A. C. Atkinson, A. N. Donev, and R. D. Tobias, Optimum Experimental Designs, with SAS, 2007.

G. Blatman and B. Sudret, Ecient computation of global sensitivity indices using sparse polynomial chaos expansions, Reliability Engineering & System Safety, issue.11, p.9512161229, 2010.
DOI : 10.1016/j.ress.2010.06.015

S. Broda and M. S. Paolella, Evaluating the density of ratios of noncentral quadratic forms in normal variables, Computational Statistics & Data Analysis, vol.53, issue.4, p.12641270, 2009.
DOI : 10.1016/j.csda.2008.10.035

E. Burnaev, I. Panin, and B. Sudret, Eective design for Sobol indices estimation based on polynomial chaos expansions, Symposium on Conformal and Probabilistic Prediction with Applications, p.165184, 2016.
DOI : 10.1007/978-3-319-33395-3_12

R. I. Cukier, C. M. Fortuin, K. E. Shuler, A. G. Petschek, and J. H. Schaibly, Study of the sensitivity of coupled reaction systems to uncertainties in rate coecients. I Theory, The Journal of Chemical Physics, issue.8, p.5938733878, 1973.

R. I. Cukier, J. H. Schaibly, and K. E. Shuler, Study of the sensitivity of coupled reaction systems to uncertainties in rate coecients. III Analysis of the approximations, The Journal of Chemical Physics, vol.63, issue.3, p.11401149, 1975.

O. Dubrule, Cross validation of kriging in a unique neighborhood, Journal of the International Association for Mathematical Geology, vol.15, issue.6, p.687699, 1983.
DOI : 10.1007/BF01033232

N. Durrande, D. Ginsbourger, O. Roustant, and L. Carraro, ANOVA kernels and RKHS of zero mean functions for model-based sensitivity analysis, Journal of Multivariate Analysis, vol.115, p.5767, 2013.
DOI : 10.1016/j.jmva.2012.08.016

URL : https://hal.archives-ouvertes.fr/hal-00601472

B. Efron and C. Stein, The Jackknife Estimate of Variance, The Annals of Statistics, vol.9, issue.3, pp.586-596, 1981.
DOI : 10.1214/aos/1176345462

V. V. Fedorov, Theory of Optimal Experiments, 1972.

V. V. Fedorov, Design of spatial experiments: model tting and prediction
DOI : 10.2172/231193

URL : https://digital.library.unt.edu/ark:/67531/metadc669924/m2/1/high_res_d/231193.pdf

J. Fort, T. Klein, A. Lagnoux, and B. Laurent, Estimation of the Sobol indices in a linear functional multidimensional model, Journal of Statistical Planning and Inference, vol.143, issue.9, pp.1590-1605, 2013.
DOI : 10.1016/j.jspi.2013.04.007

URL : https://hal.archives-ouvertes.fr/hal-00685998

B. Gauthier and L. Pronzato, Convex relaxation for IMSE optimal design in random eld models, Computational Statistics and Data Analysis, vol.113, p.375394, 2017.
DOI : 10.1016/j.csda.2016.10.018

L. Gilquin, E. Arnaud, C. Prieur, and H. Monod, Recursive estimation procedure of Sobol' indices based on replicated designs, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01291769

L. Gilquin, L. A. Rugama, E. Arnaud, F. J. Hickernell, H. Monod et al., Iterative construction of replicated designs based on Sobol'sequences, Comptes Rendus Mathematique, vol.355, issue.1, p.1014, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01349444

D. Ginsbourger, O. Roustant, D. Schuhmacher, N. Durrande, and N. Lenz, On ANOVA decompositions of kernels and Gaussian random eld paths, Monte Carlo and Quasi-Monte Carlo Methods, p.315330, 2016.

J. A. Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky, Bayesian model averaging: a tutorial, Statistical Science, vol.14, issue.4, p.382417, 1999.

J. P. Imhof, Computing the distribution of quadratic forms in normal variables, Biometrika, vol.483, issue.4, p.419426, 1961.

L. , L. Gratiet, C. Cannamela, and B. Iooss, A Bayesian approach for global sensitivity analysis of (multidelity) computer codes, SIAM/ASA Journal on Uncertainty Quantication, vol.2, issue.1, pp.336-363, 2014.

J. López-fidalgo, B. Torsney, and R. Ardanuy, MV-optimisation in weighted linear regression Advances in ModelOriented Data Analysis and Experimental Design, Proceedings of MODA'5, p.3950, 1998.

T. A. Mara and O. R. Joseph, Comparison of some ecient methods to evaluate the main eect of computer model factors, Journal of Statistical Computation and Simulation, vol.78, issue.2, p.167178, 2008.

A. Marrel, B. Iooss, B. Laurent, and O. Roustant, Calculations of Sobol indices for the Gaussian process metamodel, Reliability Engineering & System Safety, vol.94, issue.3, p.742751, 2009.
DOI : 10.1016/j.ress.2008.07.008

URL : https://hal.archives-ouvertes.fr/hal-00239494

T. J. Mitchell, An algorithm for the construction of D-optimal experimental designs, Technometrics, vol.16, p.203210, 1974.

J. E. Oakley and A. O. Hagan, Probabilistic sensitivity analysis of complex models

C. Prieur and S. Tarantola, Variance-based sensitivity analysis: theory and estimation algorithms, Handbook of Uncertainty Quantication, p.123, 2016.
DOI : 10.1007/978-3-319-12385-1_35

L. Pronzato, Minimax and maximin space-lling designs: some properties and methods for construction, Journal de la Société Française de Statistique, p.736, 2017.

L. Pronzato and A. Pázman, Design of Experiments in Nonlinear Models Asymptotic Normality , Optimality Criteria and Small-Sample Properties, LNS, vol.212, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00879984

L. Pronzato and M. Rendas, Bayesian Local Kriging, Technometrics, vol.59, issue.3, p.293304, 2017.
DOI : 10.1007/BF00048668

URL : https://hal.archives-ouvertes.fr/hal-01093466

A. Saltelli, Making best use of model evaluations to compute sensitivity indices, Computer Physics Communications, vol.145, issue.2, p.280297, 2002.
DOI : 10.1016/S0010-4655(02)00280-1

A. Saltelli, S. Tarantola, and K. P. Chan, A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output, Technometrics, vol.60, issue.1, p.3956, 1999.
DOI : 10.2307/2371267

J. H. Schaibly and K. E. Shuler, Study of the sensitivity of coupled reaction systems to uncertainties in rate coecients. II Applications, The Journal of Chemical Physics, issue.8, p.5938793888, 1973.

I. M. Sobol, Sensitivity estimates for nonlinear mathematical models, Math. Model. Comp. Exp, vol.1, issue.4, p.407414, 1993.

M. L. Stein, Interpolation of Spatial Data. Some Theory for Kriging, 1999.

B. Sudret, Global sensitivity analysis using polynomial chaos expansions, Reliability Engineering & System Safety, vol.93, issue.7, p.964979, 2008.
DOI : 10.1016/j.ress.2007.04.002

URL : https://hal.archives-ouvertes.fr/hal-01432217

J. Tissot and C. Prieur, A randomized orthogonal array-based procedure for the estimation of rst-and second-order Sobol' indices, Journal of Statistical Computation and Simulation, vol.85, issue.7, p.13581381, 2015.