Computing the Homology of Basic Semialgebraic Sets in Weak Exponential Time

Abstract : We describe and analyze an algorithm for computing the homology (Betti numbers and torsion coefficients) of basic semialgebraic sets which works in weak exponential time. That is, out of a set of exponentially small measure in the space of data the cost of the algorithm is exponential in the size of the data. All algorithms previously proposed for this problem have a complexity which is doubly exponential (and this is so for almost all data).
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01545657
Contributeur : Pierre Lairez <>
Soumis le : jeudi 22 juin 2017 - 21:54:03
Dernière modification le : dimanche 25 juin 2017 - 01:07:03

Fichier

Semialgebraic.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01545657, version 1

Collections

Citation

Peter Bürgisser, Felipe Cucker, Pierre Lairez. Computing the Homology of Basic Semialgebraic Sets in Weak Exponential Time. 2017. <hal-01545657>

Partager

Métriques

Consultations de
la notice

138

Téléchargements du document

37