochas-
tic optimal control. The authors' assumptions are: the terminal value is a square integrable
random variable, the drift coe�cient function g(t, ω, y, z, v) is uniformly Lipschitz with respect
to (y, z, v) and the obstacle (St)t≤1 is a right continuous left limited process whose jumps are
totally inaccessible. Hamadène and Ouknine [22] deal with re�ected BSDEs in �nite horizon, the
barrier being right continuous left limited and progressively measurable. Hamadène and Hassani
[18] proved existence and uniqueness results of local and global solutions for doubly re�ected
BSDEs driven by a Brownian motion and an independent Poisson measure in �nite horizon. The
authors applied these results to solve the related zero-sum Dynkin game.

Here the model is inspired from the papers [12, 17, 18, 20, 22]. But their results do not
apply directly to the situation which here requires an in�nite horizon. Moreover we connect
the re�ected BSDE with the impulse control problem. All these papers provide a solution to
the re�ected BSDE problem which are here extended to the case of in�nite horizon by adding
a discount coe�cient and imposing admissibility conditions of strategies. In this paper, the
drift function is assumed to be Lipschitz and non increasing in y. It is proved that the re�ected
BSDE solutions are limit of Cauchy sequences in appropriate complete metric spaces. Another
interesting area is the one of oblique re�ections, meaning a multimodal switching problem, see
for instance [4, 10, 23]. El Asri [10] considers the same problem proposed by Hamadène and
Jeanblanc [19] and extends it to the in�nite horizon case without jump of the state variable,
namely a power station which produces electricity and has several modes of production (the
lower, the middle and the intensive modes). Naturally, the switching from one mode to another
induces costs. The optimal switching problem is solved by means of probabilistic tools such as
the Snell envelop of processes and re�ected backward stochastic di�erential equations. Moreover
their proofs are based on the veri�cation theorem and the system of variational inequalities that
we do not use.

Our purpose is similar to the one in [1], but instead of using Snell envelope and �xed point
theorem as they do, here the two barriers case is solved using comparison theorem in one barrier
case and adding some assumptions on the drift coe�cient g.
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This paper is composed of six sections. Section 1 presents the impulse control problem and
describes the corresponding model. Section 2 introduces a pair of right continuous left limited
processes (Y 1, Y 2) that allows one to exhibit an optimal strategy. Section 3 extends the dou-
bly re�ected BSDEs tools in the in�nite horizon setting with jumps: �rstly the case of a single
barrier with general Lipschitz drift is solved, then a comparison theorem is proved, �nally the
uniqueness and the existence of solution for the doubly re�ected BSDE under suitable assump-
tions are proved in case of drift non depending on state (y, z, v). Section 4 proves the existence
of the required pair (Y 1, Y 2), and provides an application of these doubly re�ected BSDE to a
switching problem. Finally, with some simulations, the results allow to de�ne an optimal strategy
in Section 5. An appendix is devoted to an extension of Gronwall's lemma and some technical
results.
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