PAC-Bayesian Analysis for a two-step Hierarchical Multiview Learning Approach

Anil Goyal 1, 2 Emilie Morvant 1 Pascal Germain 3 Massih-Reza Amini 2
3 SIERRA - Statistical Machine Learning and Parsimony
DI-ENS - Département d'informatique de l'École normale supérieure, ENS Paris - École normale supérieure - Paris, CNRS - Centre National de la Recherche Scientifique, Inria de Paris
Abstract : We study a two-level multiview learning with more than two views under the PAC-Bayesian framework. This approach, sometimes referred as late fusion, consists in learning sequentially multiple view-specific classifiers at the first level, and then combining these view-specific classifiers at the second level. Our main theoretical result is a generalization bound on the risk of the majority vote which exhibits a term of diversity in the predictions of the view-specific classifiers. From this result it comes out that controlling the trade-off between diversity and accuracy is a key element for multiview learning, which complements other results in multiview learning. Finally, we experiment our principle on multiview datasets extracted from the Reuters RCV1/RCV2 collection.
Type de document :
Communication dans un congrès
European Conference on Machine Learning & Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD), Sep 2017, Skopje, Macedonia. 2017, <http://ecmlpkdd2017.ijs.si/>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01546109
Contributeur : Emilie Morvant <>
Soumis le : lundi 24 juillet 2017 - 17:57:30
Dernière modification le : jeudi 17 août 2017 - 10:05:42

Fichiers

mvpb_ecml.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01546109, version 1

Collections

Relations

Citation

Anil Goyal, Emilie Morvant, Pascal Germain, Massih-Reza Amini. PAC-Bayesian Analysis for a two-step Hierarchical Multiview Learning Approach. European Conference on Machine Learning & Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD), Sep 2017, Skopje, Macedonia. 2017, <http://ecmlpkdd2017.ijs.si/>. <hal-01546109>

Partager

Métriques

Consultations de
la notice

157

Téléchargements du document

46