Computing the Homology of Basic Semialgebraic Sets in Weak Exponential Time

Abstract : We describe and analyze an algorithm for computing the homology (Betti numbers and torsion coefficients) of basic semialgebraic sets which works in weak exponential time. That is, out of a set of exponentially small measure in the space of data the cost of the algorithm is exponential in the size of the data. All algorithms previously proposed for this problem have a complexity which is doubly exponential (and this is so for almost all data).
Type de document :
Article dans une revue
Journal of the ACM (JACM), Association for Computing Machinery, 2018, 66 (1), pp.1-30. 〈10.1145/3275242〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01545657
Contributeur : Pierre Lairez <>
Soumis le : mercredi 19 décembre 2018 - 15:52:36
Dernière modification le : vendredi 21 décembre 2018 - 01:13:30

Fichier

Semialgebraic.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Peter Bürgisser, Felipe Cucker, Pierre Lairez. Computing the Homology of Basic Semialgebraic Sets in Weak Exponential Time. Journal of the ACM (JACM), Association for Computing Machinery, 2018, 66 (1), pp.1-30. 〈10.1145/3275242〉. 〈hal-01545657v2〉

Partager

Métriques

Consultations de la notice

23

Téléchargements de fichiers

7